Topics in Ship Structural Design (Hull Buckling and Ultimate Strength)

Lecture 3 Plate Bending

Reference : Ship Structural Design Ch.09 NAOE Jang, Beom Seon

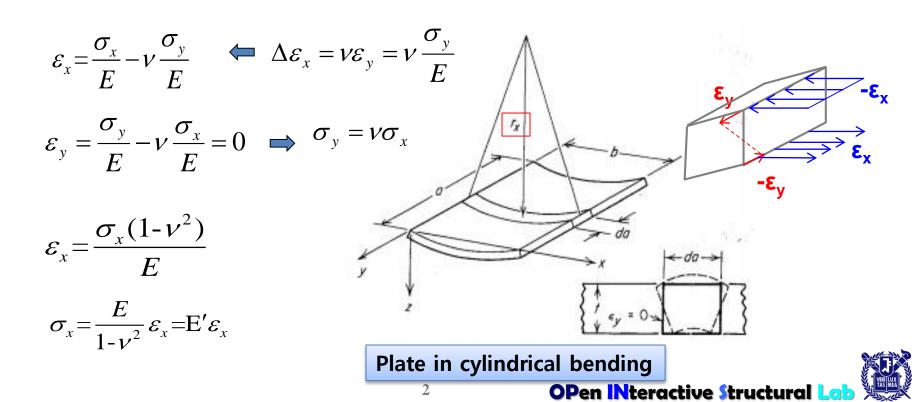
OPen INteractive Structural Lab

"Long" Plates(Cylindrical Bending)

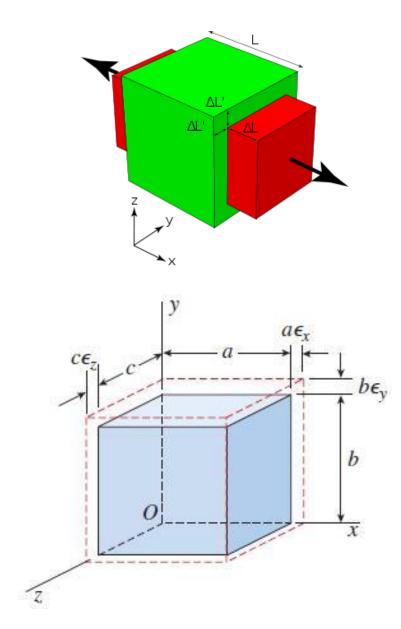
- An equation relating the deflections to the loading can be developed as for the beam.
 Saddle shape
- Cylindrical Bending:
 - ✓ A plate which is bent about one axis only(a>>b)
 - ✓ Transverse deformation does not occur,



since such a deformation would required a saddle shape deformation.



Poisson Ratio



$$v = -\frac{\mathcal{E}_{trans}}{\mathcal{E}_{axial}}$$

Strain $\Delta \epsilon_v$ induced by ϵ_v

$$\Delta \varepsilon_x = v \varepsilon_y = v \frac{\sigma_y}{E}$$

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - v\sigma_{y} - v\sigma_{z})$$
$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - v\sigma_{z} - v\sigma_{x})$$
$$\varepsilon_{z} = \frac{1}{E} (\sigma_{z} - v\sigma_{x} - v\sigma_{y})$$

OPen INteractive Structural Lab

Formulas between a beam and a long plate

• E': effective modulus of elastictiy, always > E.

$$E' = \frac{E}{(1 - v^2)}$$

- \rightarrow A plate is always "stiffer" than a row of beams
- For a long prismatically loaded plate, the extra stiffness may be fully taken into account for by using E' in place of E.
- For simply supported plates:

$$\omega_{\rm max} = \frac{5\,pb^4}{384E'I} = \frac{5\,pb^4(1-\nu^2)}{32Et^3}$$

• For clamped plates:

$$\omega_{\rm max} = \frac{pb^4}{384E'I} = \frac{pb^4(1-\nu^2)}{32Et^3}$$

Formulas between a beam and a long plate

Moment curvature relation may be obtained from External bending moment = moment of stress force

$$M = \int_{-t/2}^{t/2} \sigma_x z dz = \int_{-t/2}^{t/2} \frac{E}{1 - \nu^2} \left(\frac{z^2}{r_x}\right) dz = \frac{Et^3}{12(1 - \nu^2)} \left(\frac{1}{r_x}\right)$$

where
$$\sigma_x = \frac{E}{(1 - v^2)} \varepsilon_x$$
 $\varepsilon_x = \frac{z}{r_x}$

$$M = \frac{Et^{3}}{12(1-\nu^{2})} \left(\frac{1}{r_{x}}\right) = \frac{D}{r_{x}} \qquad D = \frac{Et^{3}}{12(1-\nu^{2})}$$

D : the flexural rigidity of the plate

> the constant of proportionality between moment and curavature analogous with EI in beam theory

$$M = \frac{EI}{\rho}$$

Formulas between a beam and a long plate

The radius of curvature of the plate can be expressed in terms of the deflection w of the plate

$$-\frac{\partial^2 w}{\partial x^2} = \frac{1}{r_x} \qquad -D\frac{\partial^2 w}{\partial x^2} = M \qquad -v'' = \frac{M}{EI}$$

- Also for a unit strip in a long plate the max. stress is $\sigma_{\rm max} = M_{\rm max} c/I$ where the section modulus

 $I/c=(t^3/12)/(t/2)=t^2/6$

 For a uniform pressure *p*, the maximum bending moment is proportional to pb². The stress is expressed in

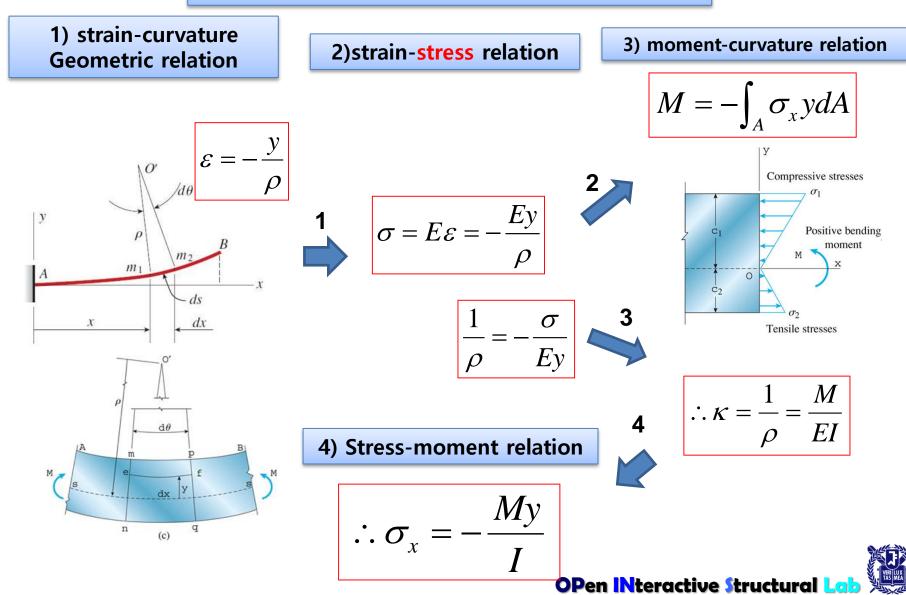
$$\sigma_{\max} = kp \left(\frac{b}{t}\right)^2$$

