INTRODUCTION TO
NUMERICAL ANALYSIS

Cho, Hyoung Kyu

Department of Nuclear Engineering
Seoul National University

R

et
;']

!

NUuTHEL

4. A SYSTEM OF LINEAR EQUATIONS

NuTHEL

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

Background

Gauss Elimination Method

Gauss Elimination with Pivoting

Gauss-Jordan Elimination Method

LU Decomposition Method

Inverse of a Matrix

Iterative Methods

Use of MATLAB Built-In Functions for Solving a System of Linear
Equations

Tridiagonal Systems of Equations

4
v
R

4.1 Background

*» Systems of linear equations

® Occur frequently not only in engineering and science but in any disciplines

*** Example

® Electrical engineering

= Kirchhoff’s law 30
24V
> (Y
4 Q 20
M ——WA
Q) 6Q§ i3
16 V 6 O
Iy MWW
2 a0z (Y ©
270 18V

4.1 Background

*» Systems of linear equations

® Occur frequently not only in engineering and science but in any disciplines

*** Example
® Force in members of a truss

= Force balance

0.9231F , = 1690 —F 53— 0.3846F ,, = 3625
F ,5—0.7809F 5 = 0 0.6247F 3o — Fgp = 0

0.3846F oy — 0.3846 F ;. — 0.7809F . — F opy = 0
0.9231F ;. +0.6247F 5. — 0.9231F oz = 0

4.1 Background

*** Overview of numerical methods for solving a system of linear algebraic equations

lai1 ags o ais [x b
_ 11 912 !
apx,tapx,+...+a,x, = b A= 1
Ay Xy +apx, t...tay,x, = b, » Ay Ay --- Gopl | X5| _ | by
a,x,tapx,+...+a,x, = b, Gn1 Ay oo Ay | X, b,

® Direct methods vs. iterative methods

® Direct methods
= The solution is calculated by performing arithmetic operations with the equations.

= Three systems of equations that can be easily solved are the
— Upper triangular
— Lower triangular

— Diagonal

4.1 Background

*** Overview of numerical methods for solving a system of linear algebraic equations
® Direct methods

= Upper triangular form

apx;tapxtapx;t...tapx, = b e Tt I
apXytapx;+...+tayx, = b AR || 1
a33X3 + ...+ a3nxn = b3 » 0 (5%) a23 dyy X5 _ b2
: : : 0 0 a3 a3 |x;5] |bs
a, 1, 1X, +a, ,.,x, = b _
n-1,n-1%n-1 n—1,n"n n-1 0 0 0 ay X b4
annxn = bn

— Ex) 4 equations

_ by _ by—ayx, = by — (ay3x3 + ay,x,) _ by—(apx; +ay3xs +ayx,)

Ayq 25X 25%) a

— In general

4.1 Background

*** Overview of numerical methods for solving a system of linear algebraic equations

® Direct methods

= Lower triangular form

ajXy = bl [MY b,
s " anp 0 0 0 ||x b,

as1 X -
211 222 2 as| Ay 0 0 X9 = b2
A31X1] T A3pXxy + a33X = by A3y Q3 A3z () ||X3 by
. 41 Qa2 Qg3 Aya | Xy b,

a,1% + anaXs + d,3Xs +...F AunXn = b

— Ex) 4 equations

_ b _ by—ayx _ by—(a3x; +azx,) _ by—(agx; tagpx, +agx;)
X] = —, Xp = =—=—, X3 = s Xg4 =
all a22 a33 044

