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Goal

 In Lecture 02 : 

 Euler buckling load

 Load eccentricity → Secant formula

 Elastic and Inelastic column behavior 

 Tangent-Modulus Theory

Reduced-Modulus Theory

 Shanley Theory

 In this Lecture: 

 Residual stress effect 

 Load eccentricity + column geometric eccentricity (initial deflection)

→ Perry-Robertson formula

 Effect of lateral load
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Ideal Columns

 The Euler buckling load PE is 

(Le : Effective Length)

 The Euler buckling load is the load for which an ideal column will first have 

an equilibrium deflected shape. 

 Mathematically, it is the eigenvalue in the solution to Euler’s differential 

equation

 The “ultimate load” Pult is the maximum load that a column can carry.

 It depends on

 initial eccentricity of the column, eccentricity of the load

 transverse load, end condition,

 in-elastic action, residual stress.

 Pult of a practical column is less than PE

 Buckling - the sudden transition to a deflected shape - only occurs in the

case of "ideal" columns.

11. 1 Review of Basic Theory
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Ideal Columns

 If the compressive stress exceeds proportional limit even in ideal column

→ Actual buckling load < Euler load 

due to the diminished slope of the stress-strain curve. 

 For an ideal column (no eccentricity or residual stress) buckling will occur at 

the tangent modulus load, given by

(Et : tangent modulus, 

the slope of the stress-stain curve corresponding to Pt/A)

 Since Et depends on Pt modulusthe calculation of Pt is generally an iterative 

process.

 It is more convenient to deal in terms of stress rather than load 

→ The effects of yielding and residual stress to be included. 

11. 1 Review of Basic Theory
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Ideal Columns

 Load-deflection behavior for practical columns 

containing residual stress and eccentricity

11. 1 Review of Basic Theory

Slender Column (PE<PY) Stocky Column (PE>PY)

Q:  Explain Pt?
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Ideal Columns

 The ultimate strength of a column is defined as the  average  applied 

stress at collapse   

11.1 Review of Basic Theory

Stress-strain curve
Tangent modulus 

curve
Typical experiment values for straight 

rolled sections and welded sections

ult
ult =

P

A


2

t
ult ideal 2

( ) =

e

E

L






 
 
 

due to entirely the 
compressive 
residual stress σr



OPen INteractive Structural LabOPen INteractive Structural Lab

Residual Stress-Rolled Sections 

 What is rolled section?

 a metal part produced by rolling and having any one of a number of cross-

sectional shapes. 

11.1 Review of Basic Theory

Rolled 
section

Welded 
section
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Residual Stress-Rolled Sections 

 The uneven cooling between Residual stresses will result after the cooling 

because of the non-uniform temperature distribution through the cross 

section during the cooling process at ambient temperature. 

flange root : tesile residual stresses 

flange tip   :  compressive residual stresses, 

about 80 MPa for mild steel

11.1 Review of Basic Theory

Typical residual stresses in 

rolled section



OPen INteractive Structural LabOPen INteractive Structural Lab

Residual Stress-Rolled Sections

 The parts of the cross section that have a compressive residual stress

may commence yielding when applied stress = σY - σr

→ particularly detrimental because it occurs in the flange tips.

 The material is no longer homogeneous, and the simple tangent modulus 

approach is no longer valid.

 A comparatively simple solution can be achieved for the buckling strength in 

the primary direction by assuming an elastic-perfectly plastic stress-strain 

relationship.

 The progressive loss of bending stiffens is linearly proportional to the extent 

of the yielded zone → the use of an average value of tangent modulus.

11.1 Review of Basic Theory

Typical stub column 

stress-strain curve

Structural tangent 

modulus diagram

Q:  What is  σspl : Structural proportional limit?
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Residual Stress-Rolled Sections

 Structural tangent modulus Ets by Ostenfeld-Bleich Parabola

σspl : Structural proportional limit

 Substituting Ets in place of Et

 For rolled wide flange section, typical value of σspl = 1/2 σY .