The coefficient k depends on the boundary conditions:
 k=3/4 for simply supported edges

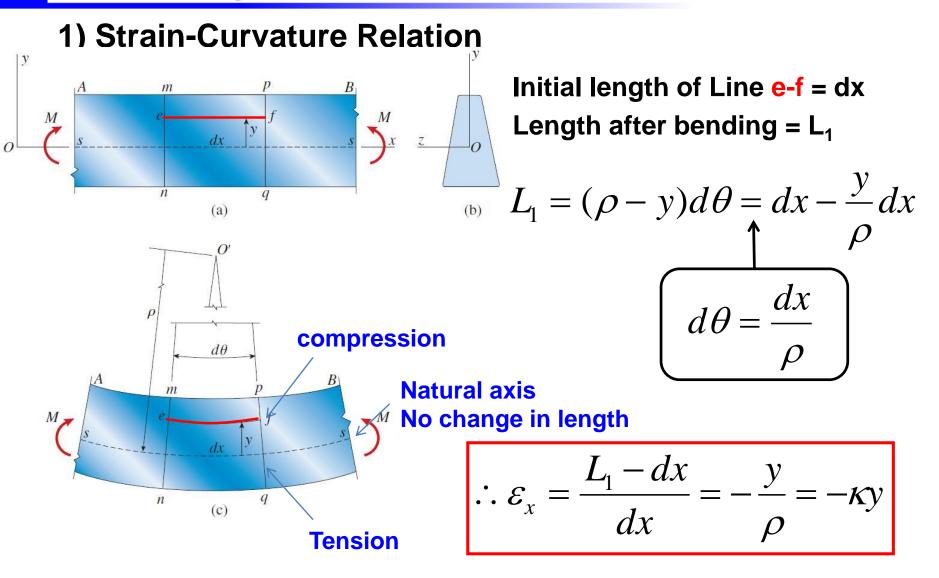
k=1/2 for clamped edges

Beam Theory

stress – strain - curvature - Moment

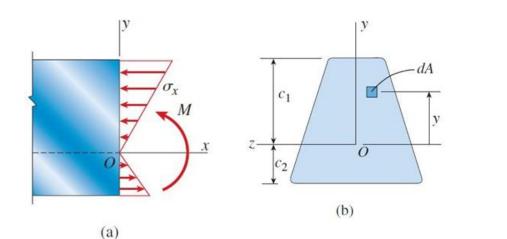


Beam theory



Beam theory

3) moment-curvature relation



$$dM = -\sigma_x y dA$$
$$M = -\int_A \sigma_x y dA$$

$$M = \int_{A} \kappa E y^{2} dA = \kappa E \int_{A} y^{2} dA = \kappa E I = \frac{1}{\rho} E I \quad \Leftarrow \quad \sigma = -\kappa E y$$

$$\therefore \kappa = \frac{1}{\rho} = \frac{M}{EI}$$

: EI = bending rigidity

Reference Homework #1 Derive in detail

Beam Theory : Relation between load, shear force, Moment

Force equilibrium

 \rightarrow Relation between shear force (V) and load (q)

$$\sum F_{vert} = 0: V - qdx - (V + dV) = 0 \quad \Longrightarrow \frac{dV}{dx} = -q$$

Moment equilibrium

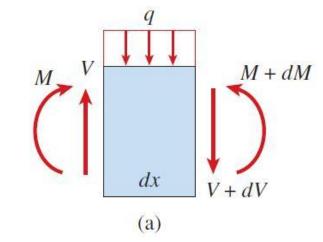
 \rightarrow Relation between Moment (M) and shear force (V)

$$\sum M = 0: -M - qdx \left(\frac{dx}{2}\right) - (V + dV)dx + (M + dM) = 0 \quad \Rightarrow \quad \frac{dM}{dx} = V$$

Combining two relations

$$\frac{d^2M}{dx^2} = -q$$

Relation between deflection and distributed load



OPen INteractive Structural

Forces and moments in a plate element

Force equilibrium

 \rightarrow Relation between shear force (V) and load (q)

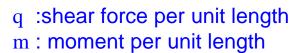
$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + p = 0 \qquad \frac{dV}{dx} = -q$$

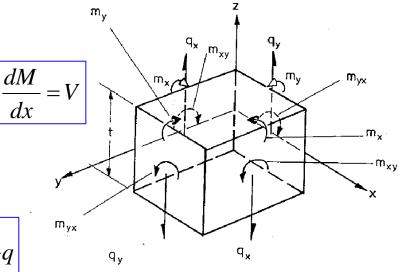
Moment equilibrium

$$\frac{\partial m_{xy}}{\partial x} - \frac{\partial m_y}{\partial y} + q_y = 0 \quad \frac{\partial m_{yx}}{\partial y} + \frac{\partial m_x}{\partial x} - q_x = 0$$

Combining two relations

$$\frac{\partial^2 m_x}{\partial x^2} - 2 \frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^2 m_y}{\partial y^2} + p = 0 \qquad \qquad \frac{d^2 M}{d^2 x} = -q$$



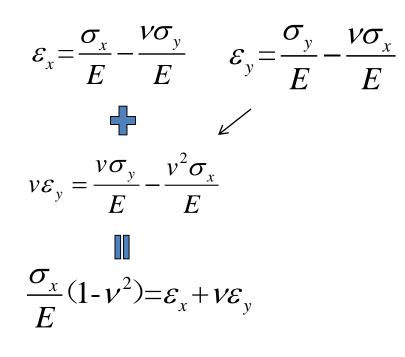


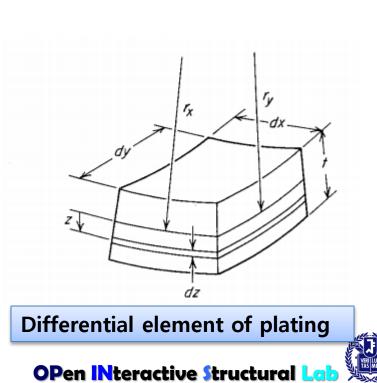
OPen INteractive Structural

Relation between deflection and distributed load

Derivation of the Plate Bending Equation

- The previous theory is only applicable if :
 - Plane cross sections remain plane.
 - The deflections of the plate are small(w_{max} not exceeding 3/4 t)
 - The maximum stress nowhere exceeds the plate yield stress(i.e., the material remains elastic)
- ✤ A panel of plating will have curvature in two directions