— In general

4.1 Background

*** Overview of numerical methods for solving a system of linear algebraic equations

® Direct methods

= Diagonal form

dp X = b, - - _
ap,x, = b, ap; 0 0 0]fx b,
a,3X, = b, 0 92 0 0||x| _ |b

0 0 a3 0||x b,

ax, = bn _0 0 O 6’44‘ _X4_ _b4_

= LU decomposition method

— Lower and upper triangular form

= Gauss-Jordan method

— Diagonal form

= |terative methods
— Jacobi

— Gauss-Seidel

4.2 Gauss Elimination Method

+s* Gauss elimination method

® A general form is manipulated to be in upper triangular form

= Back substitution

o - =

B a, app apz Ayl x b
ap Xy +apx; tapx;+ax, = b S e || 1
Ay X, + Xy + Ay Xy +agx, = b, ay1 Gy A3 Ay |%y| _ | by
A3 X1+ A3pXy + A33X3 +azxy = by Q31 a3y dz3 A3yl (x5 b,
Qg1 X) T Xyt AyzXy +agpx, = by Ay Ay Q43 Aga|x, by
apx;tapx, tapx;tapx, = by ap ap a3 apn||x; b,
[! [—_ !
a22x2 I a23JC3 . a24x4 - 2 0 a'22 a'23 a'24 x2 b'z
QonXs Fdsaxs — B -
33X3 T 34Xy 3 b
o g 0 0 d'y dyl|x, b's
A44%4 4 0 0 0 & '
Tag|| x4 |b'a

4.2 Gauss Elimination Method

+s* Gauss elimination method

® A general form is manipulated to be in upper triangular form

= Step1
— Eliminate x; in all other equations except the first one.
— First equation: |

— Coefficient a4 :

My = Ay, /@i

Ay X1+ ayXy + AypXxy +ayx, = b,

my (@ X + apx, +apxy taxy) = my by

a); Qi A1z Aug| | x,
dp) Aoy dp3 Aoyl | Xy

d3) A3y 433 A3a| X3

Ay Qg Ag3 Aaa| (X4

ap A2 a3 Ay |x,
]] 1
0 d'yy d'y; d'yy X5

Q3| d3p A3z Q34| (X5

Qa1 Qg A3 Qaa| Xy

0+ (ay —my a15)x; + (a3 — my ay3)x3 + (agq — My 1a14) % =

l | L | L 1
] 1 '

aon ao a9y

b2 — n’lebl

b'y

4.2 Gauss Elimination Method

+s* Gauss elimination method

® A general form is manipulated to be in upper triangular form
= Forward elimination

= Step1

ayp 912 A3
— Eliminate x, in all other equations except the first one. g :
, _ . _ 0 a'y dy
— First equatlon: pIVOt equatlon
. . . d3) dzp dsz
— Coefficient a4 : pivot coefficient
Qg Qg Qg3
ms, = Q.. /1@ B
2 317 - ay Arp A
]]
0 da'y dy
!]
B 0 a'sy, a's3
a3 Xyt X, *azx;tayx, = b, 2 "
_ 41 Gg2 Gg3
my (@ X, +apx, tapxy tax,) = my b,
0+ (a3y —msyay,)xy + (33 —my a3)x3 + (a3 —myayy)xy = by —my by
| | L | L | | |
(] []] '
as aa3 a 34 b's

4.2 Gauss Elimination Method

+s* Gauss elimination method

® A general form is manipulated to be in upper triangular form
= Forward elimination
= Step1
— Eliminate x; in all other equations except the first one.

— First equation: pivot equation

— Coefficient a4 : pivot coefficient

my = ag /@y

Ay X1 T ApXy *agxy+aux, = b,

my (@ %)+ apX; +apx; +ayx,) = my b,

]
2%

]
asp

]
a g

1
a3
1
a 33

1
a3

0+ (agy —myya3)x; + (ags —mgya13)x3 + (agq =My a14)%y = by—my b,

| | L 1 L |
A \J \

g a43 @44

b,

4.2 Gauss Elimination Method

+s* Gauss elimination method

® A general form is manipulated to be in upper triangular form

= Forward elimination

= Step 2
o _ _ A11X] t A1y Xy T A1aXx T AuaXy = b
— Eliminate x, in all other equations except the 15t and 2" ones. ks ;12 2 '13 3 ,14 . '1
N . 0+ag,x, +ayx;tayx, = b
— Second equation: pivot equation S , i oz
P ; " 0+azx, +aszx;tazyx, = 03
— Coefficient a,, : pivot coefficient ' ' — L
22 P O+a&2x2+a43x3+a44x4 - 4
T— ' {] 1
My, = d'3/ Ay Mmy= 42/ %2
_ Ay app iz ap||x b
anx; +apx; tapxstayx, = b T ! 1
1
0 +akyx; + ahsxy + ahyX, = by 0 dn dy dullx _ |,
0 + O + a'3:3x3 + ag4x4 =5 b':')’ 0 0 a"33 a"34 x3 b"3
0+ O + a’l.x +a’l,x, = y " "
43*3 444 4 0O 0 a 43 A" 44 b b"4

