Topics in Ship Structural Design
(Hull Buckling and Ultimate Strength)

Lecture 4 Buckling and Ultimate

Strength of Columns
—

Reference : Ship Structural Design Ch.09
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Goal

*» In Lecture 02 :
» Euler buckling load

» |Load eccentricity — Secant formula
» Elastic and Inelastic column behavior
v’ Tangent-Modulus Theory
v' Reduced-Modulus Theory
v Shanley Theory

** In this Lecture:
= Residual stress effect

» Load eccentricity + column geometric eccentricity (initial deflection)
— Perry-Robertson formula
= Effect of lateral load
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11. 1 Review of Basic Theory
Ideal Columns

_

The Euler buckling load P is

L, (L, : Effective Length)
The Euler buckling load is the load for which an ideal column will first have
an equilibrium deflected shape.
Mathematically, it is the eigenvalue in the solution to Euler’s differential
equation

d’w Pw

4
dx® El

The “ultimate load” P is the maximum load that a column can carry.
It depends on

v" initial eccentricity of the column, eccentricity of the load

v’ transverse load, end condition,

v' in-elastic action, residual stress.
P, Of a practical column is less than P¢
Buckling - the sudden transition to a deflected shape - only occurs in the
case of "ideal" columns.

O
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11. 1 Review of Basic Theory

ldeal Columns
——————————

= |f the compressive stress exceeds proportional limit even in ideal column
— Actual buckling load < Euler load
due to the diminished slope of the stress-strain curve.

» For an ideal column (no eccentricity or residual stress) buckling will occur at
the tangent modulus load, given by

2
P = ”Tlftl (E; : tangent modulus,
© the slope of the stress-stain curve corresponding to P,/A)
= Since E; depends on P, modulusthe calculation of P, is generally an iterative
process.

= |tis more convenient to deal in terms of stress rather than load
— The effects of yielding and residual stress to be included.

_F n’E p - the radius of gyration , 1= p?A

o =
A (LIp) L./ p : slenderness ratio
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11. 1 Review of Basic Theory

ldeal Columns

_
*» Load-deflection behavior for practical columns

containing residual stress and eccentricity

/ @ Ideal Column

@ With Residuol Stress

ielding Begins

With Residucl Stress
ond Eccentricity

= Deflection

Slender Column (P¢<Py)

Q: Explain P,?

I:’E" AT Ideal Column

Yielding Begins

(@ With Residual Stress

With Residual Stress
and Eccentricity

= Deflection

Stocky Column (Pg>Py)

)

P — ﬂzlftl
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11.1 Review of Basic Theory
Ideal Columns

_

= The ultimate strength of a column is defined as the average applied
stress at collapse

2
_ n°E,
_ P (Tut)idear = 2
Out~— L
u A L
Jo,
due to entirely the
Dul.ij CompreSS|ve
residual stress o,
a
%4 | |
ult) ideal
Oy I = Oy Oy —z Range of
e typical experimental
T e values
L
0 & E ot 0 T
(a) (b) (c)
Stress-strain curve Tangent modulus Typical experiment values for straight
CLDL rolled sections and welded sections
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11.1 Review of Basic Theory
Residual Stress-Rolled Sections

—
» What is rolled section?

= a metal part produced by rolling and having any one of a number of cross-
sectional shapes.

Welded Rolled
section section

e
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11.1 Review of Basic Theory

Residual Stress-Rolled Sections
e ——————————————
% The uneven cooling between Residual stresses will result after the cooling

because of the non-uniform temperature distribution through the cross
section during the cooling process at ambient temperature.

flange root : tesile residual stresses

flange tip : compressive residual stresses,

about 80 MPa for mild steel

Typicol Residual Stress Potterns

Section Flonge Web
- H > —
o ¥
2 * Tension
) 0-2m 100
2 x
L; [%:H E 0 MPa
§ x -‘%
L 0-3m 100
Cormnpression
I - beamn
D::(] % Typical residual stresses in
'-.0—215—4 rolled section
25m
100 0 100

Compression Tension
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11.1 Review of Basic Theory
Residual Stress-Rolled Sections

_

The parts of the cross section that have a compressive residual stress
may commence yielding when applied stress = oy - g,

— particularly detrimental because it occurs in the flange tips.

The material is no longer homogeneous, and the simple tangent modulus
approach is no longer valid.

A comparatively simple solution can be achieved for the buckling strength in
the primary direction by assuming an elastic-perfectly plastic stress-strain
relationship.

