Topics in Ship Structural Design (Hull Buckling and Ultimate Strength)

Lecture 4 Buckling and Ultimate Strength of Columns

Reference : Ship Structural Design Ch.09 NAOE Jang, Beom Seon

Goal

In Lecture 02 :

- Euler buckling load
- Load eccentricity \rightarrow Secant formula
- Elastic and Inelastic column behavior
 - ✓ Tangent-Modulus Theory
 - ✓ Reduced-Modulus Theory
 - ✓ Shanley Theory

In this Lecture:

- Residual stress effect
- Load eccentricity + column geometric eccentricity (initial deflection)
 → Perry-Robertson formula
- Effect of lateral load

Ideal Columns

• The Euler buckling load P_E is

$$P_{E} = \frac{\pi^{2} EI}{L_{e}^{2}} (L_{e}: Effective \ Length)$$

- The Euler buckling load is the load for which an ideal column will first have an equilibrium deflected shape.
- Mathematically, it is the eigenvalue in the solution to Euler's differential equation

$$\frac{d^2w}{dx^2} + \frac{Pw}{EI} = 0$$

- The "ultimate load" P_{ult} is the maximum load that a column can carry.
- It depends on
 - $\checkmark\,$ initial eccentricity of the column, eccentricity of the load
 - ✓ transverse load, end condition,
 - $\checkmark\,$ in-elastic action, residual stress.
- P_{ult} of a practical column is less than P_E
- Buckling the sudden transition to a deflected shape only occurs in the case of "ideal" columns.

Ideal Columns

If the compressive stress exceeds proportional limit even in ideal column
 → Actual buckling load < Euler load

due to the diminished slope of the stress-strain curve.

 For an ideal column (no eccentricity or residual stress) buckling will occur at the tangent modulus load, given by

$$P_t = \frac{\pi^2 E_t I}{L_e^2} \quad ($$

 $(E_t: tangent modulus,$

the slope of the stress-stain curve corresponding to P_t/A)

- Since E_t depends on P_t modulus the calculation of P_t is generally an iterative process.
- It is more convenient to deal in terms of stress rather than load
 → The effects of yielding and residual stress to be included.

$$\sigma_{E} = \frac{P_{E}}{A} = \frac{\pi^{2}E}{\left(L_{e} / \rho\right)^{2}}$$

 ρ : the radius of gyration, $I = \rho^2 A$ L_e / ρ : slenderness ratio

Ideal Columns

Load-deflection behavior for practical columns containing residual stress and eccentricity

$$P_t = \frac{\pi^2 E_t I}{L_e^2}$$

Ideal Columns

 The ultimate strength of a column is defined as the average applied stress at collapse

$$\sigma_{\text{ult}} = \frac{P_{\text{ult}}}{A} \qquad (\sigma_{\text{ult}})_{\text{ideal}} = \frac{\pi^2 E_{\text{t}}}{\left(\frac{L_e}{\rho}\right)^2}$$

Residual Stress-Rolled Sections

What is rolled section?

 a metal part produced by rolling and having any one of a number of crosssectional shapes.

Residual Stress-Rolled Sections

The uneven cooling between Residual stresses will result after the cooling because of the non-uniform temperature distribution through the cross section during the cooling process at ambient temperature.

flange root : tesile residual stresses

flange tip : compressive residual stresses,

about 80 MPa for mild steel

Residual Stress-Rolled Sections

• The parts of the cross section that have a compressive residual stress may commence yielding when applied stress = $\sigma_{\gamma} - \sigma_r$

 \rightarrow particularly detrimental because it occurs in the flange tips.

- The material is no longer homogeneous, and the simple tangent modulus approach is no longer valid.
- A comparatively simple solution can be achieved for the buckling strength in the primary direction by assuming an elastic-perfectly plastic stress-strain relationship.
- The progressive loss of bending stiffens is linearly proportional to the extent of the yielded zone → the use of an average value of tangent modulus.