4.2 Gauss Elimination Method

+s* Gauss elimination method

® A general form is manipulated to be in upper triangular form

= Forward elimination

|
tep 3 anXxy +apx; apx;tagx, = b
0+ahx, +ahxy+anx, = b
0+ 0 +ia%x;+ajx, = by
0+ 0 +ajxy+aix, = b

— Eliminate x; in 4" equations

— Third equation: pivot equation

— Coefficient a3y : pivot coefficient

" "
myy =9 43/4 33

a,, Ay, a a b
= 11 %12 *~13 14 | [X
ap X T apx, +apx;tapx, = by - ' 1 1
1
0 +ayx, + A%y +ahyx, = b 0 dy dy do||xy _ | B
n n R n " "
n — ne

+s* Gauss elimination method

Ay Gy G413 Q14| | X4
Q1 Ay a3 Aoy | [X,
Q31 Q3p 33 A34 | [X3

Ay Ay Qg3 Ayq | | X4

Initial set of equations.

ajp dp diz dyg
1 1 '
0 dy dy dy

" "
O 0 a33a34

0 0 a;a"s

Step 3.

4.2 Gauss Elimination Method

ay ap ap ay || x, b, IR PR U Y) b,
B4 d'pp g3 gy || X', b', 0 [d@p dys do||xy| |b)
8 a'y d'33 d'yg || X'y - b's 0 & a'y; a'yy||x", - b",
O) d'4p dy3 Ay || X', b', 0 &G a'y3a"y||x", b",
Step 1. Step 2.
ay dp a3 dg || x b,
0 dy dy dy || X, b'y
0 0 a'ya'y||[x"y| |[b"
0 0 0 ay||lxm| |&m,
- - - Pivot Pivot row
Equations in upper triangular form. element

4.2 Gauss Elimination Method

+s* Gauss elimination method

Example 4-1: Solving a set of four equations using Gauss elimination.

Solve the following system of four equations using the Gauss elimination method.
4x)—2x,—3x3+6x, = 12
—6x; +7x,+6.5x3—6x4 = —6.5
x;+7.5%,+625x,+5.5x, = 16
= 12x; + 222, + 15323 —x, = 17

= Answer
dx= 2X5 = Scot 60 =10 x, = 0.5
dx,+2%,+3x, = 11.5 X3 = —3
3X3—'2x4 = —'10 xz = 4

4x, = 2 X, =2

+s* Gauss elimination method

4.2 Gauss Elimination Method

Example 4-2: MATLAB user-defined function for solving a system of equations using

Gauss elimination.

vector of the solution.

Use the user-defined function Gauss to

(a) Solve the system of equations of Example 4-1.
(b) Solve the system of Egs. (4.1).

® Matrix ab

Write a user-defined MATLAB function for solving a system of linear equations, [a][x]=[/], using
the Gauss elimination method. For function name and arguments, use x = Gauss (a, b), where a is
the matrix of coefficients, b is the right-hand-side column vector of constants, and x is a column

aj ayp Az ... 4, b a;, ap ap; --- ay, by
ay) Ay A3 ... Ay, by 0 ay ay; ... a,, b,
as) Ay A3y ... A3, by 0 0 ay ...

anl p2 Ap3 +-- App bn 0 0 O Qon bn

Back substitution !

4.2 Gauss Elimination Method

+s* Gauss elimination method

function x = Gauss(a,b) by
% The function solve a system of linear equations [a][x]=[b] usigg @Qﬁa@?qsscbn b,
% elimination method.
% Input variables: ay As Asz ... Az, by
% a The matrix of coefficients.