The progressive loss of bending stiffens is linearly proportional to the extent
of the yielded zone — the use of an average value of tangent modulus.

material : Whatis o
stress—strain Q spl

Cav curve Gﬂv‘ Gult #

: Structural proportional limit?

structural o
stress—strain spl
curve

(stub column}

0 £

Typical stub column Structural tangent
stress-strain curve modulus diagram OPen INteractive Structural
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11.1 Review of Basic Theory
Residual Stress-Rolled Sections

e —————————————————
= Structural tangent modulus E, by Ostenfeld-Bleich Parabola

E o.(o,—0c
b——a Y a2 for (g, <0, <Oy) o 0B
E o 5l (o, —0O sl spl! parcbola
A
ogp - Structural proportional limit 0 Ets E
= Substituting E. in place of E,
2
7 E
(Gult)ideal = ( L jz - Ot —1_ O spl |:1_ O spi :|12’ 1= Le Oy
—= Oy Oy Oy pr \ E
o,

= For rolled wide flange section, typical value of 6, = 1/2 o
Johnson parabola for rolled section (essentially straight and pinned end)
2

2 2
:l—i’ forﬁ,>\/§ « when o, = 1/20sp| lzl_ﬂ“_, E:ﬂ‘_’ =2
oy 4 2 4 2 4

Gult
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11.1 Review of Basic Theory
Residual Stress-Rolled Sections

PP AN R IS N S Notation ! , l l ' ,
"Q"::-\ h Oylt = Average Crippling Stress of Column Assuming
~ \l 05 2050\{
\\\ h—<Euler Curve . Oy = Yield Stress as Determined by Tmilcpl‘l‘ests. .
\\ \ ¢ Lo = Effective Length of Column Depending_on, End
\ estroints
08 AN Y p = Least Radius of Gyrotion of Column Cross -
N /& \ Section,
Cult When A<V2: AN |
Oy %. = 1-«.?._6.. - \\ \ 5 l
0.6 — Oy 4 AN
Johnson Parabola ‘\ P /4 2E
Bosic Column Curve > ¢ —_E —
— ]_ _I. — _l -— \;\ —— /[m Eccentricity allowance) =i A (Le /,O)2
_ |
04 Q,u“_ 12 Ospl /)\\ i o | 1 | Ler Hyperbot | 2 |
T T ~ . - r
Perry—Robertson Curve ~ _Ul-l‘}Lt_? Nhen A V2 Euler Hyperbola 2 L, Oy
(includes Eccentricity Allowance) p271'2 E
(Drawn For Oy = 208 MPa) ~ N
~ 2 2
02 ' ~ON 1. Erp_ Ex
— 2 2 2
I ~ S A L oo, (L/p)o,
| 1 | |
I O-E (: Gult) _ 1
0 10 [1=4+2 29 3.0 Oy
_Le . /Oy
MesrVE

Basic column curve (Johnson parabola and Perry-Robertson curve
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11.1 Review of Basic Theory
Residual Stress-Welded Sections

*» Residual thermal stress is induced by uneven internal temperature
distribution

400

——

1
i
o
:
g Resiflual stress close to
o .
H | yield|stress
E in welding direction
s
i
s
=
_______________ L.______---====
.
| \/ |
1

oy
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11.1 Review of Basic Theory
Residual Stress-Welded Sections

* The interaction between the different fibers results in a locked-in
tensile stress in and near the weld which is equal to approximately

equal to the yield stress.

_zwE Plates Before Welding Plate Edges

RSCtsrT su Sul et~ Flame Cut

N 200

4+

MPa .
-200 Plates After Welding

OE 'mwﬂ m Centre Weld

200
-200

OE AT, Edge Weids
200 t

|

i«————————b—-’-—r{

Typical residual stresses in welded section

+

Oy

|

» The extent of the tension yield zone (3~6 times thickness) depends mainly
on the total heat input, the cross-sectional area of the weld deposit, the type

of welding and the welding sequence.

T 4]
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11.1 Review of Basic Theory

Residual Stress-Welded Sections - i
* From the equilibrium # \ [
- |
o, (b-2nt)=2mtc, =) o, b _ - t
t ]

nt . width of the tension yield zone, b : total flange width

= For narrow thick sections residual stress will be high, and this will seriously
diminish the strength of the section.

= |t should be noted that

v" the effect will be much worse for open sections than for box sections due
to the tensile stress at corners of box sections.

v’ flame-cutting creates conditions similar to welding — high tensile residual
stress is beneficial.

v the effect of residual stress is somewhat diminished for higher yield
steels due to narrower tension zone.
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11.1 Review of Basic Theory
Eccentricity: Magnification Factor

* Pinned column with an initial deflection J(x) and addition deflection (x)
WT

due to axial load. Bending moment is P(o+w).

d’w P
+ o+w)=0
dx? El ( )

inifigl Deflection Bix}

Eccentric columns
= Deflection continues to grow and magnified as long as P increases.
— no static equilibrium configuration and no sudden buckling.