Residual Stress-Rolled Sections

Structural tangent modulus E_{ts} by Ostenfeld-Bleich Parabola

$$\frac{E_{ts}}{E} = \frac{\sigma_{av}(\sigma_{Y} - \sigma_{av})}{\sigma_{spl}(\sigma_{Y} - \sigma_{spl})} \text{ for } (\sigma_{spl} < \sigma_{av} < \sigma_{Y})$$

 σ_{spl} : Structural proportional limit

Substituting E_{ts} in place of E_t

• For rolled wide flange section, typical value of $\sigma_{spl} = 1/2 \sigma_{Y.}$ Johnson parabola for rolled section (essentially straight and pinned end)

$$\frac{\sigma_{ult}}{\sigma_Y} = 1 - \frac{\lambda^2}{4}, \text{ for } \lambda > \sqrt{2} \iff \text{ when } \sigma_{ult} = 1/2 \ \sigma_{spl} \qquad \frac{1}{2} = 1 - \frac{\lambda^2}{4}, \quad \frac{1}{2} = \frac{\lambda^2}{4}, \ \lambda^2 = 2$$

Residual Stress-Rolled Sections

Basic column curve (Johnson parabola and Perry-Robertson curve

Residual Stress-Welded Sections

 Residual thermal stress is induced by uneven internal temperature distribution

Residual Stress-Welded Sections

 The interaction between the different fibers results in a locked-in tensile stress in and near the weld which is equal to approximately equal to the yield stress.

 The extent of the tension yield zone (3~6 times thickness) depends mainly on the total heat input, the cross-sectional area of the weld deposit, the type of welding and the welding sequence.

Residual Stress-Welded Sections

From the equilibrium

$$\sigma_r(b-2\eta t) = 2\eta t \sigma_Y \quad \Longrightarrow \quad \frac{\sigma_r}{\sigma_Y} = \frac{2\eta}{\frac{b}{t}-2\eta}$$

 ηt : width of the tension yield zone, b: total flange width

- For narrow thick sections residual stress will be high, and this will seriously diminish the strength of the section.
- It should be noted that
 - the effect will be much worse for open sections than for box sections due to the tensile stress at corners of box sections.
 - ✓ flame-cutting creates conditions similar to welding → high tensile residual stress is beneficial.
 - ✓ the effect of residual stress is somewhat diminished for higher yield steels due to narrower tension zone.

Eccentricity: Magnification Factor

• Pinned column with an initial deflection $\delta(x)$ and addition deflection (x) due to axial load. Bending moment is $P(\delta+w)$.

$$\frac{d^2w}{dx^2} + \frac{P}{EI}(\delta + w) = 0$$

- Deflection continues to grow and magnified as long as *P* increases.
 → no static equilibrium configuration and no sudden buckling.
- Let δ be represented by a Fourier series
- Assume that the additional deflection due to the bending is also a Fourier series

$$\delta = \sum_{n=1}^{\infty} \delta_n \sin \frac{n\pi x}{L}$$

$$w = w_n \sin \frac{n\pi x}{L}$$

Eccentricity: Magnification Factor

$$\frac{d^2 w}{dx^2} = \sum_{n=1}^{\infty} -\frac{n^2 \pi^2}{L^2} w_n \sin \frac{n\pi x}{L}$$

$$\sum_{n=1}^{\infty} \left[-\frac{n^2 \pi^2}{L^2} w_n + \frac{P}{EI} (w_n + \delta_n) \right] \sin \frac{n\pi x}{L} = 0 \qquad \Rightarrow \qquad -\frac{n^2 \pi^2}{L^2} w_n + \frac{P}{EI} (w_n + \delta_n) = 0$$

$$(P - \frac{n^2 EI \pi^2}{L^2}) w_n + \delta_n = (P - n^2 P_E) w_n + \delta_n = 0 \qquad \Rightarrow \qquad w_n = \frac{\delta_n}{\frac{n^2 P_E}{P} - 1}, \text{ where } n = 1, 2, 3, ...$$

$$W_n = \frac{\delta}{\frac{P_E}{P} - 1}, \text{ where } n = 1. \text{ When } P_E / P \rightarrow 1, w_n / \delta_n \rightarrow \infty$$

$$w_T = \delta + w = \delta + \frac{P}{P_E - P} \delta = \frac{P_E}{P_E - P} \delta = \phi \delta$$
where ϕ is called the magnification factor.
$$\phi = \frac{P_E}{P_E - P}$$

$$Load-deflection for eccentric columns$$

Eccentricity: Magnification Factor

Eccentricity effects may also arise due to eccentricity of load. In this case the magnification factor is given by

$$\phi = \sec\left(\frac{\pi}{2}\sqrt{\frac{P}{P_E}}\right)$$
 $M_{\max} = Pe \sec\left(\frac{\pi}{2}\sqrt{\frac{P}{P_{cr}}}\right)$ Secant Formula in Lecture 2

