# Programmable Assembly of Nanomaterials Using Biopolymers : Basic Structure

Yoon-Kyu Song

Graduate School of Convergence Science and Technology (GSCST) Seoul National University

서울대학교 융합과학기술대학원



- Introduction
- Materials and Methods: Overview
- Hybrid Biopolymers for Molecular Building Blocks
- Applications of Nanoassembly: Nano-Optics and Beyond
- Future Research Directions

- What Is Nanostructure?
- How to Make Nanostructures?
- Top-Down vs. Bottom-Up Approaches



Array of GaAs nanoposts fabricated by RIE

Self Assembled array of ST molecules

#### • How to Make Nanostructures?



Note: Solid-state technology also adopts bottom-up processes.

• (Unconventional) Top-Down Approach: Nano Indentation Lithography



Before bulge removal

After bulge removal

• (Unconventional) Top-Down Approach: Nano Indentation Lithography



• Top-Down + Bottom-Up Approach: Crystallized Nano Islands



• Top-Down Approach: Nano Indentation Lithography



time evolution



crystal structure



#### **Interesting Point:**

Nanochannels are created via bottomup process from microstructures defined by top-down techniques

• (Supra-) Molecular Building Blocks and Their Assemblies in Nature



Modified image from NSF (2013)

#### • Important Molecular Building Blocks in Nature

#### Table 2-2 The Types of Molecules That Form a Bacterial Cell

|                                                                  | PERCENT OF TOTAL<br>CELL WEIGHT | NUMBER OF TYPES OF<br>EACH MOLECULE |
|------------------------------------------------------------------|---------------------------------|-------------------------------------|
| Water                                                            | 70                              | 1                                   |
| Inorganic ions                                                   | 1                               | 20                                  |
| Sugars and precursors                                            | 1                               | 250                                 |
| Amino acids and precursors                                       | 0.4                             | 100                                 |
| Nucleotides and precursors                                       | 0.4                             | 100                                 |
| Fatty acids and precursors                                       | 1                               | 50                                  |
| Other small molecules                                            | 0.2                             | ~300                                |
| Macromolecules (proteins,<br>nucleic acids, and polysaccharides) | 26                              | ~3000                               |

#### 1 Lipids -----

- Amphipathic Macromolecule
- Cellular membranes
- Endo/exocytosis, Intracellular transport through vesicles
- 2 Sugar Polysaccharides -----
  - Glycosidic bonds
  - Energy storage
  - Receptor on cytoplasmic membrane (glycolipids, glycoproteins)

#### 3 Nucleotides – Nucleic Acids (DNA/RNA) -----

- Phosphodiester bonds
- Sugar phosphate (backbone) and Purine/Pyrimidine base
- Genetic information store/express/transfer

#### 4 Amino acids – Protein ------

- Peptide bonds
- Most abundant macromolecules
- Numerous structural and functional roles in life

#### 1 Lipids

- Amphipathic Macromolecule
- Cellular membranes
- Endo/exocytosis, Intracellular transport through vesicles
- Functional regulation of organs (e.g. hormones)



#### Various functional lipids

#### 2 Sugar – Polysaccharides

- Glycosidic bonds
- Carbohydrate (C:H<sub>2</sub>O = 1:1)
- Energy storage
- Receptor on cytoplasmic membrane (glycolipids, glycoproteins)





#### **3** Nucleotides – Nucleic Acids (DNA/RNA) –

- Phosphodiester bonds
- Sugar phosphate (backbone) and Purine/Pyrimidine base
- Genetic information store/express/transfer



#### Amino acids – Protein -

- Peptide bonds
- Most abundant macromolecules
- Numerous structural and functional roles in life



![](_page_14_Figure_6.jpeg)

![](_page_14_Picture_7.jpeg)

![](_page_14_Figure_8.jpeg)

# **Programmable Nano Assembly:** Using Biopolymers

Complex Plasmonic Nanomaterials ------

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

2 Multi-Functional Nanoprobes ----

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

**3** Highly Ordered Nanostructures

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_15_Figure_11.jpeg)

![](_page_15_Figure_12.jpeg)

Nano Motors and Reconfigurable Nanostructures

![](_page_15_Picture_14.jpeg)

4

![](_page_15_Picture_15.jpeg)

![](_page_15_Picture_16.jpeg)