% b A column vector of constants.
% Output variable: @y Qpy Q3 .- Ay, b,
% Xx A colum vector with the solution.

dyp dpp A1z --- Ay

ab = [a,b]; Append the column vector [b] to the matrix [a].

[R, C] = si1ize(ab);
for J = 1:R-1
i =

for J+1:R
<—— Forward elimination
end
end
X = zeros(R,1);
x(R) = ab(R,C)/ab(R,R); <—— Back substitution

for 1 = R-1:-1:1

end

4.2 Gauss Elimination Method

+s* Gauss elimination method

j = 2 : pivot equation (1~R — 1)

i=3 (j + 1~R)
ay dp Az ... ay, by
432 4ij -
s, a; J =1 0 022 023 S azn b2
a . Ayy A3z ... Ay, b
Z_Zazz» Z-j-“ﬁ "7 O 32 733 RO
- j+1~R -
@aZC » iajc
oy ajj 0 anz an3 S ann bﬂ

4.2 Gauss Elimination Method

+s* Gauss elimination method

b, e Y |
xn=a X = _ all a12 a13 e e al
0 a22 a23 s s o a2

710 0 a; ...

4.2 Gauss Elimination Method

+s* Gauss elimination method

A=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1];
B= [12; -6.5; 16; 17];
sola = Gauss (A,B)

sola =
2.0000
4.0000
-3.0000
0.5000

4.2 Gauss Elimination Method

** Potential difficulties when applying the Gauss elimination method

® The pivot element is zero.

= Pivot row is divided by the pivot element.

= |f the value of the pivot element is equal to zero, a problem will arise.

® The pivot element is small relative to the other terms in the pivot row.

= Problem can be easily remedied by exchanging the order of the two equations.

® In general, a more accurate solution is obtained when the equations are arranged (and
rearranged every time a new pivot equation is used) such that the pivot equation has the
largest possible pivot element.

® Round-off errors can also be significant when solving large systems of equations even when
all the coefficients in the pivot row are of the same order of magnitude.

® This can be caused by a large number of operations (multiplication, division, addition, and
subtraction) associated with large systems.

4.2 Gauss Elimination Method

L)

* Potential difficulties when applying the Gauss elimination method

L)

0.0003x, + 12.34x, = 12.343

x; = 10and x, = 1
0.4321x, +x, = 5.321

my,= 0.4321/0.0003 = 1440

(1440)(0.0003x, + 12.34x,) = 1440-12.34 0.4321x, +x, = 5.321

0.4320x, + 17770x, = 17770
0.0001x, — 17770x, = —17760

0.4320x, + 17770x, = 17770

00003x1 + 1234)62 = 12.34 X, = _i;;gg = 0.9994
0.0001x, - 17770x, = —17760 B
_ 12.34—(12.34-09994) _ 12341233 _ 001 _ 4, 43

: 0.0003 0.0003 0.0003

4.2 Gauss Elimination Method

** Potential difficulties when applying the Gauss elimination method

® Remedy

0.4321x, +x, = 5.321

m,, = 0.0003/0.4321 = 0.0006943
0.0003x, + 12.34x, = 12.343

(0.0006943)(0.4321x, + x,) = 0.0006943 - 5.321 B 0.0003x, +12.34x, = 12.34

0.0003x, + 0.0006943x, = 0.003694
12.34x, = 12.34

0.0003x, + 0.0006943x, = 0.003694

0.4321x, +x, = 5.321 L= 1234
2 1234

Ox, +12.34x, = 12.34 '

P 5321-1 _ 44

0.4321

4.3 Gauss Elimination with Pivoting

*** Example
Ox,+2x,+3x; = 46
4x,—3x, +2x; = 16
2x; +4x,—-3x; = 12

® First pivot coefficient: 0 my; = ay; /@y 4/0

** Pivoting

ap dip A1z A X1 bl ap A 413 dyg X1 b]
0 0 dy dul|x,| |b, 0 d'yp a3y dyl|x,| |b
0 dy dydyl|x| by E> 0 0 dydyllx| |by
0 d'y, d'y3 a4l |x, b'y 0 d'yy dy3 day||x, b'y

® Exchange of rows

+» Additional comments

4.3 Gauss Elimination with Pivoting

® The numerical calculations are less prone to error and will have fewer round-off errors if the
pivot element has a larger numerical absolute value compared to the other elements in the

Same row.