• The two types of eccentricity (load application and column geometry) can be combined linearly $\Delta = \delta + e$.

$$\sigma_{\max} = \frac{P}{A} + \frac{P\phi\Delta}{Z} = \frac{P}{A} \left(1 + \phi \frac{\Delta A}{Z} \right) = \frac{P}{A} \left(1 + \phi \frac{\Delta}{r_c} \right),$$

$$r_c = \text{core radius} = \frac{Z}{A} = \frac{\rho^2}{c}$$

$$\frac{\Delta}{r_c} = \text{eccentricity ratio} = \frac{\Delta c}{\rho^2} \qquad \frac{ec}{r^2} = \text{eccentricity ratio}$$

$$(a)$$

$$M = P\phi e$$

$$(b)$$

$$(b)$$

$$(b)$$

$$Column \text{ with eccentric load}$$

Secant Formula in Lecture 2

Eccentricity can be related to the slenderness ratio

 $\frac{\Delta}{r_c} = \alpha \frac{L}{\rho}, \quad \alpha \approx 0.003 \text{ for lower bound for test results}$

11.2 Column Design Formulas

Perry-Robertson Formula

 It adopts Robertson`s value for α and assumes that the column will collapse when the maximum compressive stress reaches the yield stress.

$$\sigma_{Y} = \frac{P_{\text{ult}}}{A} \left(1 + \frac{\alpha(L/\rho)P_{E}}{P_{E} - P_{\text{ult}}} \right) \qquad \sigma_{Y} = \sigma_{\text{ult}} \left(1 + \frac{\alpha L/\rho}{1 - \sigma_{\text{ult}}/\sigma_{E}} \right)$$

• It is a quadratic, and may be rewritten in a nondimensional, factored form where *R* is the strength ratio of the column $R = \frac{\sigma_{ult}}{\sigma_Y}$ η is the eccentricity ratio $\eta = \frac{\alpha L}{\rho}$ λ is the column slenderness parameter $\lambda = \sqrt{\frac{\sigma_Y}{\sigma_E}} = \frac{L}{\pi\rho}\sqrt{\frac{\sigma_Y}{E}}$ $\frac{\sigma_Y}{\sigma_{ult}} - 1 = \left(\frac{\eta}{1 - \lambda^2 \sigma_Y / \sigma_{ult}}\right), \Rightarrow \frac{1}{R} - 1 = \frac{\eta}{1 - \lambda^2 R}$ $(1 - R)(1 - \lambda^2 R) = \eta R$

$$\Rightarrow R = \frac{1}{2} \left(1 + \frac{1+\eta}{\lambda^2} \right) - \sqrt{\frac{1}{4} \left(1 + \frac{1+\eta}{\lambda^2} \right)^2} - \frac{1}{\lambda^2}$$

• For a perfectly straight column, having $\eta = 0$, reduces to the Euler curve, , providing that $\lambda > 1$. $R = \frac{1}{\lambda^2}$

11.2 Column Design Formulas

Accurate Design Curves

Perry-Robertson formula with different values of α being used for different types of sections

fail by yield

Homework #1

Plot Secant curve shown below and Perry-Robertson Formula in a graph and discuss the differences of two approach associate with the plots.

$$\sigma_{\rm max}$$
 = 250 MPa ($\sigma_{\rm yield}$) and E = 200 GPa

11.2 Column Design Formulas

Accurate Design Curves

 The curves have a horizontal plateau at values of slenderness ratio less than some threshold value (L/p)₀. To achieve this the value of the eccentricity ratio is defined

for
$$\frac{L}{\rho} < \left(\frac{l}{\rho}\right)_{0'}$$
 $\frac{\Delta}{r_c} = 0$

for
$$\frac{L}{\rho} > \left(\frac{l}{\rho}\right)_{0'}$$
 $\frac{\Delta}{r_c} = \alpha \left[\frac{L}{\rho} - \left(\frac{L}{\rho}\right)_{0'}\right]$

where $(L/\rho)_0$ is given by

$$\left(\frac{L}{\rho}\right)_0 = 0.2\pi \sqrt{\frac{E}{\sigma_Y}}$$

 For welded I-and box sections, the yield stress should be reduced by 5% to allow for welding residual stress.