### **Biopolymers: DNA and Protein**

- Two Most Abundant Biopolymers in Nature
- Information Carrying Molecules : Programmable
- Controllable Assembly
- Provide Various Functionalities in Life

|      | DNA                                                                                                                                                                                                                          | Protein                                                                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pros | <ul> <li>✓ Narrow range of functions</li> <li>✓ Limited binding</li> <li>✓ Highly negative charge</li> <li>✓ High cost of synthetic DNA</li> <li>✓ High error rate of self-assembly</li> <li>✓ Thermally unstable</li> </ul> | <ul> <li>✓ Difficult handling</li> <li>✓ Slow production</li> <li>✓ Unpredictable process</li> <li>✓ Low design freedom</li> </ul>                      |
| Cons | <ul> <li>✓ Easy design (4 bases)</li> <li>✓ Fast production</li> <li>✓ Easy assembly</li> </ul>                                                                                                                              | <ul> <li>✓ Broad range of functions</li> <li>✓ Versatile binding</li> <li>✓ Molecular recognition</li> <li>✓ Precise alignment with symmetry</li> </ul> |

### Molecular Building Blocks: DNA vs. Protein

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

| P<br>P<br>F<br>S | assive DNA nanostructures<br>letero-elements for Functionality<br>eeman         | ~00              | Primitive Protein Nanostructures     Alice P. Gast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|---------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Template & Algorithm Method<br>Periodic & 3D Nanostructure<br>Rothemund Winfree | 05 ~ 20          | <ul> <li>Symmetric/Asymmetric Pattern</li> <li>Todd O. Yeates</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | <ul> <li>DNA Origami</li> <li>Nano-robot</li> <li>Rothemund Hao Yan</li> </ul>  | 0~ 20            | <ul> <li>Fusion Protein</li> <li>Computational Design</li> <li>Martin E. M. Noble</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | <ul> <li>DNA Bricks</li> <li>Molecular Biophysics</li> <li>Peng Yin</li> </ul>  | 15 ~ <b>2</b> 01 | <ul> <li>Coiled-Coil Protein<br/>Origami<br/>Roman Jerala</li> <li>A</li> <li< th=""></li<></ul> |
|                  |                                                                                 | 201              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### **DNA & Protein Hybrid Building-block?**

# Molecular Building Blocks: DNA plus Protein

### Biocompatible | Smart Molecule | Controllable

![](_page_18_Picture_2.jpeg)

SCIENCE 2012, VOL.338, 30

#### DNA

- -Watson-Crick base pairing
- -Directly synthesize
- -Freedom of Design

#### Protein

- Conformational variability
- Biological recognition
- Effective scaffold structure

### Need a Glue? – Avidin-Biotin System

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

Hydrogen bonding network of streptavidin-biotin: One of the strongest non-covalent bindings in nature

#### Biotin

#### Protein

- Conformational variability
- Effective scaffold structure
- Various properties

#### DNA

- Directly synthesized
- Freedom of Design
- Watson-Crick base pairing

### **DNA Base Paring: "Multivalent" Building Blocks**

![](_page_20_Figure_1.jpeg)

## **Extraction of Programmable Units: Magnetic Separation**

![](_page_21_Figure_1.jpeg)

### **Issues with Magnetic Separation**

![](_page_22_Figure_1.jpeg)

### **Synthesis of Multivalent TV-DNA Conjugates**

![](_page_23_Figure_1.jpeg)

### **PAGE Ananlysis of Tetravalent DNA-TA Complexes**

a

![](_page_24_Figure_2.jpeg)

Magnetic Separation Steps

### **Spectroscopic Ananlysis of Tetravalent Complexes**

![](_page_25_Figure_1.jpeg)

# **Schemes for Fabricating (Plasmonic) Nano Assembly**

- Passivation to Dead-Probe
- Conjugation to AuNP I & II
- Collecting AuNP I and Dimer
- Remove AuNP II

![](_page_26_Picture_5.jpeg)

- Release from Magnetic Bead
- Conjugation to Dimer
- Remove AuNP I

![](_page_26_Picture_9.jpeg)

- Release from Magnetic Bead
- Purification of Dimer Structure

![](_page_26_Figure_12.jpeg)

# Fabrication Yield of (Plasmonic) Nano Assembly

#### a Thermal Stability of Traptavidin

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

#### **Various Plasmonic Nanostructures**

![](_page_28_Figure_1.jpeg)

- a Symmetric/asymmetric dimer clusters and symmetric/asymmetric trimer clusters
- **b** Various plasmonic structures using four binding sites of the multivalent conjugates
- C A hexagonal plasmonic structure by connecting pre-programmed building blocks I & II

#### **Plasmonic Homo-Dimers**

![](_page_29_Figure_1.jpeg)

- Accurate number of binding sites for Traptavidin (4!!)