® Consequently, among all the equations that can be exchanged to be the pivot equation, it is
better to select the equation whose pivot element has the largest absolute numerical value.

® Moreover, it is good to employ pivoting for the purpose of having a pivot equation with the
pivot element that has a largest absolute numerical value at all times (even when pivoting is
not necessary).

4 1 8
10° 1 10
9 4 6
3 2 -3
15 1 9
-155 23 4
8 56 4

25

13

6003

73

88

O O O O O —

- 155

15
107°

Partial pivoting

1 8
23 4
4 6
2 -3
1 9
1 10
56 4

2
73
2
6003
-2
13

88

4.3 Gauss Elimination with Pivoting

+» Additional comments

® The numerical calculations are less prone to error and will have fewer round-off errors if the
pivot element has a larger numerical absolute value compared to the other elements in the
same row.

® Consequently, among all the equations that can be exchanged to be the pivot equation, it is
better to select the equation whose pivot element has the largest absolute numerical value.

® Moreover, it is good to employ pivoting for the purpose of having a pivot equation with the
pivot element that has a largest absolute numerical value at all times (even when pivoting is
not necessary).

Full pivoting
1 4 1 8 3 2 .. 5xY) (& 1 3 1 8 3 2 ..o 5 xY (&)
0 10° 1 10 201 13 40x| |34 0 201 1 10 10°° 13 4 x| |5,
0 9 4 6 -8 2 18 x| |4 0 -8 4 6 9 2 18 x| |
0 3 2 -3 4 6003 15|x| |& » 0 4 2 -3 3 6003 15|x| |5
0 15 1 9 33 -2 1 x| | A 0 33 1 9 15 =2 1 x| |
0 —155 23 4 25 73 2 | x 7 0 25 23 4 -155 73 2 | x4 b
0 8 56 4 -4 4 .. 88fx/ \&/ 0 -4 5 4 8 4 .. 8Jx/ \b

4.3 Gauss Elimination with Pivoting

*** Example 4-3

Example 4-3: MATLAB user-defined function for solving a system of equations using

Gauss elimination with pivoting.

Write a user-defined MATLAB function for solving a system of linear
equations [a][x] = [b] using the Gauss elimination method with piv-
oting. Name the function x = GaussPivot (a,b), where a is the
matrix of coefficients, b is the right-hand-side column vector of con-
stants, and x 1s a column vector of the solution. Use the function to
determine the forces in the loaded eight-member truss that is shown
in the figure (same as in Fig. 4-2).

SOLUTION

The forces in the eight truss members are determined from the set of
eight equations, Eqs. (4.2). The equations are derived by drawing free

i 1! F 45 i =
0 0.9231 0O 00 0 0 0 1690
~1-03846 0 0 0 0 o of|fac 3625
0 0 0O 01 0 0855 0]|fsc 0
1 0 —0.7809 0 0 0 0 0|(Fsp] _ | O
0 —0.3846 —0.7809 0 —1 03846 0 O||F.p 0
0 09231 0.6247 0 0 -0.9231 0 O[|F,, 0
0 0 06247 -1 0 0 0 O0flg 0

DE

0 0 0 1 0 0 051451 0

B Fpe LY

4.3 Gauss Elimination with Pivoting

** Example 4-3

function x = GaussPivot(a,b)

% The function solve a system of linear equations ax=b using the Gauss
% elimination method with pivoting.

% Input variables:

% a The matrix of coefficients.

% b A column vector of constants.

