
OPen INteractive Structural Lab

Topics in Ship Structural Design
(Hull Buckling and Ultimate Strength)

Lecture 3 Plate Bending

Reference : Ship Structural Design Ch.09

NAOE

Jang, Beom Seon



OPen INteractive Structural Lab

"Long" Plates(Cylindrical Bending)
 An equation relating the deflections to the loading can be developed 

as for the beam.

 Cylindrical Bending:

 A plate which is bent about one axis only(a>>b)

 Transverse deformation does not occur, 

since such a deformation would required a saddle shape deformation. 

9.1 Small Deflection Theory
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Poisson Ratio
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Formulas between a beam and a long plate

 E΄ : effective modulus of elastictiy, always > E.

→ A plate is always “stiffer” than a row of beams

 For a long prismatically loaded plate, the extra stiffness may be fully 

taken into account for by using E΄ in place  of  E.

 For simply supported plates:

 For clamped plates:
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Formulas between a beam and a long plate

 Moment curvature relation may be obtained from 

External bending moment = moment of stress force

where

 D : the flexural rigidity of the plate

the constant of proportionality between moment and curavature

analogous with EI in beam theory 
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Formulas between a beam and a long plate

 The radius of curvature of the plate can be expressed in terms of the 

deflection w of the plate

 Also for a unit strip in a long plate the max. stress is 

where the section modulus 

 For a uniform pressure p, the maximum bending moment is proportional to 

pb2. The stress is expressed in 

 The coefficient k depends on the boundary conditions:

k=3/4 for simply supported edges

k=1/2 for clamped edges 
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Beam Theory

Reference 

1) strain-curvature
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Beam theory

1) Strain-Curvature Relation

Reference
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Beam theory

3) moment-curvature relation

Reference
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 Force equilibrium 

→ Relation between shear force (V) and load (q)

 Moment equilibrium 

→ Relation between Moment (M) and shear force (V)

 Combining two relations

 Relation between deflection and distributed load

Beam Theory : Relation between load, shear force, Moment
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 Force equilibrium 

→ Relation between shear force (V) and load (q)

 Moment equilibrium 

 Combining two relations

 Relation between deflection and distributed load

Forces and moments in a plate element

9.1 Small Deflection Theory
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Derivation of the Plate Bending Equation

 The previous theory is only applicable if : 

 Plane cross sections remain plane.

 The deflections of the plate are small(wmax not exceeding 3/4 t)

 The maximum stress nowhere exceeds the plate yield stress(i.e., the 

material remains elastic)

 A panel of plating will have curvature in two directions

9.1 Small Deflection Theory
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Derivation of the Plate Bending Equation

 Assumptions stated previously give rise to the strain-curvature relations 

9.1 Small Deflection Theory
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Beam Theory : Deflection curve

 Relation between deflection and distributed load

Reference – Mechanics of Material 

 d ds





 

1 d

ds

d

dx


 tan

ds dx





 

1 d

dx

tan  
dv

dx

  


1 2

2

d

dx




 
1 M

EI

 
d

dx

M

EI

2

2



From Geometric relation

EI

q

dx

vd


4

4

q
dx

Md


2

2



OPen INteractive Structural LabOPen INteractive Structural Lab

Forces and moments in a plate element

 The lateral load pdxdy is carried by the distributed shear  forces q

acting on the four edges of the element.

 In the general case of bending, twisting moments will also be 

generated on all the four faces

9.1 Small Deflection Theory

Forces and moments in a plate element

Without the lateral load pdxdy With the lateral load pdxdy
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Forces and moments in a plate element

 Sine convention in beam theory

– Determined how deform the material

– Shear force : rotate an element clockwise (+)

– Bending moment : shorten the upper skin (+)

9.1 Small Deflection Theory

Sine convention in beam theory Sine convention in plate bending
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Forces and moments in a plate element

 From equilibrium of vertical forces : 

 Taking moments parallel to the x-axis, at Point A
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Forces and moments in a plate element

 Because of the principle of complementary shear stress, it follows 

that myx=-mxy, so that

 Substituting for qx and qy

9.1 Small Deflection Theory
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 If a point A in the plate a distance z from the neutral surface is 

displaced a distance v in the y direction, 

 The change in slop of the line AB will be  

 The change in slop of the line AD

 The shear strain is 

 The shear stress 

OPen INteractive Structural Lab

Forces and moments in a plate element

9.1 Small Deflection Theory
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 from the geometry of the slope of w in each 

direction (x and y): 

