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1.1 Introduction

** Numerical methods

® Mathematical techniques used for solving mathematical problems that cannot be solved or
are difficult to solve analytically

® An analytical solution
= Exact answer in the form of a mathematical expression

® Numerical solution
= Approximate numerical value (a number) for the solution
= Although numerical solutions are an approximation, they can be very accurate.

= In many numerical methods, the calculations are executed in an iterative manner until a desired
accuracy is achieved.




*** Solving a problem in science and engineering

® Problem statement
= Variables
= Boundary/initial conditions
® Formulation of the solution
= Model (physical laws)
= @Governing equations
® Programming (of numerical solution)

= Selection of numerical method
— Differ in accuracy, length of calculations,
and difficulty in programming
* Implementation
— Algorithm + computer program

® |Interpretation of the solution

= Verification and validation

1.1 Introduction
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1.2 Representation of numbers on a computer

*» Decimal and binary representation

® Decimal system

10" 00 16 10t 10 10t 104 10 10
A

6 0 7 2 4 .3 1 2 b

6 X104+ 0 X 10+ 7 X102+ 2 X 10"+ 4 X 10% 3x 10714+ 1 X 1072+ 2 X 1073+ 5§ X 107*= 60,724.3125

® Binary system

X2 ta<e’ 02 Pix2 T i Fix2y Foe2 x>

IX16+0X8+0%x4+1%x2+1X1+1x05+0X0.25+1% 0.125 = 19.625



1.2 Representation of numbers on a computer

*» Decimal and binary representation

® Decimal to binary

0.188x2=0.376  carry=0 hipD
0.376 x2=0.752 carry =0
0.752x2=1.504 carry = |
0.504x2=1.008 carry = |
0.008x2=0.016 carry = ()

Answer = .00110 ¢for five significant digits)

= 0.625=7



1.2 Representation of numbers on a computer

** Floating point representation

® To accommodate large and small numbers

= Real numbers are written in floating point representation.

d.dddddd x 107

= Order of magnitude

- B 391x10° 651923 % 10° 50=50
25
1.1001 x 2"

x 2°=1.5625 x 2

® Binary floating point

bbb €

1.6bbbbb x 2
\
1344= 33,5101 312550
= Normalizing the number with respect to e
the largest power of 2 that is smaller 0. 3125—% X2 =125x 2
than the number itself.




1.2 Representation of numbers on a computer

*» Storing a number in computer memory

® The computer stores

® Single precision vs. double precision

= 4 bytes (32 bits) vs. 8 bytes (64 bits)

® Firstbit=sign(0=>+ ,1="-)

210 29 23 21 2(] 2-1 2-2 2-3 2-50 2-5] 2-52
111 /11 /117, 1// 1// 1// 1// 1// 1// 1// 1/
/’{] /{) xf{) /{) e+ [(70|70}70([70|70 * s s s e 0170170
£ H i +
Sign Exponent + bias Mantissa

1 bit 11 bits 52 bits



1.2 Representation of numbers on a computer

*» Storing a number in computer memory

® Exponent + bias Bias?
= = The bias is introduced in order to avoid using one of the bits
= for the sign of the exponent (since the exponent can be positive
® Mantissa or negative)
- Exponent 4 = stored value 4+1023 = 1027
range of exponent: -1023~1024
210 29 23 21 2(] 2-1 2-2 2-3 2-50 2-5] 2-52
1// 1// 1// 1// 1// 1// 1// 1// 1// 1// 1// 1/
70170170170 e+ |70|70}#70|70 (-0 e v o s e 70170170
L # i +
Sign Exponent + bias Mantissa

1 bit 11 bits 52 bits



1.2 Representation of numbers on a computer

*» Storing a number in computer memory

® Ex)
= 22.5in double precision
exponent
22974 = 1406252 —— -
? = 1. X 4+1023 = 1027
l mantissa
0.40625

0‘10000000011‘011010000 .. |o]ofo]o
£ 4 i +
Sign Exponent + bias Mantissa

1 bit 11 bits 52 bits



1.2 Representation of numbers on a computer

+» Additional notes

® Smallest number in double precision

1.0 x 2-1022 7192 .90 % 107

® Largest number in double precision

1.0 x 21024 21024 1.8 x 10°% —

® Underflow and overflow

~-1.8x10%% ~-22x107%  ~2.2x1073% ~1.8x10°%
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1.2 Representation of numbers on a computer

+» Additional notes

Ex) Single precision, bias=127

E Real F Value
Exponent
0000 0000 | Reserved | 000...0 049
XXX...X Unnormalized

(-1)S x 2126 x (0.F)

0000 0001 | -126,,
0000 0010 | -125.,

Normalized
0111 1111 040 (-1)° x 25727 x (1.F)

1111 1110 1274
1111 1111 Reserved | 000...0 Infinity
XXX...X NaN




1.2 Representation of numbers on a computer

+» Additional notes

® Errors

= Ex) 0.1 = 1.6 X 27%: 0.6 cannot be written exactly

= The errors that are introduced are small in one step.

= But when many operations are executed, the errors can grow to such an extent that the final
answer is affected.

