Topics in Ship Structural Design (Hull Buckling and Ultimate Strength) Lecture 01 Introduction

Professor: Jang, Beom Seon E-mail : seanjang@snu.ac.kr Homepage : openlab.snu.ac.kr Tel : 880-8380 Office : 34-202

OPen INteractive Structural Lab

Materials

- Mechanics of Material, 7th Edition by James M. Gere
- Ship Structural Design by Owen F. Hughes
- Ultimate Limit State Design of Steel-Plated Structure by Paik
- DNV Rule for Classification of Ships Part 3 Chapter 1, Section 13
- Common Structural Rule

Evaluation

Homework

Exercises, FE calculations and so on.

Evaluation

Examination : Open book & Close book

Attendance	Task	Medium	Final	Total
10%	20%	35%	35%	100%

Board

ETL to be utilized

Lecture Plan

Week	Lecture Contents	Remarks				
1 Week	Ultimate Limit State, Material behavior of Steel Structures					
2 Week	Column Buckling	No class due to ISSC on 10 th and 12 th September				
3 Week	Plate Bending, Orthotropic Plate Bending					
4 Week	Understanding of Structural Behavior of COT in CSR Cargo Hold Analysis					
5 Week	Buckling and Ultimate Strength of Beam-Column					
6 Week	Buckling and Ultimate Strength of Plates					
7 Week	Mid Examination					
8 Week	Global Strength Assessment of Offshore Structure and Understanding of Structural Behavior					
9 Week	Elastic and Inelastic Buckling of Stiffened Panels					
10 Week	Ultimate Strength of Stiffened Panels					
11 Week	Ultimate Strength of Hull					
12 Week	Buckling and Ultimate Strength in CSR					
13 Week	Buckling check using Classification rule					
14 Week	Nonlinear Finite Element Analysis					
15 Week	Final Examination					
	OPen INto	eractive Structural Lab				

Purpose of Course

- Understanding of buckling and ultimate strength, one of the most important subjects in the assessment of ship and offshore structure.
- Understanding of a basic plate & buckling theory, semianalytical approaches for ultimate strength and practical method to assess ultimate strength using nonlinear FE analysis.
- Understanding of structural behavior of vessels and offshore structures under environmental load.
- Understanding buckling and ultimate strength in terms of the structural behavior.
- Practice of buckling check and ultimate strength assessment using FE analysis

Contents

- General
- Concept of Buckling, Post buckling, Ultimate
 Strength
- Types of Buckling and Ultimate Strength in a Vessel
- Principles of Limit State Design
- Material Behavior of Structural Steels

General – Material Yield

Material load v.s. Deflection curve

General - Structural Yield

Structural load v.s. Deflection plot

: structural load and deflection parameters are generally gross parameters :e.g. the deflection at the centre of a grillage vs. the load applied to the whole grillage.

General

A general load-deflection curve for a ductile steel structure

- Yielding takes place partly.
- Redistribution of stress occurs as the plastic strain field grows.
- The linear potion of the curve ends when the strain field can redistribute no more and a mechanism (eg. hinge) is formed.
- After this the structure may continue to support further load increase, now in a new way (e.g. by membrane behavior).
- Start a new redistribution process and lead to another mechanism
 Load
 stress redistribution

Deflection

Figure 1 (alternate)

Concept of Buckling, Post buckling, Ultimate Strength

General - Occurrence of Buckling

Concept of Buckling

 Buckling in a strict sense Axial def.
 Bifurcation point
 Axial def. + Bending def.

Buckling in a wide sense

(When initial deflection is accompanied)

- Strictly saying, no bifurcation
- deflection rapidly increases as th e load approaches buckling load when initial deflection is small.

Post-buckling Behaviour

One-dimensional member: Axially compressed column

Post-buckling Behaviour

Two-dimensional member: Rectangular plate under thrust Q: deflection v.s. strain? Ρ Ρ Ρ D -> → u/2 u/2 THICK PLATE THICK PLATE THIN PLATE THIN PLATE START OF YIELDING START OF YIELDING Stress-strain U Stress-deflection W **OPen INteractive Structural Lab**

Buckling/plastic collapse behavior of stiffened plate su bjected to thrust

Case A:

Overall collapse by elastic buckling after elastic panel buckling

Case B:

 Overall collapse by elasto-plastic buckling after elasto-plastic pan el buckling

- ✤ Case C:
 - Overall collapse by plastic buckling after general yielding

Types of Buckling and Ultimate Strength in a Vessel

Buckling & Ultimate Strength I

Column buckling

- Elastic buckling
- Inelastic buckling

Classification Rule

$$\sigma_{c} = \sigma_{el} \text{ when } \sigma_{el} < \frac{\sigma_{f}}{2}$$
$$= \sigma_{f} (1 - \frac{\sigma_{f}}{4\sigma_{el}}) \text{ when } \sigma_{el} > \frac{\sigma_{f}}{2}$$
$$\sigma_{el} = \frac{\pi^{2} E I_{A}}{A L^{2}} = \frac{\pi^{2} E}{(L/r)^{2}}$$

Buckling & Ultimate Strength II

Unstiffened Plate (Plating between stiffeners)

- Elastic and Inelastic Buckling
- Post-Buckling and Ultimate strength

Classification Rule

Johnson-Ostenfeld plasticity correction formula

$$\sigma_{c} = \sigma_{el} \text{ when } \sigma_{el} < \frac{\sigma_{f}}{2}$$
$$= \sigma_{f} \left(1 - \frac{\sigma_{f}}{4\sigma_{el}} \right) \text{ when } \sigma_{el} > \frac{\sigma_{f}}{2}$$

$$\sigma_{el} = 0.9 \text{kE} \left(\frac{t - t_k}{1000s}\right)^2 (N/mm^2)$$

Example of Buckling check in accordance with Classification Rule

OPen INteractive Structural Lab

Stiffened Plate in Hull Structure

- Resist against bending moment induced by out-ofplane pressure
- Resist against in-plane compressive load

Cargo Hold Example - Question?

Which pressure induce buckling of plating?

Pressure

Cargo Hold Example - Answer

Which pressure induce buckling of plating?

Cargo Hold Example

MSC.Patran 2003 03-Dec-04 09:35:54 Deform:LC1, Static Subcase, Displacements, Translational, (NON-LAYERED)

Cargo Hold Example - Result

Buckling & Ultimate Strength III

Buckling of Plate-Stiffener Combination (DNV RP C201)

- Stiffener with associated effective plate flange
- Effective width of plate flange accounts for biaxial compression or compression-tension
- Transverse stress and shear gives added lateral pressure

Buckling & Ultimate Strength III

Buckling of Stiffened Plate (DNV PULS, ALPS)

- Elastic and Inelastic buckling
- Post –buckling and Ultimate strength

Q: Which one is the most common?

Mode I-1: Overall collapse of a uniaxially stiffened panel

Mode I-2: Overall collapse of a cross-stiffened panel

Mode III: Plate induced failure yielding of plate-stiffener combination at mid-span

Mode IV: Stiffener induced failure local buckling of the stiffener web

Mode V: Stiffener induced failure lateral-torsional buckling of stiffener

OPen INteractive Structural Lat

Buckling & Ultimate Strength IV

Ultimate strength of Hull (CSR Rule, MAESTRO)

Progressive buckling/plastic collapse

Decrease in rigidity of buckled members

Increase in stress in un-buckled members due to stress re-distribution

Progressive occurrence of buckling/plastic collapse in structural members

Buckling/plastic collapse of whole structure

Buckling at deck plating under sagging moment

Progressive Failure of Crude Oil Tank

- Section modulus of upper deck is smaller than bottom
- High compressive stress occurs when sagging
- Stiffened plate is prone to buckling subjected to compressive stress
- Progressive failure

Principles of Limit State Design

Reference : Ultimate Limit State Design of Steel-Plated Structures Ch.1 Principles of Limit State Design

Allowable stress design

 ✓ to keep actual stresses under a certain working level that is based on successful similar past experience (e.g. 85% of yield stress)

Limit state design

- ✓ based on explicit consideration of the various considerations under which the structure ceases to fulfill its intended function.
- ✓ more refined computations such as nonlinear elastic-plastic large-deformation FE analyses.
- ✓ appropriate modeling related to geometric/material properties, initial imperfections, boundary condition, load application, etc.
- ✓ Ultimate Limit State (ULS)
- ✓ Fatigue Limit State (FLS)
- ✓ Accidental Limit State (ALS)

Q: material nonlinear v.s. geometric nonlinear?