 Making these substitutions gives

 The twisting moment

Forces and moments in a plate element

9.1 Small Deflection Theory
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Forces and moments in a plate element

 Substitute mx, my, mxy

 Finally

 Equation of equilibrium for the plate

 Assumption 

• small deflection, max deflection < ¾  t

• no stretching of the middle plane ( no membrane effect)

9.1 Small Deflection Theory
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Boundary Conditions

 The types of restraint around the boundary of a plate can be
idealized as follows:

1. Simply supported: edges free to rotate and to move in the plane

2. Pinned: edges free to rotate but not free to move in the plane

3. Clamped but free to slide: edges not free to rotate but free to move in
the plane of the plate;

4. Rigidly clamped: edges not free to rotate or move in the plane

 In most plated frame structures (particularly in vehicles and free-
standing structure) : little restraint against edge pull-in.

→ BC. 1 and 3 are generally applicable

9.1 Small Deflection Theory
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Simply Supprted Plates

 The general expression for the load

 The coefficient Amn can be obtained by Fourier analysis for any particular 

load condition. For a uniform pressure p0.

 For the biharmonic equation, a sinusoidal load distributi on produces a 

sinusoidal deflection

9.1 Small Deflection Theory
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Simply Supprted Plates

 Due to the symmetry of the problem, M 

and n only take odd values. 

 Effect of boundary condition 

Clamped < Simply supported

about 4~5 times. 

 Effect of aspect ratio 

when a=b, the deflection is minimum

9.1 Small Deflection Theory
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Simply Supported Plates

 To determine the bending stress in the plate, calculate the bending stress.

 The bending moment will always be greater across the shorter span.

Homework #4 Prove this.

 The symbol b is used for shorter dimension, then a/b> 1

 mx is the larger of the two moments and has its maximum value in the center
of the plate.
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Clamped Plates

 The usual methods are the energy(or Ritz) method and  the method of Levy

 The energy method, while giving only approximate results

 The Levy type solution is achieved by the superposition of three loading 

systems applied  to a simply supported plate :

(1) uniformly distributed along the short edges : deflection w1

(2) moments distributed along the short edges : deflection w2

(3) moments distributed along the long edges : deflection w3

short edges :

long edges :

( where x=0, y=0 is at the center of the plate)

9.1 Small Deflection Theory
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Clamped Plates

9.1 Small Deflection Theory

 k depends on :

 plate edge conditions

 Plate side ratio a/b

 Position of point considered

The effect of aspect ratio is 

smaller for clamped plates, and 

beyond about a/b=2 

such a plate behaves essentially 

as a clamped strip and the 

influence of aspect aspect ratio is   

negligible.

Stresses in rectangular plates under 
uniform lateral pressure

2

Stress 









t

b
kpHomework #5 Plot Max. S

tress curve in simply sup

ported plates.
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Large-Deflection Plate Theory

 Membrane stress arises when the deflection becomes large and/or 

when the edges are prevented from pulling in.

 Small-deflection theory fails to allow for membrane stresses.

 As the deflection increases, an increasing prortion of the load is 

carried by this membrane action.

 The lateral load is supported by both bending and membrane action.

 Amore comprehensive plate theory, usually referred to as "large-

deflection" plate theory. 

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Membrane Tension(Edges Restrained Against Pull-in)

 What is membrane tension?

 Membrane stress : Stresses that act tangentially to the curved

surface of a shell

 Pressure vessel : closed structures containing liquids or gases

under pressure

 Gage pressure (Internal – external pressure) is resisted by

membrane tension

9.2 Combined Bending and Membrane Stresses-Elastic Range

Spherical Pressure vessel Cylindrical Pressure 
vessel
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Membrane stress

 Spherical Pressure vessel

Reference

 Fhoriz 0

  ( ) ( )2 2r t p rm 

r r
t

m  
2

  
pr

r t

pr

tm

2

2 2
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 Cylindrical Pressure vessel

Membrane stress

Reference

σ1 : circumferential stress  

hoop stress

1 2 2 0( )bt pbr 

 1

pr

t

  2

22 0( )rt p r 

 2
2

pr

t

 1 22

σ2 : longitudinal stress
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Membrane stress

Reference

Hull Girder 

Bending

Double 

Bottom 

Bending

Local Bending 

of Longitudinal

Plate 

Bending

Global Stress 

Local Stress 

Membrane stress on plating

Bending stress on plating

# of elements should be 

more than thee (3) 

between boundaries.