= |etod be represented by a Fourier series = . NxX
P Y 5=3"6, sin 2=

= Assume that the additional deflection
due to the bending is also a Fourier

series
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11.1 Review of Basic Theory
Eccentricity: Magnification Factor

» d'w_& N’
A,
dx <= L

. NzX
W, sin ——
L

" & At P . nax n°z P
- — — = — W +— (W +6,)=0
;|: L2 Wﬂ+ EI (Wn +§n) sin L 0 » L2 n EI ( n n)
n2El 7> ) ol W :L, where n=1,2,3,...
(P - ¥ W, +6,=(P-n°P.)w,+6,=0 mp " n’P. 1
P
= The dominant term is n=1. When P/P—1, w,/J,, — oo
o)
W= ; P
PE_]_ i
P . ; PE ==
and the total deflection is ——
W, =0+W=0+ P o= i: 0 = @o
P-P P.-P
where ¢ is called the magnification factor. 0 T
P Eccentricity &
¢ = P_Pp Load-deflection for eccentric columns
E
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11.1 Review of Basic Theory
Eccentricity: Magnification Factor

= Eccentricity effects may also arise due to eccentricity of load. In this
case the magnification factor is given by

¢:sec(£ EJ MmX:Pesec(z iJ Secant Formula in
2\ PR 2 Lecture 2

= The two types of eccentricity (load application and column geometry)
can be combined linearly 4=d+e.

cr

Oy = P P_¢A P(1+¢AAj P[1+¢ j ] ta)
A Z Z A I

2

C

A
r. = coreradius _E P
A

{b)

A . . AC |ec .. :
— = eccentricity ratio = > |7 = eccentricity ratio
I, P r Column with eccentric load

Secant Formula in Lecture 2
= Eccentricity can be related to the slenderness ratio

A a L, a ~0.003 for lower bound for test results

. s
OPen INteractive Structural Yy



11.2 Column Design Formulas
Perry-Robertson Formula

_

It adopts Robertson's value for a and assumes that the column will
collapse when the maximum compressive stress reaches the yield
stress.

o Pafy GUPR) () ablp
A P.-P l-0,/0:

ult

It is a quadratic, and may be rewritten in a nondimensional, factored form
where R is the strength ratio of the column R= ﬂ
n Is the eccentricity ratio n=—

GY
/ is the column slenderness parameter ﬂp
E

2t 1= 7 1 41 T
Ot ' [1_120Y/Gult} :>R ' 1- IR (1_R)(1_ﬁ“ R)_UR

2
» ite) B S
A° 4 A A

For a perfectly straight column, having »=0, reduces to the Euler curve,
, providing that 1> 1. R—i
=— R
A ey
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11.2 Column Design Formulas
Accurate Design Curves

» Perry-Robertson formula with different values of a being used for different
types of sections

fail by yield
500 T 1 |
ﬁ"‘\ j R Smj —L . \‘
b Oy=400MP,
400 2 m”ff_‘__ 1 @ =0-0020 S \\\
v » \ oof® 1 §>\ \ 0=0-0035 400 \\h‘\L \—
™~ K \\ X \L";\ N \ o = 0-0055
LN ™
300 0y = 30004Ps [T~ N SRIN A \\r\\\:\\\i\ ¥
TN WX\ Oy =300MPy oy =300MP \ N
oy —] N \ 0 Y \‘1‘ N \ ] 300 < \\\\:bx \
MPa N N Outt NS ult AN
( ) Oy = 200MF, | | N (MPa) i~ \\ (MPa) DQQ\\\\
200 Oy=200MPg T~ I Oy = 200MP; ™~ Q\ N
=
ol 200 k\\x 200 SN \\\‘\
- 3 A SN FE TSN
TN | N SEEEERS g
I~__‘ ~

100 i ’— ~ 100 A‘_ﬁ_J:_‘—ﬁM_—— D 100 S5

— N - B WL‘“ I

——T— : - ——
0 50 100 150 00 =0 :,B’E_X‘L—— 150 °0 50 100 15¢
L. /p L, /p o L. /p
Column design curve for a=0.002 a=0.0035 a=0.0055

VERITLUX |
T L.
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Homework #1

I e ————————————————————————————
* Plot Secant curve shown below and Perry-Robertson
Formula in a graph and discuss the differences of two
approach associate with the plots.

280 T |

T max = 250 MPa
E =200 GPa

i |f'>
II
o

I

Euler curve

210

P
A (MPa)
140

70

| |
0 50 100 150 200

Graph of the secant formula for
Omax = 2950 MPa (o Ielol) and E = 200 GPa

*B\
"
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11.2 Column Design Formulas
Accurate Design Curves

The curves have a horizontal plateau at values

of slenderness ratio less than some threshold
value (L/p), . To achieve this the value of the

eccentricity ratio is defined

£<(L] é—o
for 57 p),

for L{Lj é_o{h_[hn
P\ P oo Le \p)

where (L/p), is given by (Ej :0.272\/E
P o Oy

For welded I-and box sections, the yield
stress should be reduced by 5% to allow

for welding residual stress.