Derivation of the Plate Bending Equation

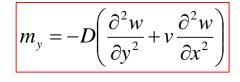
Assumptions stated previously give rise to the strain-curvature relations

$$\varepsilon_x = (-z) \left(\frac{\partial^2 w}{\partial x^2} \right) \quad \varepsilon_y = (-z) \left(\frac{\partial^2 w}{\partial y^2} \right) \qquad \Longrightarrow \qquad \frac{\sigma_x}{E} (1 - v^2) = \varepsilon_x + v \varepsilon_y$$

$$\sigma_{x} = \frac{E}{1 - v^{2}} (-z) \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}} \right)$$

$$m_{x} = \int_{-t/2}^{t/2} \sigma_{x} z dz = -\int_{-t/2}^{t/2} \frac{E}{1 - v^{2}} \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}} \right) z^{2} dz$$

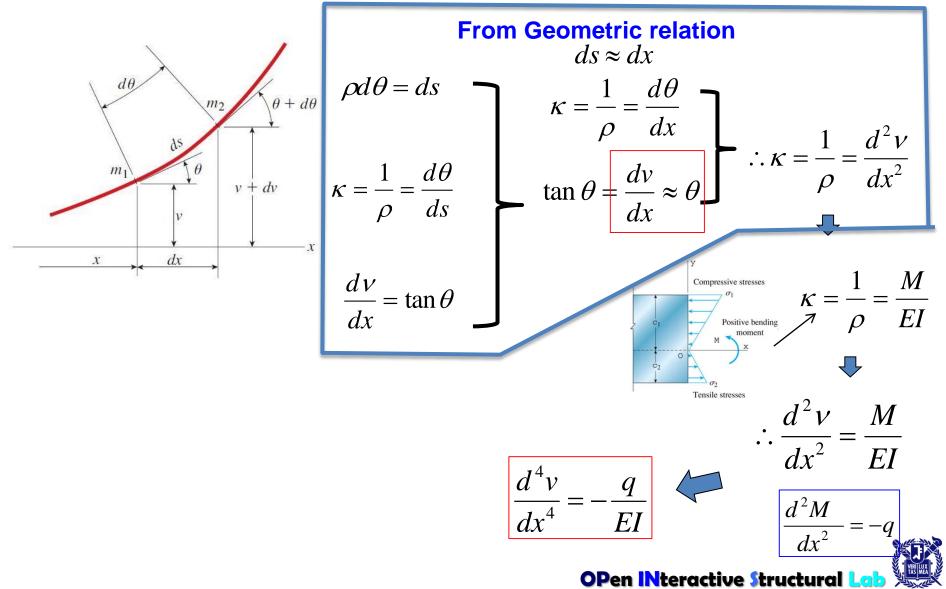
$$m_{x} = -D\left(\frac{\partial^{2}w}{\partial x^{2}} + v\frac{\partial^{2}w}{\partial y^{2}}\right) \qquad \qquad D = \frac{Et^{3}}{12(1-v^{2})}$$



Reference – Mechanics of Material

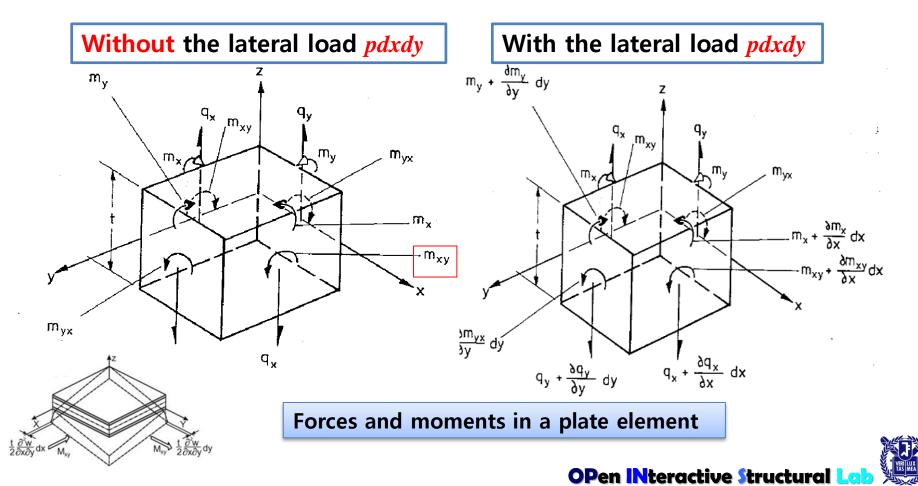
Beam Theory : Deflection curve

Relation between deflection and distributed load



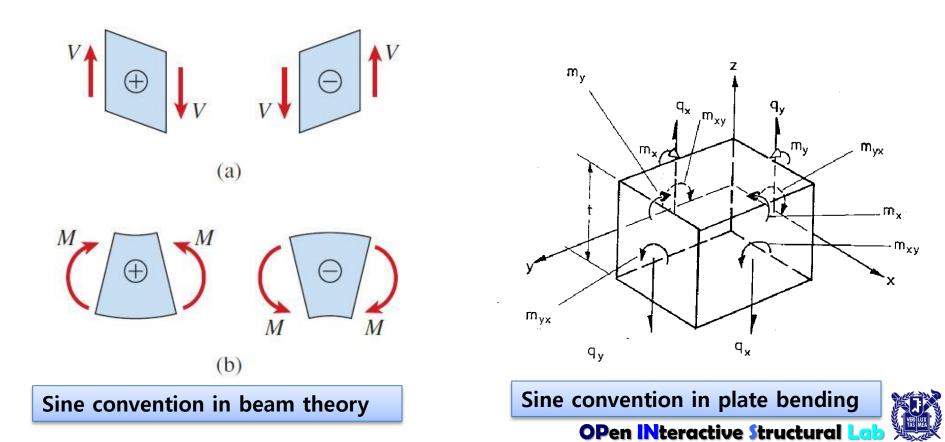
Forces and moments in a plate element

- The lateral load *pdxdy* is carried by the distributed shear forces *q* acting on the four edges of the element.
- In the general case of bending, twisting moments will also be generated on all the four faces



Forces and moments in a plate element

- Sine convention in beam theory
 - Determined how deform the material
 - Shear force : rotate an element clockwise (+)
 - Bending moment : shorten the upper skin (+)

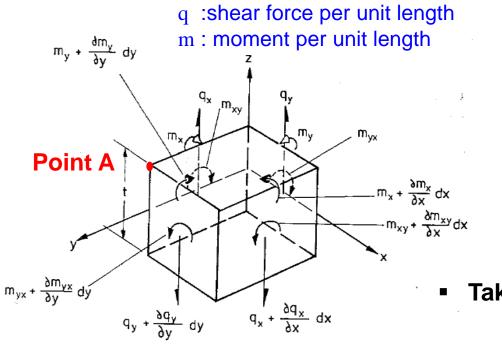


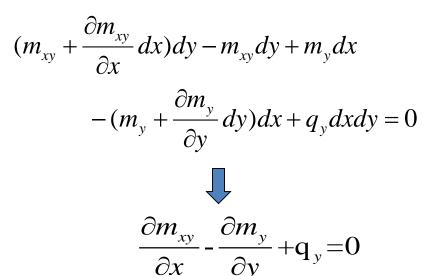
Forces and moments in a plate element

• From equilibrium of vertical forces :

$$(q_x + \frac{\partial q_x}{\partial x} dx) dy - q_x dy \qquad \implies \qquad \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + p = 0$$
$$+ (q_y + \frac{\partial q_y}{\partial y} dy) dx - q_y dx + p dx dy = 0$$