 Ship & Offshore Structure

Membrane stress Bending stress
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 Nx, Ny : membrane tension per unit length

 Nxy : membrane shear force per unit length

 Vertical component of the tension force at side (1)

 Net force in the x-direction

 Net force in the y-direction

Large-Deflection Plate Theory by von Karman

9.2 Combined Bending and Membrane Stresses-Elastic Range
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 The vertical component of the shear force along sides (3) and (4) is

Large-Deflection Plate Theory by von Karman

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Large-Deflection Plate Theory by von Karman

 Total vertical forces

 New terms are added

 Nx, Ny, Nxy are functions of x and y.

 Except for a few simple cases, precise mathematical solutions are

very difficult.

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Membrane Tension(Edges Restrained Against Pull-in)

 The relative magnitude of membrane effects depends on

: the degree of lateral deflection or "curvature" of the plate surface

the degree to which the edges are restrained form pulling in.

 If the edges are restrained and large deflection (w>1.5 t)

the contribution of membrane tension > bending, vice versa.

 In ship plating : little restraint against edge pull-in

for large deflections, supporting stiffeners or beams fails earlier.

 Nevertheless, some situations in which large deflections can be permitted,

→ the use of membrane tension can give substantial weight savings.

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Membrane Tension(Edges Restrained Against Pull-in)

 The case of a unit-width strip

 Laterally loaded

 Edges are prevented from approaching

 the difference between the arc length of the deflected strip and the

original straight length

 Membrane force is unidirectional (Ny=Nxy=0) and constant over the

length.

 Extension due to the tension

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Membrane Tension(Edges Restrained Against Pull-in)

 w0 initial deflection, w1 due to the load

 The total change in length is

 The change in length due to the initial deflection

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Membrane Tension(Edges Restrained Against Pull-in)

 The change in length due to the loading is the difference between

these two:

 Strain energy due to bending

 Strain energy due to tension:

 The work done

 The work done by the load is equal to the total strain energy, hence:

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Strain Energy of Bending 

 When bending moment M varies along its length

 if integrated

Reference – Mechanics of Material 
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Membrane Tension(Edges Restrained Against Pull-in)

 The work done by the load is equal to the total strain energy, hence:

 A=t, E’= E/(1-v) and I=t3/12 per unit width

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Effect of Initial Deformation

 If there is no initial deflection:

 For the initial stages of loading the deflection w1 will be small relative to the

thickness, and hence the first term may be neglected:

 The result obtained from small-deflection theory, ignoring membrane action:

9.2 Combined Bending and Membrane Stresses-Elastic Range
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Effect of Initial Deformation

 Membrane action requires  

some deflection, either initial or 

due to load

 if there is no initial deflection 

→ membrane action does not 

become significant until the 

deflection due to load 

approaches the plate          

thickness.

 Welding deformation & permanent

set give a beneficial influence on

elastic strength of plates.

9.2 Combined Bending and Membrane Stresses-Elastic Range

Membrane 

stress

Membrane 

stress

0.5t initial deflection

zero initial 
deflection

Surface stress on 
compression side

Surface stress on 
tension  side

Mean magnitude of max. 
Bending stress with 
membrane effect

Mean magnitude of max. Bending 
stress ignoring membrane effect

Membrane stress Bending stress
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Effect of Initial Deformation

 The beneficial effect of initial deformation.

 Initial lateral deformation is beneficial only when the plate edges are 

at least partly restrained from pulling in, thus allowing the 

development of in-plane tension.

9.2 Combined Bending and Membrane Stresses-Elastic Range

Type of Initial Deformation Elastic 

Strength

Source of Increase in 

Elastic Strength

Flat plate

Initial deflection (stress-free) equal to 

plating thickness

Initially flat plate dished to a permanent set 

equal to plating thickness

1.59

2.58

4.50

-

Membrane action

Membrane action plus 

residual stresses



Which one is in front?



Di Vinci's Last Supper

• Famous for not only artistic value but also fine 
command of perspective 



Westerner try to see and Asian try to be

• The law of perspective is one of 
representative characteristics

• Object has the meaning of observation and 
all things

• Objective is not subjective.
• I see = I understand
• Seeing is believing, Westerner makes seeing 

very important. 
• From the observer’s perspective, farmost

thing indicates that in front. 



• In the 



• Closer thing is drawn larger and the farther thing 
smaller. -> reverse perspective. 

• Western artists draw picture seeing an object in front 
of him.

• Asian artists draw picture after seeing and feeling the 
object and returning. 





• Universe is covered by Indra net. Each marble is 
mirroring others
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