Section	Axis of Buckling	α
Universal column	xx	0.0035
Universal column	уу	0.0055
Universal beam	xx	0.0020
Universal beam	УУ	0.0035
UC or UB with cover-plate	es xx	0.0035
UC or UB with cover-plate	es yy	0.0020
Channel	xx	0.0055
Channel	уу	0.0055
Tee	xx	0.0055
Tee	уу	0.0055
Angle	any	0.0055
Round tube	any	0.0020
Rectangular hollow	xx	0.0020
Rectangular hollow	уу	0.0020
Welded I-sections	xx	0.0035
Welded I-sections	уу	0.0055
Welded box-sections		0.0035

Curve selection(α) table for rolled and welded sections

Use of Magnification Factor

For a pinned column subjected to lateral pressure q and P, the w_{max} is

$$w_{\max} = \frac{5qL^4}{384EI} \left[\frac{24}{5\xi^4} \left(\sec \xi - 1 - \frac{\xi^2}{2} \right) \right] \qquad \xi = \left(\frac{L}{2} \right) \sqrt{\left(\frac{P}{EI} \right)}$$

Central deflection of a laterally loaded member

The effect of axial load

Homework #2 Derive w_{max} and M_{max} .

The maximum bending moment

$$M_{\rm max} = \frac{qL^2}{8} \left[\frac{2(1 - \sec \xi)}{\xi^2} \right]$$

 \rightarrow different for deflection, end condition, load

 The simpler magnification factor which was derived for sinusoidal initial eccentricity is used.

$$\phi = \frac{P_E}{P_E - P}$$

• Max. bending moment =due to lateral load(M_0)+ due to eccentricity(δ_0)

$$M_{\text{max}} = M_0 + P\phi(\delta_0 + \Delta)$$
 $\sigma_{\text{max}} = \frac{P}{A} + \frac{M_{\text{max}}}{Z}$

Use of Magnification Factor

• To demonstrate the accuracy of this approach, if $P=0.5P_E$, $\Delta=0$

$$M_{\text{max}} = \frac{qL^2}{8} \left[\frac{2(1 - \sec \xi)}{\xi^2} \right] \quad \xi = \left(\frac{L}{2}\right) \sqrt{\left(\frac{P}{EI}\right)} \quad \Longrightarrow \quad M_{\text{max}} = 2.030M_0$$
$$M_{\text{max}} = M_0 + 0.5 \left(\frac{\pi^2 EI}{L^2}\right) 2 \frac{5qL^4}{384EI} = M_0 \left(1 + \frac{5\pi^2}{48}\right) = 2.028M_0$$

 We assume that the column will collapse when the maximum compressive stress reaches the yield stress. Therefore

$$\sigma_{Y} = \frac{P_{\text{ult}}}{A} + \frac{M_{0}}{Z} + \frac{P_{\text{ult}}(\delta_{0} + \Delta)}{\left(1 - \frac{P_{\text{ult}}}{P_{E}}\right)Z}$$

• It can be expressed in terms of nondimensional parameters $(1-R-\mu)(1-\lambda^2 R) = \eta R$ Homework #3 Derive left formula

where

$$R = \frac{\sigma_{\text{ult}}}{\sigma_{Y}} \quad \lambda = \sqrt{\frac{\sigma_{Y}}{\sigma_{E}}} = \frac{L}{\pi\rho}\sqrt{\frac{\sigma_{Y}}{E}} \quad \eta = \frac{(\delta_{0} + \Delta)A}{Z} \quad \mu = \frac{\frac{M_{0}}{Z}}{\sigma_{Y}}$$

Use of Magnification Factor

The solution becomes

$$R = \frac{1}{2} \left(1 - \mu + \frac{1 + \eta}{\lambda^2} \right) - \sqrt{\frac{1}{4} \left(1 - \mu + \frac{1 + \eta}{\lambda^2} \right)^2 - \frac{1 - \mu}{\lambda^2}}$$

A pinned beam column subjected to a specified lateral load.

Initial deflection and

Use of Magnification Factor