Taking moments parallel to the x-axis, at Point A





Taking moments parallel to the y-axis

Forces and moments in a plate element

Because of the principle of complementary shear stress, it follows that m_{yx} =- m_{xy} , so that

$$\frac{\partial m_{yx}}{\partial y} + \frac{\partial m_x}{\partial x} - q_x = 0 \quad \Longrightarrow \quad -\frac{\partial m_{xy}}{\partial y} + \frac{\partial m_x}{\partial x} - q_x = 0 \quad \boxed{\frac{\partial m_{xy}}{\partial x} - \frac{\partial m_x}{\partial y}}$$

Substituting for q_x and q_y

$$\frac{\partial m_{xy}}{\partial x} - \frac{\partial m_y}{\partial y} + q_y = 0$$

OPen INteractive Structural Lab

$$\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + p = 0$$

$$\frac{\partial}{\partial x}\left(-\frac{\partial m_{xy}}{\partial y} + \frac{\partial m_x}{\partial x}\right) + \frac{\partial}{\partial y}\left(\frac{\partial m_y}{\partial y} - \frac{\partial m_{xy}}{\partial x}\right) + p = 0$$

$$\frac{\partial^2 m_x}{\partial x^2} - 2\frac{\partial^2 m_{xy}}{\partial x \partial y} + \frac{\partial^2 m_y}{\partial y^2} + p = 0$$

Forces and moments in a plate element

- If a point A in the plate a distance z from the neutral surface is displaced a distance v in the y direction,
- The change in slop of the line AB will be

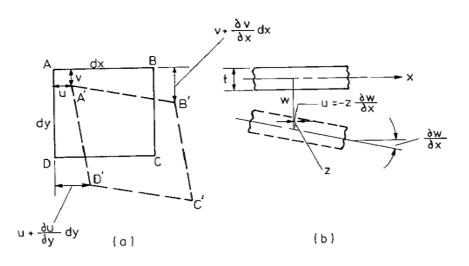
$$\frac{v + \frac{\partial v}{\partial x}dx - v}{dx} = \frac{\partial v}{\partial x}$$

- The change in slop of the line AD $\frac{\partial u}{\partial x}$
- The shear strain is

$$\gamma = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

The shear stress

$$\tau = \mathbf{G}\left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)$$



Shear strain and plate deflection

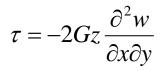
Shear strain is induced by deflection. That is, the vertical deflection generates shear strain.

Forces and moments in a plate element

from the geometry of the slope of w in each direction (x and y):

$$u = -z \frac{\partial w}{\partial x} \qquad \qquad v = -z \frac{\partial w}{\partial y}$$

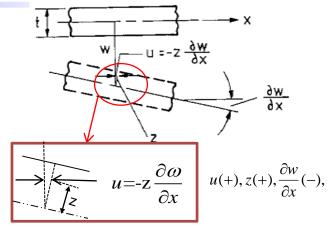
Making these substitutions gives



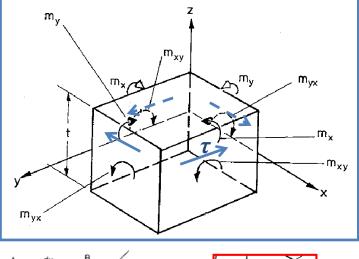
The twisting moment

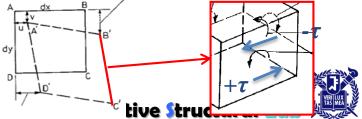
$$m_{xy} = -\int_{-t/2}^{t/2} -2G \frac{\partial^2 w}{\partial x \partial y} z^2 dz = \frac{Gt^3}{6} \frac{\partial^2 w}{\partial x \partial y} \qquad G = \frac{E}{2(1+v)}$$

$$m_{xy} = \frac{Et^{3}}{12(1+v)} \frac{\partial^{2}w}{\partial x \partial y} = \frac{Et^{3}(1-v)}{12(1+v)(1-v)} \frac{\partial^{2}w}{\partial x \partial y} = D(1-v) \frac{\partial^{2}w}{\partial x \partial y}$$



(+) convention





Forces and moments in a plate element

• Substitute m_x, m_y, m_{xy}

$$m_{x} = -D\left(\frac{\partial^{2}w}{\partial x^{2}} + v\frac{\partial^{2}w}{\partial y^{2}}\right)$$

$$m_{y} = -D\left(\frac{\partial^{2}w}{\partial y^{2}} + v\frac{\partial^{2}w}{\partial x^{2}}\right)$$

$$m_{y} = -D\left(\frac{\partial^{2}w}{\partial y^{2}} + v\frac{\partial^{2}w}{\partial x^{2}}\right)$$

$$m_{y} = -D\left(\frac{\partial^{2}w}{\partial y^{2}} + v\frac{\partial^{2}w}{\partial x^{2}}\right)$$

$$\frac{\partial^{2}m_{x}}{\partial x^{2}} - 2\frac{\partial^{2}m_{xy}}{\partial x\partial y} + \frac{\partial^{2}m_{y}}{\partial y^{2}} + p = 0$$

Finally

$$\frac{\partial^2}{\partial x^2} \left[-D\left(\frac{\partial^2 w}{\partial x^2} + v\frac{\partial^2 w}{\partial y^2}\right) \right] - 2\frac{\partial^2}{\partial x \partial y} \left[D(1-v)\frac{\partial^2 w}{\partial x \partial y} \right] + \frac{\partial^2}{\partial y^2} \left[-D\left(\frac{\partial^2 w}{\partial y^2} + v\frac{\partial^2 w}{\partial x^2}\right) \right] = -p$$

Equation of equilibrium for the plate

$$\Rightarrow \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{p}{D} \qquad \nabla^4 w = p / D$$

- Assumption
 - small deflection, max deflection < ³/₄ t
 - no stretching of the middle plane (no membrane effect)

Boundary Conditions

- The types of restraint around the boundary of a plate can be idealized as follows:
 - 1. <u>Simply supported</u>: edges free to rotate and to move in the plane
 - 2. Pinned: edges free to rotate but not free to move in the plane

3. <u>Clamped but free to slide</u>: edges not free to rotate but free to move in the plane of the plate;

4. Rigidly clamped: edges not free to rotate or move in the plane

 In most plated frame structures (particularly in vehicles and freestanding structure) : little restraint against edge pull-in.
 → BC. 1 and 3 are generally applicable

Simply Supprted Plates

The general expression for the load

$$p(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi y}{a} \sin \frac{n\pi x}{b}$$

 The coefficient A_{mn} can be obtained by Fourier analysis for any particular load condition. For a uniform pressure p₀.

$$A_{mn} = \frac{16p_0}{\pi^2 mn}$$
 Homework #2 Prove it.