% Output variable:

% x A colum vector with the solution.

ab = [a,b]

[R, C] = size(ab);

for j = 1:R-1

% Pivoting section starts

i1t ab(.,jJ)== Check if the pivot element is zero.
for k=j+1:R

If pivoting is required, search in the rows
below for a row with nonzero pivot element. 1

Swap

break
end
end
end
% Pivoting section ends
for 1 = jJ+1:R
ab(1,J:C) = ab(i,j:C)-ab(i,j)/ab.j)*ab(@,.j:C); <—— Forward elimination
end
end

4.3 Gauss Elimination with Pivoting

*** Example 4-3

X = zeros(R,1);

x(R) = ab(R,C)/ab(R,R);

for 1 = R-1:-1:1
x(D)=@b(i,0)-ab(i,i+1:R)*x(i+1:R))/ab(i,i);

end

Back substitution

® Result

% Example 4-3

a=[00.9231000000; -1 -0.3846 000000, 0000100.85750; 10-0.780900000
0 -0.3846 -0.7809 0 -1 0.3846 0 0; 0 0.9231 0.6247 0 0 -0.9231 0 O
000.6247 -1 000 0; 000100 -0.5145 -11;

b =[1690;3625;0,0;0;0,0;0];

Forces = GaussPivot(a,b)

Forces =
-4.3291e+003 _FAE
1.8308e+003 F4c
-5.5438e+003 Fpe
-3.4632e+003 Fpp
2.8862e+003 Fep
-1.9209%e+003 Feop
-3.365%9e+003 FDE
-1.7315e+003 _ ;FDE

>>

4.4 Gauss-Jordan Elimination Method

¢ Gauss-Jordan Elimination Result

® In this procedure, a system of equations that is given in a general form is manipulated into an
equivalent system of equations in diagonal form with normalized elements along the

diagonal.
Q@ na e b
_ 11 @12 13 A1a| |x
ap Xy tapx; tapx;+ax, = b : 1
_ Ay Aoy Aon A
Ay X1+ AyXy +ayxy +ayx, = by 21 922 923 Goa| %y _ | b
A31X) T apXy tazzx; +azyx, = by a3y A3y A3z A3y | x5 b
an Xt apx, tapxy+ayx, = b, Ay Qg Qg3 Aua) | X, b,
x, +0+0+0 = b, 100 o[y [#
0+x,+0+0 = b, 010 0||xy] _ [&y
. !
0+0+x3+0 = b’y 001 0]|x b's
P 4
O+0+0+x4—b4 _0 0 0 1_ EA _b'4_

4.4 Gauss-Jordan Elimination Method

+ Procedure

® In this procedure, a system of equations that is given in a general form is manipulated into an
equivalent system of equations in diagonal form with normalized elements along the
diagonal.

® The pivot equation is normalized by dividing all the terms in the equation by the pivot
coefficient. This makes the pivot coefficient equal to 1.

® The pivot equation is used to eliminate the off-diagonal terms in ALL the other equations.

® This means that the elimination process is applied to the equations (rows) that are above
and below the pivot equation.

® In the Gaussian elimination method, only elements that are below the pivot element are

eliminated.
11 %12 %13 Ay _xl- b, _1 0 0 0_ _xl_ bel_
0 a'y dy dayll|x, _ b', 01 0 0||xy] — |05
0 0 a"s a"y|x, b"; 0 01 0f|xs b’y
0 0 0 a"yl|x, it 0 0 0 1] [xy4 b’y

4.4 Gauss-Jordan Elimination Method

+ Procedure

gy ap, 4y g by 10008,

R e Gauss—Jordan procedure |1

ay Ay Gy3 Ay by 0 1 0 05,
ﬁ

as) as as3 as by 00 1 0 b

41 Ay A3 Ay b4_ _O 0 0 1 b'4_

® The Gauss-Jordan method can also be used for solving several systems of equations

[a][x] = [b] that have the same coefficients [a] but different right-hand-side vectors [b].
® This is done by augmenting the matrix [a] to include all of the vectors [b].

® The method is used in this way for calculating the inverse of a matrix.