Johnson parabola for rolled section (essentially straight and pinned end) 

11.1 Review of Basic Theory
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Residual Stress-Rolled Sections

11.1 Review of Basic Theory

Basic column curve (Johnson parabola and Perry-Robertson curve

σult = 1/2 σspl
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Residual Stress-Welded Sections

 Residual thermal stress is induced by uneven internal temperature 

distribution

11.1 Review of Basic Theory

Residual stress close to 

yield stress 

in welding direction
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Residual Stress-Welded Sections

 The interaction between the different fibers results in a locked-in 

tensile stress in and near the weld which is equal to approximately 

equal to the yield stress. 

11.1 Review of Basic Theory

 The extent of the tension yield zone (3~6 times thickness) depends mainly

on the total heat input, the cross-sectional area of the weld deposit, the type

of welding and the welding sequence.

Typical residual stresses in welded section
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Residual Stress-Welded Sections

 From the equilibrium 

ηt : width of the tension yield zone, b : total flange width

11.1 Review of Basic Theory
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 For narrow thick sections residual stress will be high, and this will seriously

diminish the strength of the section.

 It should be noted that

 the effect will be much worse for open sections than for box sections due

to the tensile stress at corners of box sections.

 flame-cutting creates conditions similar to welding → high tensile residual

stress is beneficial.

 the effect of residual stress is somewhat diminished for higher yield

steels due to narrower tension zone.
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 Pinned column with an initial deflection δ(x) and addition deflection (x)

due to axial load. Bending moment is P(δ+w).

 Deflection continues to grow and magnified as long as P increases.

→ no static equilibrium configuration and no sudden buckling.

Eccentricity: Magnification Factor

11.1 Review of Basic Theory
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Eccentricity: Magnification Factor
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11.1 Review of Basic Theory
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 The dominant term is n=1. When PE/P→1, wn /δn →∞

and the total deflection is
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Eccentricity: Magnification Factor

 Eccentricity effects may also arise due to eccentricity of  load. In this 

case the magnification factor is given by 

 The two types of eccentricity (load application and column geometry) 

can be combined linearly Δ=δ+e.

 Eccentricity can be related to the slenderness ratio

11.1 Review of Basic Theory
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Perry-Robertson Formula 

 It adopts Robertson`s value for α and assumes that the column will 

collapse when the maximum compressive stress reaches the yield 

stress. 

 It is a quadratic, and may be rewritten in a nondimensional, factored form 

where R is the strength ratio of the column

η is the eccentricity ratio

λ is the column slenderness parameter

 For a perfectly straight column, having η=0, reduces to the Euler curve,              

, providing that λ>1.

11.2 Column Design Formulas
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Accurate Design Curves

 Perry-Robertson formula with different values of α being used for different 

types of sections

11.2 Column Design Formulas

19Column design curve for α=0.002 α=0.0035 α=0.0055

fail by yield
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Homework #1 

 Plot Secant curve shown below and Perry-Robertson 

Formula in a graph and discuss the differences of two 

approach associate with the plots. 

Euler curve

Graph of the secant formula for 

σmax = 250 MPa (σyield) and E = 200 GPa
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Accurate Design Curves

 The curves have a horizontal plateau at values 

of slenderness ratio less than some threshold 

value (L/ρ)0 . To achieve this the value of the 

eccentricity ratio is defined

for 

for 

where (L/ρ)0 is given by    

 For welded I-and box sections, the yield 

stress should be reduced by 5% to allow 

for welding residual stress.

11.2 Column Design Formulas

Curve selection(α) table for rolled 

and welded sections
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Use of Magnification Factor 

 For a pinned column subjected to lateral pressure q and P, the wmax is

 The maximum bending moment

→ different for deflection, end condition, load

 The simpler magnification factor which was derived for sinusoidal 

initial eccentricity is used. 

 Max. bending moment =due to lateral load(M0)+ due to eccentricity(δ0)

11.3 Effect of Lateral Load: Beam Columns
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Use of Magnification Factor 

 To demonstrate the accuracy of this approach, if P=0.5PE, Δ=0 

 We assume that the column will collapse when the maximum 
compressive stress reaches the yield stress. Therefore  

 It can be expressed in terms of nondimensional parameters

where

11.3 Effect of Lateral Load: Beam Columns
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Use of Magnification Factor 

 The solution becomes   

11.3 Effect of Lateral Load: Beam Columns
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Use of Magnification Factor 

11.3 Effect of Lateral Load: Beam Columns
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