 For the biharmonic equation, a sinusoidal load distributi on produces a sinusoidal deflection

$$\omega = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} B_{mn} \sin \frac{m\pi y}{a} \sin \frac{n\pi x}{b} \quad \Rightarrow \quad \frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{p}{D}$$

$$B_{mn} \left(\frac{\pi^4 m^4}{a^4} + \frac{2\pi^4 m^2 n^2}{a^2 b^2} + \frac{\pi^4 n^4}{b^4} \right) = \frac{16p_0}{\pi^6 Dmn}$$

$$B_{mn} = \frac{16p_0}{\pi^6 Dmn \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2}$$

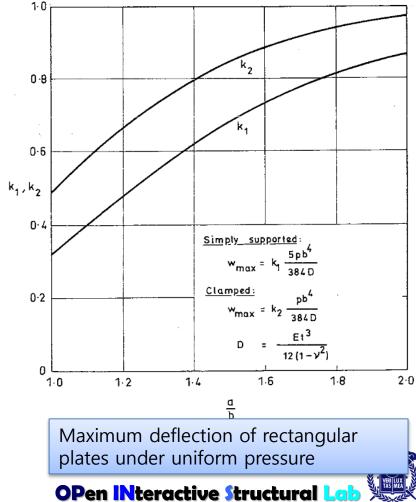
Simply Supprted Plates

 Due to the symmetry of the problem, M and n only take odd values.

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{16 p_0}{\pi^6 Dmn \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)} \sin \frac{m\pi y}{a} \sin \frac{m\pi x}{b}$$

- Effect of boundary condition
 Clamped < Simply supported about 4~5 times.
- Effect of aspect ratio when a=b, the deflection is minimum

Homework #3 Plot the cur ve using any kinds of soft ware.



Simply Supported Plates

• To determine the bending stress in the plate, calculate the bending stress.

$$\frac{\partial^{2} w}{\partial x^{2}} = -\sum_{m=1}^{m=\infty} \sum_{n=1}^{m=\infty} \frac{16p_{0}}{\pi^{6} Dmn \left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right)^{2}} \frac{\pi^{2} n^{2}}{b^{2}} \sin \frac{m\pi y}{a} \sin \frac{n\pi x}{b} = -\sum_{m=1}^{m=\infty} \sum_{n=1}^{m=\infty} \frac{16p_{0}n}{\pi^{4} Dmb^{2} \left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right)^{2}} \sin \frac{m\pi y}{a} \sin \frac{n\pi x}{b}$$

$$\frac{\partial^{2} w}{\partial y^{2}} = -\sum_{m=1}^{m=\infty} \sum_{n=1}^{m=\infty} \frac{16p_{0}m}{\pi^{4} Dna^{2} \left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right)^{2}} \sin \frac{m\pi y}{a} \sin \frac{n\pi x}{b}$$

$$m_{x} = -D\left(\frac{\partial^{2} \omega}{\partial x^{2}} + v \frac{\partial^{2} \omega}{\partial y^{2}}\right) = \sum_{m=1}^{m=\infty} \sum_{n=1}^{m=\infty} \frac{16p_{0}}{\pi^{4} mn \left(\frac{m^{2}}{a^{2}} + \frac{n^{2}}{b^{2}}\right)^{2}} \left(\frac{n^{2}}{b^{2}} + v \frac{m^{2}}{a^{2}}\right) \sin \frac{m\pi y}{a} \sin \frac{n\pi x}{b}$$

- The bending moment will always be greater across the shorter span.
 <u>Homework #4 Prove this.</u>
- The symbol *b* is used for shorter dimension, then a/b > 1
- m_x is the larger of the two moments and has its maximum value in the center of the plate.

Clamped Plates

- The usual methods are the energy(or Ritz) method and the method of Levy
- The energy method, while giving only approximate results
- The Levy type solution is achieved by the superposition of three loading systems applied to a simply supported plate :

(1) uniformly distributed along the short edges : deflection w_1

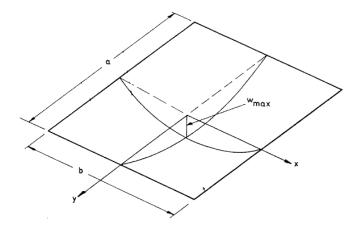
- (2) moments distributed along the short edges : deflection w_2
- (3) moments distributed along the long edges : deflection w_3

short edges:
$$\left(\frac{\partial \omega_1}{\partial y}\right)_{y=\pm a/2} + \left(\frac{\partial \omega_2}{\partial y} + \frac{\partial \omega_3}{\partial y}\right)_{y=\pm a/2} = 0$$

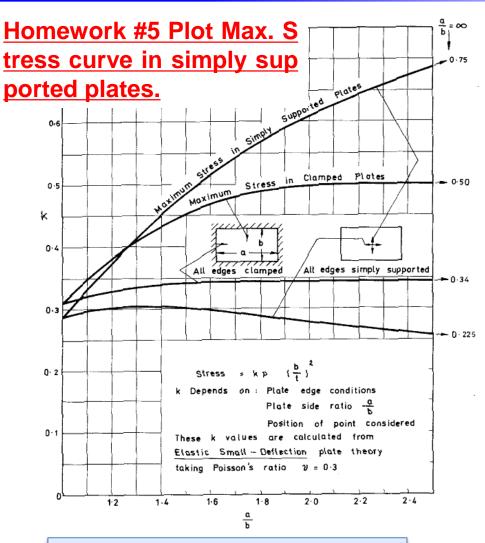
long edges :

$$\left(\frac{\partial \omega_1}{\partial x}\right)_{x=\pm b/2} + \left(\frac{\partial \omega_2}{\partial x} + \frac{\partial \omega_3}{\partial x}\right)_{x=\pm b/2} = 0$$

(where x=0, y=0 is at the center of the plate)



Clamped Plates



Stresses in rectangular plates under uniform lateral pressure

Stress =
$$kp\left(\frac{b}{t}\right)^2$$

- \clubsuit *k* depends on :
- plate edge conditions
- Plate side ratio a/b
- Position of point considered

The effect of aspect ratio is smaller for clamped plates, and beyond about a/b=2

such a plate behaves essentially as a clamped strip and the influence of aspect aspect ratio is negligible.