Section Axis of Buckling o

Universal column xx 0.0035
Universal column yy 0.0055
Universal beam xx 0.0020
Universal beam ¥y 0.0035
UC or UB with cover-plates xx 0.0035
UC or UB with cover-plates ¥y 0.0020
Channel xx 0.0055
Channel yy 0.0055
Tee xXx 0.0055
Tee yy 0.0055
Angle any 0.0055
Round tube any 0.0020
Rectangular hollow xx 0.0020
Rectangular hollow vy 0.0020
Welded I-sections xx 0.0035
Welded I-sections yy 0.0055
Welded box-sections 0.0035

Curve selection(a) table for rolled
and welded sections
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11.3 Effect of Lateral Load: Beam Columns
Use of Magnification Factor

= For a pinned column subjected to lateral pressure g and P, the w, IS
4 2
W = il 244 secg—l—g— £ = L P
384El | 5¢ 2 2 El
& <SS
Central deflection of a The effect of axial load Homework #2 Derive w,,,
laterally loaded member and M_...

* The maximum bending moment
gL {2(1—sec§)}
o8 & — different for deflection, end condition, load

» The simpler magnification factor which was derived for sinusoidal
initial eccentricity is used.

p=—t
P.-P
= Max. bending moment =due to lateral load(M,)+ due to eccentricity(d,)
P M,
M. . =M,+Pgs(5,+A) Omx = 7 775
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11.3 Effect of Lateral Load: Beam Columns
Use of Magnification Factor

To demonstrate the accuracy of this approach, if P=0.5P¢, 4=0
M = qg[z(l_secf)} 5{5) (ij = M, =2.030M,

& 2 WU EI

2 4 2
M, =M, +05| Zol 2208y (1,97 |_ 2 028M,
2 )" 384El 48

We assume that the column will collapse when the maximum

compressive stress reaches the yield stress. Therefore
— F)ult + I\/IO + I:)ult(é‘o +A)

TA Tz P
Y
E

It can be expressed in terms of nondimensional parameters
(1-R—-u)(1-2°R)=nR Homework #3 Derive left formula

where M
0
R:O-“'t g |ov L /GY 77:(50+A)A 2
Oy O o E Z oy

23
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11.3 Effect of Lateral Load: Beam Columns
Use of Magnification Factor

«» The solution becomes

STRENGTH

1 1+7) |1 1+7Y 1-u
R=—|1-u+ — = 1=+ —
2( ST j \/4( ST j 22

Initial deflection and
load eccentricity

RATIO R \__ 5 A
EULER curve + A
0 ?A‘Smoufﬁhlt é:rpﬁf:nerﬂ ;]ud c;r ]‘jd )r 77 = ( > )
‘ no\ eccenlricity; a ; G 0.5 0y
08— — —+ —|— o T Ln-o-zo
R =040 - 000
Ll e e e e o < ’"TZZZ -0 60 % ie-[ro_lateral Toad] | B.M due to lateral load
0 063} —|— | — R /A ~ S M
0-57 oc e e ™~ ZO
R S Py = W\: . U= -
~ R Y
7-0-20 P %bmh%g%
- ~os0| A ‘ e
A = 0-20 7?, ﬁ»
77 = 060 e
00 05 10 15 20
SLENDERNESS RATIO A
A pinned beam column subjected to a specified lateral load.
2l p%,
. . (5)
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11.3 Effect of Lateral Load: Beam Columns
Use of Magnification Factor

R .. :
[\ﬁULEf* e Initial deflection and
BASIC COLUMN riCLi‘tweor lateral load; =0.50y) 11
1o ~ (no {‘ o o O load eccentricity
. p= (6, +A)A
\ 7=020 ) Z
/’]//}Q.;O»{’O(( A= 0-40
05 — 7 77 2060 |
= e e
D B = My O ~_ B.M due to lateral load
T |
l ! M= Z
00 0's 1-0 15 2.0 o,
4 \
R cury
. B ) \/f/ E!ULE!R u! e
T o acceniriity, o ateral ¥| ; Gt =0.5 0y)
-._____‘.\/1_/ {no eccentricity,or latera oad ; @, =0.5 oy
~ L\

\\\ 7 = 0-20

0.5 .o-z.oé/u - 0-60
Bes e
111 ™~

v |
I "“——__._,___ \_
1t ——
— 0

00 05 1-0 1-5 20

ecd%y
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