4.4 Gauss-Jordan Elimination Method

+ Procedure

Example 4-4: Solving a set of four equations using Gauss—Jordan elimination.

Solve the following set of four equations using the Gauss—Jordan elimination method.
4x1 —2x2 = 3x} 5 6X4 =12

—6x; + 7%, +6.5x;— 6x4 = —6.5
X1 &= 7.5x2 = 6.25)73 ar 5.5x4 = 16
=12xq 422 x5+ 1500 =005 = 17

4 -2 -3 6 12

4 -2 -3 6][x 12
6 7 65 —6||xs| _ [-65 6 7 65 -6 -65
1 7562555 16

I 751625 55 | %5 16
-12 22 155 -1 17

=12 22 15.5 —1]|x4 15
(4 2 -3 6 12| .
QTSN e S
6 7 65 -6 -65 = —1 e 6.25 5—5 —lé Pivot coefficient is normalized!
1 375625 3.5 16 12 2'2 1'55 ‘l 17
-12 22 155 -1 17| ‘- T -

1-05 -075 15 3

1 -05 -0.75 15 3
6 7 65 -6 -65 =—— —(-6)[1-05-075153] _ |0 4 2 3 115
1 75 625 55 16| -— —(1)[1-0.5-0.75 1.5 3] 0 8 7 4 13
-12 22 155 -1 17] <+— —(-12)[1 -0.5 -0.75 1.5 3] 0 16 65 17 53

First elements in rows 2, 3, 4 are
eliminated.

4.4 Gauss-Jordan Elimination Method

¢ Procedure
1-05 -0.75 15 3 1-05 075 15 3
0 4 ~ el _ |0 0.5 0.75 2.875 _ o)
4 4 4 4 0 8 7 4 13 The second pivot coefficient is normalized!
0 8 ! 4 13
0 16 65 17 353 | oL sl L
[050075015 3 -~ —(—0-5)[0 1 0.50.75 2.875] 1 0 -05 1.875 44375
0 1 0.5 015 2. 875 — 01 05 075 2.875 The second elements in rows
0 8 7 4 13 | -— (8 |:0 105 0.75 2.875] 00 3 -2 -10 1, 3, 4 are eliminated.
0 16 65 17 53 | «-— —(16)[0 1 0.5 0.75 2.875] 00 -15 5 7

00

3
3
-1.

10 ~0.3
01 05
00 1
00 -1.5

[1 0 —0.5 1.875 4.4375
01 05 075 2875

1 0 0.5 1.875 4.4375
01 05 075 2875
00 1 -0.667 -3.333
00

—2 -10 The third pivot coefficient is normalized!
. . 190y 7
s 7 o

1.875 4.4375| <— —(-0.5)[0 0 1 —0.667 —3.333] 1 0 0 1.5417 2.7708

075 2.875| =— —(0.5)[001-0.667 -3.333] — [0 1 0 1.0833 4.5417 The third elements in rows
~0.667 ~3.333 0 0 1 -0.667 -3.333 1,2, 4 are eliminated.

3 7] =— —(-15)[00 1 -0.667 -3.333] 000 4 2

4.4 Gauss-Jordan Elimination Method

+ Procedure

1.0 0 15417 27708 1 ¢ ¢ 15417 27708

0 1 0 1.0833 4.5417 0 1 0 10833 45417

0 0 1 —0.667 —3.333| ~ 0 01 —0667 —3333 The fourth pivot coefficient is normalized!
000 2 2 000 1 0.5

— 4 4 —

1 0 0 1.5417 2.7708] «— —(1.5417)[0 00 1 0.5] 100 0f2

0 1 0 1.0833 4.5417| =-— —(1.0833)[000105] _ (01 0 0|4 The fourth elements in rows
0 0 1 —0.667 —3333| «— —(-0.667)[0 001 0.5] 001 0|3 2, 3, 4 are eliminated.
000 1 0.5 00 01105

® |Itis possible that the equations are written in such an order that during the elimination
procedure a pivot equation has a pivot element that is equal to zero.