9.2 Combined Bending and Membrane Stresses-Elastic Range Large-Deflection Plate Theory

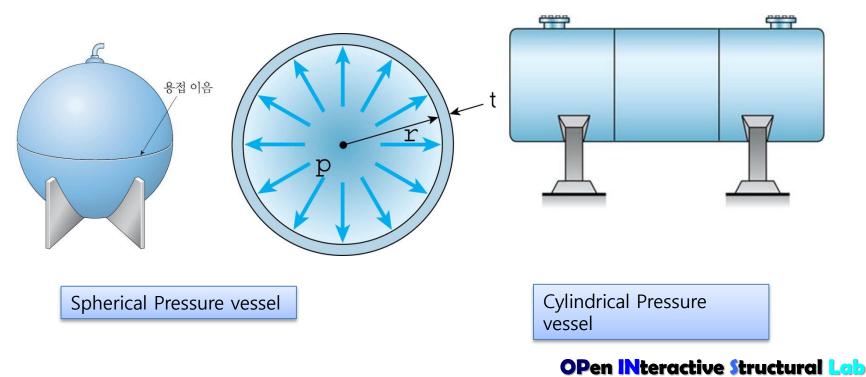
- Membrane stress arises when the deflection becomes large and/or when the edges are prevented from pulling in.
- Small-deflection theory fails to allow for membrane stresses.
- As the deflection increases, an increasing prortion of the load is carried by this membrane action.
- The lateral load is supported by both bending and membrane action.
- Amore comprehensive plate theory, usually referred to as "largedeflection" plate theory.

9.2 Combined Bending and Membrane Stresses-Elastic Range

Membrane Tension(Edges Restrained Against Pull-in)

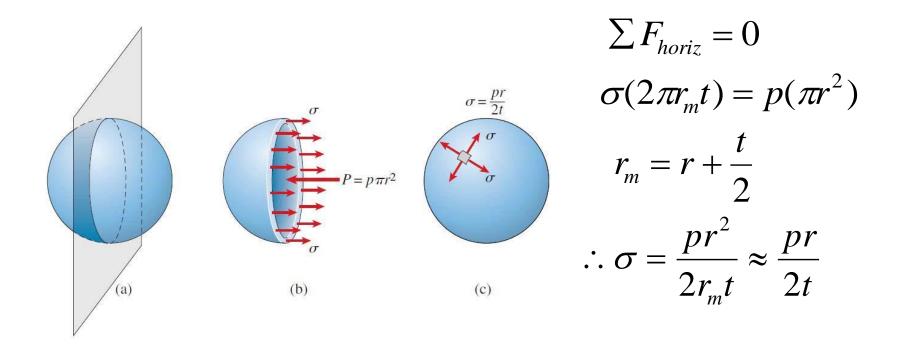
What is membrane tension?

- Membrane stress : Stresses that act tangentially to the curved surface of a shell
- Pressure vessel : closed structures containing liquids or gases under pressure
- Gage pressure (Internal external pressure) is resisted by membrane tension



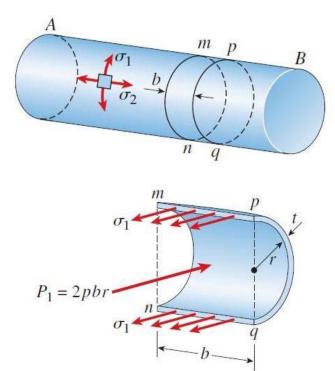
Membrane stress

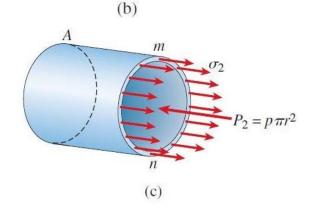
Spherical Pressure vessel



Membrane stress

Cylindrical Pressure vessel





σ₁ : circumferential stress hoop stress

$$\sigma_1(2bt) - 2pbr = 0$$

$$\therefore \sigma_1 = \frac{pr}{t}$$

 σ_2 : longitudinal stress

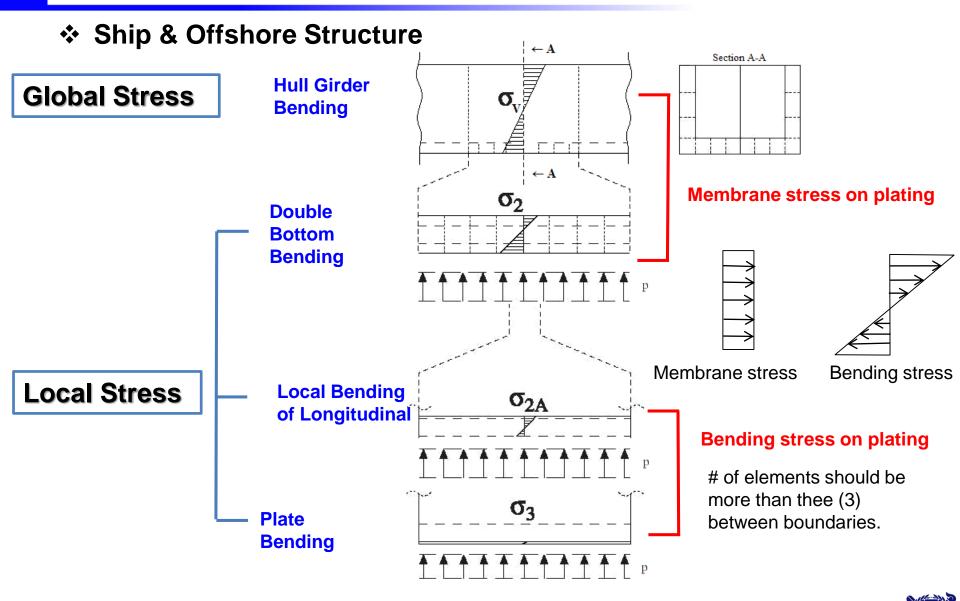
$$\sigma_2(2\pi rt) - p\pi r^2 = 0$$

$$\therefore \sigma_2 = \frac{pr}{2t}$$

$$\sigma_1 = 2\sigma_2$$

)