- Extra two binding sites

#### **Plasmonic Hetero-Dimers**

![](_page_30_Figure_1.jpeg)

- Accurate number of binding sites for Traptavidin (4!!)

- Extra two binding sites

#### AuNP-Qdot Hetero-dimers, -trimers, -tetramers

![](_page_31_Figure_1.jpeg)

Scale bar : 20nm

![](_page_31_Figure_3.jpeg)

- 1) Single QD and AuNP bound to multivalent complex
- 2) Double QD and AuNP bound to multivalent complex
- 3) Triple QD and AuNP bound to multivalent complex

#### **Various Plasmonic Nanostructures**

![](_page_32_Figure_1.jpeg)

![](_page_33_Picture_1.jpeg)

# Thank you for your attention.

# **Questions?**

# Programmable Assembly of Nanomaterials Using Biopolymers : Applications

Yoon-Kyu Song

Graduate School of Convergence Science and Technology (GSCST) Seoul National University

서울대학교 융합과학기술대학원

![](_page_35_Picture_5.jpeg)

#### **Fluorescent Enhancement in Plasmonic Nanoparticles**

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Figure_3.jpeg)

- Novotny et. al., PRL (2006)
- Enhancement vs. quenching
- Optimized for fluorescence enhancement
- More dramatic in Ag nanoparticles (x50)

### Plasmonic Antenna : Enhanced Optical Field at Nano Gap

- Increased optical field at nano-gap may enhance fluorescence and scattering
- Application to biosensors with ultra-high sensitivity

#### **Top-Down Approach**

![](_page_37_Figure_4.jpeg)

### Plasmonic Antenna : Enhanced Optical Field at Nano Gap

#### **Bottom-Up Approach**

![](_page_38_Figure_2.jpeg)

- Tinnefeld et. al., Science (2012)
- AuNP dimers on a DNA origami scaffold based "nano-post"
- 117-fold fluorescence enhancement
- Fluorescence lifetime measurements
- Application to DNA binding assay

![](_page_38_Figure_8.jpeg)

### **FDTD Simulation**

![](_page_39_Figure_1.jpeg)

Phys. Rev. Lett. 96, 113002

![](_page_39_Figure_3.jpeg)

 $\gamma_{exc}$ : The excitation rate of the product  $\gamma_{em}$ : The fluorescence rate q: quantum yield

![](_page_39_Figure_5.jpeg)

## **Dimensions of Traptavidin-Biotinylated DNA System**

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

| Gap size | Distance            |  |
|----------|---------------------|--|
| 12.3nm   | 4.5nm + ( DNA 15bp) |  |
| 17.7nm   | 4.5nm + ( DNA 22bp) |  |
| 22.5nm   | 4.5nm + ( DNA 30bp) |  |
| 28.5nm   | 4.5nm + ( DNA 40bp) |  |

Tetrahedron with average side length of 4.36nm

(Simulated by CCP4MG version 2.9.0.)

## Simulation : Excitation Rate & Quantum Yield

- Lumerical FDTD
- Diameter = 20nm, 40nm, 60nm, 80nm AuNP
- Gap size = 12.3nm, 17.7nm 22.5nm 28.5nm gap
- Surrounding medium = water (n=1.33)
- Incident light = 642nm plane wave (z-polarization, y-propagation)

![](_page_41_Figure_6.jpeg)

#### **Simulation Results : Electric Field of Dimer AuNPs**

![](_page_42_Figure_1.jpeg)

### Simulation Results : Quantum Yield of Dipole

![](_page_43_Figure_1.jpeg)

#### **Experimental Results :: Dimer AuNPs**

#### 642nm laser (150mW)

**TIRF(total internal reflection fluorescence)** 

Blinking buffer (Oxygen Scavenger System)

![](_page_44_Picture_4.jpeg)

![](_page_44_Picture_5.jpeg)

#### **Experimental Results :: Dimer AuNPs**

![](_page_45_Figure_1.jpeg)