® Interval between numbers
= Smallest value of the mantissa: 27°% ~ 2.22 x 10716
= Smallest possible difference in the mantissa between two numbers

= The interval depends on the exponent.



1.3 Errors in numerical solutions

**» Types of error
® Round-off errors (BF-= 2l @ X})
= QOccurs because of the way that computers store numbers and execute numerical operations
® Truncation errors (A EFQ X})
= Introduced by the numerical method that is used for the solution.
® Total error of the numerical solution

= Difference between the exact solution and the numerical solution



1.3 Errors in numerical solutions

*** Round-off errors

® Chopping off (discarding)

® Rounding

Example 1-2: Round-off errors

Consider the two nearly equal numbers p = 9890.9 and ¢ = 9887.1. Use decimal floating point rep-
resentation (scientific notation) with three significant digits in the mantissa to calculate the differ-
ence between the two numbers, (p — ¢). Do the calculation first by using chopping and then by using
rounding.

SOLUTION

In decimal floating point representation, the two numbers are:

p = 9.8909 x 10° and ¢ = 9.8871 x 10°

If only three significant digits are allowed in the mantissa, the numbers have to be shortened. If
ChOEEinE 1s used, the numbers become:

p=9.890x10" and g = 9.887 x 10°
Using these values in the subtraction gives:

g = 9.890 x 10° ~9.887x 10° = 0.003 x 10° = 3
If rounding is used, the numbers become:

p=9891x10° and g = 9.887 x 10° (g 1s the same as before)
Using these values in the subtraction gives:
g = 9.891x10°-9.887 x 10° = 0.004 x 10° = 4

The true (exact) difference between the numbers 1s 3.8. These results show that, in the present prob-
lem, rounding gives a value closer to the true answer.




1.3 Errors in numerical solutions

*** Round-off errors

® Are likely to occur
= When the numbers that are involved in the calculations differ significantly in their magnitude.
= When two numbers that are nearly identical are subtracted from each other.
® Example
x%—-100.0001x +0.01 = 0O
= Exact solutions: x; = 100 and x, = 0.0001
= Numerical solution: x; = 100 and x, = 1.000000000033197e-004

. _ —b- ﬁ/b —4ac (- b+'\’b —4ac) 2¢
2
(= b+ b° - 4ac) —b+«/b2—4ac

= Numerical solution: x; = 100 and x, = 1.000000000000000e-004



1.3 Errors in numerical solutions

*** Round-off errors

® Example

Example 1-3: Round-off errors

Consider the function:

f(x) = x(Jx— Jx=1) (1.12)
(@) Use MATLAB to calculate the value of f(x) for the following three values of x
x = 10,x = 1000, and x = 100000 .

(b) Use the decimal format with six significant digits to calculate f(x) for the values of x in part
(a). Compare the results with the values in part (a).

(c¢) Change the form of f(x) by multiplying it by ﬁ — 1 Usmg the new form with numbers in
X+ JXx-—

decimal format with six significant digits, calculate the value of f(x) for the three values of x.
Compare the results with the values in part (a).

£(100000) = 100000 * (v100000 — 100000 — 1) = 158.1143

£(100000) = 100000( /100000 — /100000 — 1) = 100000(316.228 —316.226) = 200

£(100000) = HELEe = LLE — 158.114

/100000 + ./100000 = 316.228 + 316.226




¢ Truncation errors

® Ex) Taylor’s series expansion

T R |

sin(x) = x—-=—+=-=+=-=—+

3t 57t 9 11!

1.3 Errors in numerical solutions

= Exact value can be determined if an infinite number of terms are used.

= The value can be approximated by using only a finite number of terms.

= Truncation error = difference between the true value and an approximated value

® Ex) Derivative

df (x) _ SO) - f(xy)

dx N Xy — X

® The truncation error is independent of round-off error.

® It exists even when the mathematical operations themselves are exact.



1.3 Errors in numerical solutions

+* Total error
® Total error (true error) = true solution — numerical solution
® True relative error

TrueSolution — NumericalSolution
TrueSolution

TrueRelativeError =

® Cannot actually be determined in problems

® Useful for evaluating the accuracy of different numerical methods

= By solving problems that can be solved analytically



1.4 Computers and programming

*» Computer program
® A set of instructions
® Machine language is required.

® Early days of computers = low level computer languages (assembler)

** Operating system

® Interface or layers enabling easier contact and communication between users and machine
language of the computer

® UNIX developed by Bell Lab. in the 1970s
® DOS (Disk Operating System) used by Microsoft Inc.

*** High level computer languages
® FORTRAN, C, C++
® MATLAB (in this course)



1.4 Computers and programming

*» Algorithm

® Before a numerical method is programmed, it is helpful to plan out all the steps that have to
be followed in order to implement the numerical method successfully.

® Such a planis called an algorithm!

® Commands for input and output of data.
= |mporting data into the computer/ displaying on the monitor/ storing numerical results in files
® Commands for defining variables
® Commands that execute mathematical operations
= Standard operations: addition, multiplication, power, etc.
= Common functions: trigonometric, exponential, logarithmic, etc.
® Commands for control
= Conditional statements: if-else
® Commands for repetition

= Loop statement: for
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