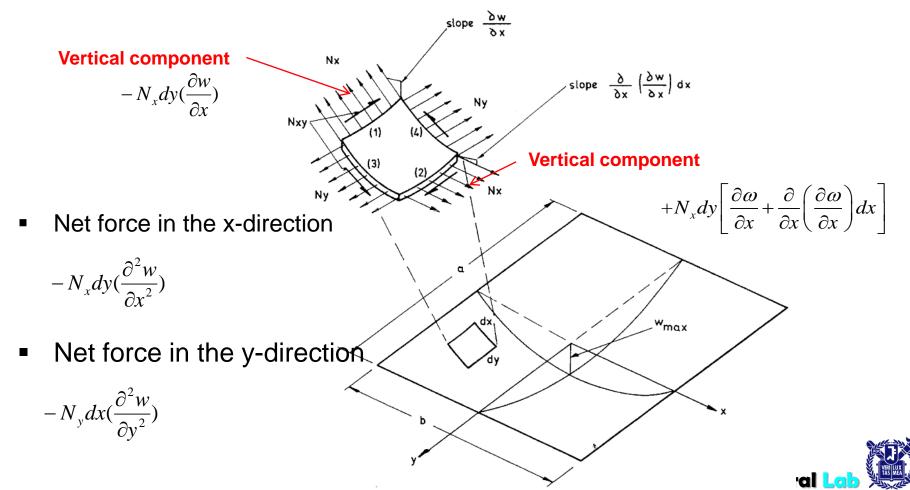
Membrane stress



9.2 Combined Bending and Membrane Stresses-Elastic Range Large-Deflection Plate Theory by von Karman

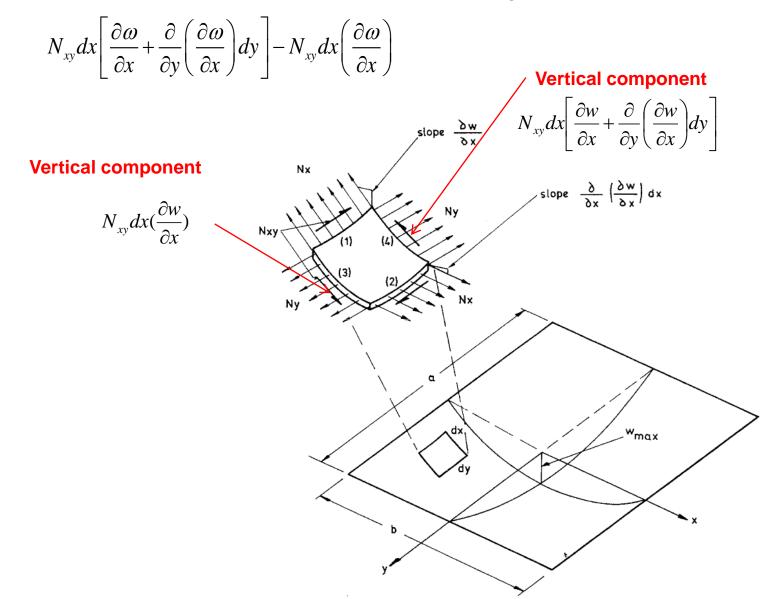
- N_x, N_v : membrane tension per unit length
- N_{xy} : membrane shear force per unit length
- Vertical component of the tension force at side (1)

 $-N_x dy \sin(slope) \approx -N_x dy \tan(slope) = -N_x dy (\partial w / \partial x)$



9.2 Combined Bending and Membrane Stresses-Elastic Range Large-Deflection Plate Theory by von Karman

The vertical component of the shear force along sides (3) and (4) is



Lo

9.2 Combined Bending and Membrane Stresses-Elastic Range

Large-Deflection Plate Theory by von Karman

Total vertical forces

$$\left(N_{x}\frac{\partial^{2}w}{\partial x^{2}}+2N_{xy}\frac{\partial^{2}w}{\partial x\partial y}+N_{y}\frac{\partial^{2}w}{\partial y^{2}}\right)dxdy$$

New terms are added

- N_{x} , N_{y} , N_{xy} are functions of x and y.
- Except for a few simple cases, precise mathematical solutions are very difficult.

9.2 Combined Bending and Membrane Stresses-Elastic Range Membrane Tension(Edges Restrained Against Pull-in)

- The relative magnitude of membrane effects depends on
 the degree of lateral deflection or "curvature" of the plate surface the degree to which the edges are restrained form pulling in.
- If the edges are restrained and large deflection (w>1.5 t) the contribution of membrane tension > bending, vice versa.
- In ship plating : little restraint against edge pull-in for large deflections, supporting stiffeners or beams fails earlier.
- Nevertheless, some situations in which large deflections can be permitted,
 → the use of membrane tension can give substantial weight savings.

9.2 Combined Bending and Membrane Stresses-Elastic Range

Membrane Tension(Edges Restrained Against Pull-in)

The case of a unit-width strip

- Laterally loaded
- Edges are prevented from approaching
- the difference between the arc length of the deflected strip and the original straight length

$$\delta = \int_0^b \left(\sqrt{1 + \left(\frac{d\omega}{dx}\right)^2} - 1 \right) dx \qquad \delta \cong \int_0^b \frac{1}{2} \left(\frac{d\omega}{dx}\right)^2 dx$$

- Membrane force is unidirectional (N_y=N_{xy}=0) and constant over the length.
- Extension due to the tension

$$T = \frac{Et}{2b} \int_0^b \left(\frac{d\omega}{dx}\right)^2 dx$$

9.2 Combined Bending and Membrane Stresses-Elastic Range

Membrane Tension(Edges Restrained Against Pull-in)

- w_0 initial deflection, w_1 due to the load $\omega(x) = (\omega_0 + \omega_1) \sin \frac{\pi x}{b}$
- The total change in length is

$$\delta = \int_0^b \frac{1}{2} (\omega_0 + \omega_1)^2 \frac{\pi^2}{b^2} \cos^2 \frac{\pi x}{b} dx$$
$$= \frac{\pi^2}{4b} (\omega_0 + \omega_1)^2$$

The change in length due to the initial deflection

$$\frac{\pi^2 w_0^2}{4b}$$

9.2 Combined Bending and Membrane Stresses-Elastic Range

Membrane Tension(Edges Restrained Against Pull-in)

• The change in length due to the loading is the difference between these two: π^2

$$\delta_1 = \frac{\pi^2}{4b} (2\omega_0 \omega_1 + \omega_1^2)$$

Strain energy due to bending

$$= \int_{0}^{b} \frac{E'I}{2} \left(\frac{d^{2}w}{dx^{2}} \right) dx = \int_{0}^{b} \frac{E'I}{2} (w_{1})^{2} \frac{\pi^{4}}{b^{4}} \sin^{2} \frac{\pi x}{b} dx = \frac{\pi^{4} E'I(w_{1})^{2}}{4b^{3}}$$

Strain energy due to tension:

$$\frac{1}{2}T\delta_p = \frac{1}{2}\frac{AE}{b_l}\delta_1^2$$

The work done

$$W = \int_{0}^{b} \frac{1}{2} pw dx = \int_{0}^{b} \frac{1}{2} pw_{1} \sin\left(\frac{\pi x}{b}\right) dx = \frac{pw_{1}b}{\pi}$$

The work done by the load is equal to the total strain energy, hence:

$$\frac{pw_1b}{\pi} = \frac{AE\delta_1^2}{2b} + \frac{\pi^4 E'I(w_1^2)}{4b^3} = \frac{\pi^4}{32}\frac{AE}{b^3}(2w_0w_1 + w_1^2)^2 + \frac{\pi^4 E'I(w_1^2)}{4b^3}$$

OPen INteractive Structural

Reference – Mechanics of Material

Strain Energy of Bending

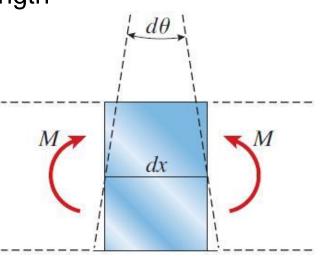
When bending moment M varies along its length

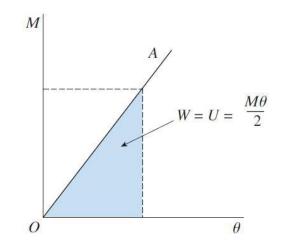
$$d\theta = \kappa dx = \frac{1}{\rho} dx = \frac{d^2 v}{dx^2} dx$$

$$dU = \frac{Md\theta}{2} = \frac{M}{2} \frac{d^2 v}{dx^2} dx = \frac{M}{2} \frac{M}{EI} dx = \frac{M^2 dx}{2EI} \text{ or}$$
$$dU = \frac{EI}{2dx} \left(\frac{d^2 v}{dx^2} dx\right)^2 = \frac{EI}{2} \left(\frac{d^2 v}{dx^2}\right)^2 dx$$

if integrated

$$U = \int \frac{M^2 dx}{2EI} \text{ or } U = \int \frac{EI}{2} \left(\frac{d^2 v}{dx^2}\right)^2 dx$$