OPen INteractive Structural Lat

- * The partial safety factor (γ_{fi} , γ_0 , γ_m , γ_c) based design criterion for a structure
- Demand (≈Load) < Capacity (≈ strength)

$$D_d < C_d$$
 or safety measure = $C_d / D_d > 1$

Serviceability limit state (SLS)

- Local damage which reduces the durability of the structure
- Unacceptable deformations causing discomfort or affect the proper function of equipment
- Deformation and deflection spoiling the aesthetic appearance

Ultimate Limit State (ULS)

- Loss of equilibrium in part or of entire structure
- Attainment of the maximum resistance of structural regions
- Instability in part or of the entire structure resulting from buckling and plastic collapse of plating, stiffened panels and support members.
- elastic-plastic buckling collapse

1.2 Considerations in Limit State Design

Necessity of Ultimate State

- Point A : Elastic buckling strength with plasticity correction
- Point B : Ultimate strength considering post-buckling behavior

Safety factor = Ultimate load (stress) / Design load (working stress)

OPen INteractive Structural Lat

Illustrating example I

***** Flat bar v.s. tee bar stiffener

Illustrating example II

- * Tee bar is optimized in terms of elastic limit
 - ⇒ Safety margin of tee bar > Safety margin of flat bar
- However, in terms of ultimate limit

Material Behavior of Structural Steel

1.3.1 Monotonic Tensile Stress-Strain Curve

Typical schematic relationships between stress and strain

- Young's modulus (or modulus of elasticity), E
- proportional limit, $\sigma_{\rm P}$
- upper yield point, $\sigma_{\rm YU}$
- lower yield point, $\sigma_{\rm YL} (\approx \sigma_{\rm Y})$
- yield strength, $\sigma_{\rm Y}$
- yield strain, $\varepsilon_{\rm Y} = \sigma_{\rm Y}/E$
- strain-hardening strain, $\varepsilon_{\rm h}$
- strain-hardening tangent modulus, $E_{\rm h}$ (5~15% of Young's modulus)
- ultimate tensile strength, $\sigma_{\rm T}$ (must be 1.2 times $\sigma_{\rm Y}$)
- ultimate tensile strain, $\varepsilon_{\rm T}$ (20 times $\varepsilon_{\rm Y}$)
- necking tangent modulus, E_n
- fracture strain, $\varepsilon_{\rm F}$ (about 20%, must be > 15%)
- Poisson's ratio, v
- Elastic Shear Modulus, G G = -

OPen INteractive Structural

2(1+v)

1.3.1 Monotonic Tensile Stress-Strain Curve

A schematic of stress-strain curve and offset yield stress for heat-treated higher tensile steel

- The yield strength of a steel is increased by the heat treatments or cold forming.
- The stress versus strain monotonically increases until its maximum.
- Yield strength = intersection point of stress-strain curve and a straight line passing through an offset point strain (σ,ε)=(0, 0.002)
- Classification steels
 Mild steel = 235 MPa
 AH32 = 315 MPa
 AH36 = 355 MPa

A schematic of stress-strain curve and offset yield stress for heattreated higher tensile steels

OPen INteractive Structural

1.3.1 Monotonic Tensile Stress-Strain Curve

Effect of Strain Hardening on Ultimate Strength

- Elastic-plastic large deflection behavior of a steel rectangular plate under uniaxial compressive loads in nonlinear FE analysis.
- The strain-hardening has an effect on increasing ultimate strength to a degree.
- Elastic and perfectly plastic material model is considered sufficient.

The effect of strain hardening on the ultimate strength of a steel plate under axial compression

OPen INteractive Structural Lab

1.3.2 Yield Condition under Multiple Stress Components

- ✤ For 1 D structural member : uniaxial tension test is used to check the state of yielding → Simple.
- ◆ Plate element subjected to a combination of biaxial tension/compression ($σ_x$, $σ_y$) and shear stress ($τ_{xy}$) → plane stress state.

Q: Plane stress v.s. Plane strain?

For an isotropic 2-dimensional steel member (e.g plate), the following three yield criteria are presented.

- 1. Maximum principal stress based criterion $\max\left(\!\left|\sigma_{1}\right|, \left|\sigma_{2}\right|\right) = \sigma_{Y}$
 - Relevant for brittle materials

Plane stress v.s. Plane strain?

OPen INteractive Structural Lab

1.3.2 Yield Condition under Multiple Stress Components

	1st Eigenmode	2nd Eigenmode	3rd Eigenmode
Simply Supported Plate			
Simply Supported PSC			
Simply Supported Panel			