#### **Fluorescent Enhancement : Monomers**

![](_page_46_Figure_1.jpeg)

#### **Fluorescent Enhancement : Dimers**

![](_page_47_Figure_1.jpeg)

# **Discussion : Applications and Future Directions**

• Molecular Building Blocks for Nano-Photonic Applications

![](_page_48_Figure_2.jpeg)

#### **Single Molecule Detection**

![](_page_48_Picture_4.jpeg)

- Research on single molecule biophysics
- Dynamics of biological mechanism

#### **Biosensor (Low Concentration)**

![](_page_48_Picture_8.jpeg)

**Circulating miRNA detection** 

Very Low Concentration (pM , fM)

Fluorescence Enhancement with Nano-gap

### **Application of Nanoassembly: Carbon-Like Structures**

- C1 structure: One DNA with complimentary pairing *dimer*
- C2 structure: Two DNAs with complimentary pairing *linear chain*
- C3 structure: Three DNAs with complimentary pairing *denrimeric particle*
- C4 structure: Four DNAs with complimentary pairing *extended aggregates (?)*

#### Examples of valency controls

![](_page_49_Figure_6.jpeg)

### **Application of Nanoassembly: Carbon-Like Structures**

![](_page_50_Picture_1.jpeg)

![](_page_50_Picture_2.jpeg)

![](_page_50_Picture_3.jpeg)

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

**C4** 

![](_page_50_Picture_8.jpeg)

# **Application of Nanoassembly: Carbon-Like Structures**

#### • FRET Analysis on C3 Structures

Verification of coexistence of complimentary TA-DNA molecules using FRET

![](_page_51_Picture_3.jpeg)

*High degree of cross membrane penetration in C3 structure applicable to drug delivery system* 

# **Applications to POC Diagnostics Using Smart Phone**

#### **DNA Imaging**

![](_page_52_Figure_2.jpeg)

ACS NANO / VOL 8 / DECEMBER 2014

- Optical image of single  $\lambda$ -DNA (~20 $\mu$ m)
- Size dependent detection
- Low magnification

#### **Hg Detection**

![](_page_52_Figure_8.jpeg)

ACS NANO / VOL 8 / JANUARY 2014

- Hg<sup>2+</sup>detection using colorimetric sensing
- Quantitative detection of  ${\rm Hg^{2+}}$
- Mapping contaminated area using smartphones

#### **Virus Detection**

![](_page_52_Figure_14.jpeg)

ACS NANO / VOL 9 / FEBRUARY 2015

- QD cluster bar-code
- Multiple detection of 3 analytes simultaneously
- Requires pre-purification/ amplification steps

# **Applications to POC Diagnostics Using Smart Phone**

#### • Fluorescence Microscope Using Smart Phones

![](_page_53_Picture_2.jpeg)

![](_page_53_Figure_3.jpeg)

#### A smart phone microscopy Galaxy S3 Samsung CMOS sensor

![](_page_53_Picture_5.jpeg)

#### A conventional microscopy CFI Plan Fluor 10x (NA=0.30) objective lens

![](_page_53_Picture_7.jpeg)

# **Applications to POC Diagnostics Using Smart Phone**

• POC Detection System Based on Smart Phone Microscope

#### 나노안테나 - 형광증폭

• 고감도 형광신호를 통해 스마트폰 CMOS 센서에서 감지할 수 있는 기술 확보

![](_page_54_Picture_4.jpeg)

BT NT IT 융합기술

#### 자성입자 분리기술

 바이러스에 접합 된 자성 입자를 통해 선택적인 분 리 기술 확보

![](_page_54_Picture_7.jpeg)

- 바이오 분자 합성기술
- DNA 상보결합을 통한 나노안테나 구조 설계

![](_page_54_Picture_10.jpeg)

![](_page_54_Picture_11.jpeg)

- 스마트폰 형광센서
- 양자점이 접합 된 바이러스를 스 마트폰을 통해 시공간의 제약없이 검지 기술 확보

#### **Summary and Discussion**

- Nanoparticles in assembly offer structural and functional characteristics
- Pros and cons for two different classes of biopolymers
- Strategy to combine DNA with protein molecular building blocks
- Various nanostructures based on DNA-protein MBB platform
- Fluorescent enhancement in plasmonic dimers for biosensor applications
- Future directions include various scientific and technological applications

# Thank you for your attention.

# **Questions?**