9.2 Combined Bending and Membrane Stresses-Elastic Range Membrane Tension(Edges Restrained Against Pull-in)

The work done by the load is equal to the total strain energy, hence:

$$\frac{\pi^4 A E \omega_1^3}{32b^3} + \frac{\pi^4 A E \omega_0 \omega_1^2}{8b^3} + \left(\frac{\pi^4 A E \omega_0^2}{8b^3} + \frac{\pi^4 E' I}{4b^3}\right) \omega_1 - \frac{pb}{\pi} = 0$$

• A=t, E'=E/(1-v) and $I=t^3/12$ per unit width

$$\omega_1^3 + 4\omega_0\omega_1^2 + \left(4\omega_0^2 + \frac{2}{3}\frac{t^2}{1-v^2}\right)\omega_1 - \frac{32pb^4}{\pi^5 Et} = 0$$

9.2 Combined Bending and Membrane Stresses-Elastic Range Effect of Initial Deformation

If there is no initial deflection:

$$\omega_1^3 + \frac{2}{3} \frac{t^2}{1 - v^2} \omega_1 = \frac{32 p b^4}{\pi^5 E t}$$

• For the initial stages of loading the deflection w_I will be small relative to the thickness, and hence the first term may be neglected:

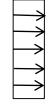
$$\frac{\omega_1}{t} = \frac{48(1 - v^2)p}{\pi^5 E} \left(\frac{b}{t}\right)^4 = 0.143 \frac{p}{E} \left(\frac{b}{t}\right)^4$$

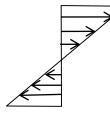
• The result obtained from small-deflection theory, ignoring membrane action:

$$\frac{\omega_1}{t} = \frac{5(1-\nu^2)p}{32E} \left(\frac{b}{t}\right)^4 = 0.142 \frac{p}{E} \left(\frac{b}{t}\right)^4$$

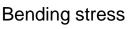
9.2 Combined Bending and Membrane Stresses-Elastic Range **Effect of Initial Deformation**

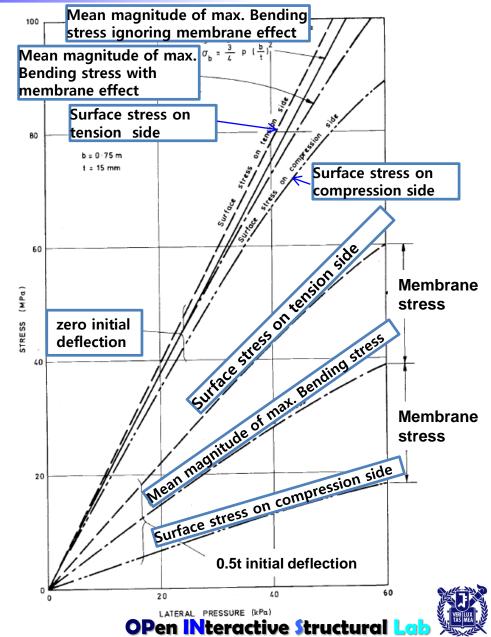
- Membrane action requires some deflection, either initial or due to load
- if there is no initial deflection \rightarrow membrane action does not become significant until the deflection due to load approaches the plate thickness.
- Welding deformation & permanent set give a beneficial influence on elastic strength of plates.





Membrane stress



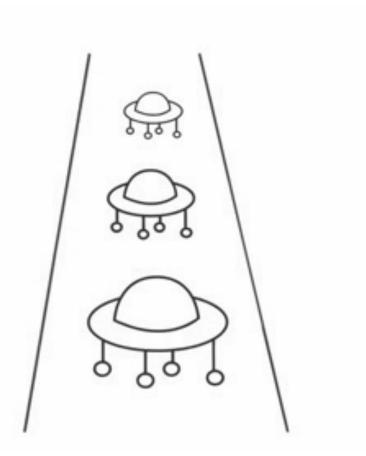


9.2 Combined Bending and Membrane Stresses-Elastic Range Effect of Initial Deformation

• The beneficial effect of initial deformation.

Type of Initial Deformation	Elastic Strength	Source of Increase in Elastic Strength
Flat plate Initial deflection (stress-free) equal to plating thickness	1.59 2.58	- Membrane action
Initially flat plate dished to a permanent set equal to plating thickness	4.50	Membrane action plus residual stresses

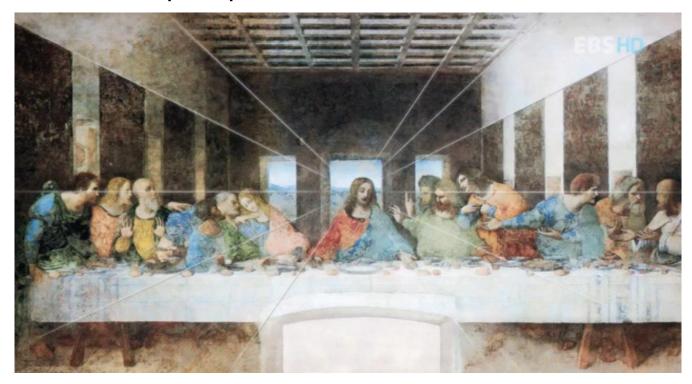
 Initial lateral deformation is beneficial only when the plate edges are at least partly restrained from pulling in, thus allowing the development of in-plane tension.



Which one is in front?

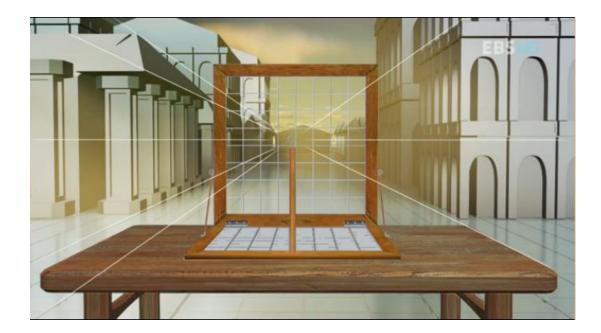
Di Vinci's Last Supper

• Famous for not only artistic value but also fine command of perspective



Westerner try to see and Asian try to be

- The law of perspective is one of representative characteristics
- Object has the meaning of observation and all things
- Objective is not subjective.
- I see = I understand
- Seeing is believing, Westerner makes seeing very important.
- From the observer's perspective, farmost thing indicates that in front.





- Closer thing is drawn larger and the farther thing smaller. -> reverse perspective.
- Western artists draw picture seeing an object in front of him.
- Asian artists draw picture after seeing and feeling the object and returning.

• Universe is covered by Indra net. Each marble is mirroring others