® Obviously, in this case it is impossible to normalize the pivot row (divide by the pivot
element).

® As with the Gauss elimination method, the problem can be corrected by using pivoting.

4.4 Gauss-Jordan Elimination Method

** Example code

function x = GaussJordan(a,b)

% The function solve a system of linear equations ax=b using the Gauss
% elimination method with pivoting. In each step the rows are switched
% such that pivot element has the largest absolute numerical value.

% Input variables:

% a The matrix of coefficients.

% b A column vector of constants.

% Output variable:

% x A column vector with the solution.

ab = [a,b];
[R, C] = size(ab);
for j = 1:R

% Pivoting section starts
pvtemp=ab(J.J);
kpvt=j;
% Looking for the row with the largest pivot element.
for k=j+1:R
iIT ab(k,jJ)~=0 && abs(ab(k,j)) > abs(pvtemp)
pvtemp=ab(k,j);
kpvt=k;
end
end

4.4 Gauss-Jordan Elimination Method

** Example code

% If a row with a larger pivot element exists, switch the rows.
1T kpvt~=j
abTemp=ab(j,:);
ab(,:)=ab(kpvt,:);
ab(kpvt, -)=abTemp;
end
% Pivoting section ends

abd,:)= ab@,:)/ab{d.j);
for 1 = 1:R
it 1—=j
ab(1,J:C) = ab(i,j:C)-ab(i,j)*ab(@,.j:C);
end
end
end
x=ab(:,C);

4.5 LU Decomposition Method

+* Background

® The Gauss elimination method
= Forward elimination procedure
[a][x] = [b] - [a'][x] = [D]
— [a] : upper triangular.

= Back substitution

® The elimination procedure requires many mathematical operations and significantly more
computing time than the back substitution calculations.

® During the elimination procedure, the matrix of coefficients [a] and the vector [b] are both
changed.

® This means that if there is a need to solve systems of equations that have the same left-
hand-side terms (same coefficient matrix [a]) but different right-hand-side constants
(different vectors [b]), the elimination procedure has to be carried out for each [b] again.

4.5 LU Decomposition Method

+* Background

® Inverse matrix ?

= (Calculating the inverse of a matrix, however, requires many mathematical operations, and is
computationally inefficient.
= A more efficient method of solution for this case is

the LU decomposition method !

® LU decomposition
la] = [L][U] ; [L]: lower triangular matrix ; [U]: upper triangular matrix

With this decomposition, the system of equations to be solved has the form:
<

.
)

- Gauss elimination method
8 Crout's method

4.5 LU Decomposition Method

*** LU decomposition using the Gauss elimination procedure

® Procedure
= The elements of [L] on the diagonal are all 1

= The elements below the diagonal are the multipliers m;;

ay Q12 413 Ay i 1 0 O ()_ an 9 413 Ay
dy1 92 G23 G4 _Imy; 1 0 0 0 d'y d'y3 d'y
d3) A3p d33 Aag myymy, 1 0| 0 0 a"s;3 a"y
Ay Qgp Ay3 Agy my my mgy 1100 0 a"y,

= Ex)

0ol 710 0 1

[
-
o~ N
Pk
=
fa—

4.5 LU Decomposition Method

*** LU decomposition using the Gauss elimination procedure

® Procedure

23] D

= The elements of [L] on the diagonal are all 1 6 13 5 19
2 19 10 23

= The elements below the diagonal are the multipliers m;; 1 10 111 1

1 0 0 O 2 3 1 5 2 3 1 5

-3 1 0 O 6 13 5 19 _ 0 4 2 4

-1 0 1 O 2 19 10 23 0 16 9 18

-2 0 0 1 4 10 11 31 0O 4 9 21

1 0 0 0 2 3 1 5 2 3 1 5

O 1 0 O 0O 4 2 4 _ 0 4 2 4

0O —4 1 0 0 16 9 18 0O 0 1 2

0O -1 0 1 0O 4 9 21 o 0 7 17

1 0 0 O 2 3 1 5 2 3 1 5

O 1 0 O 0 4 2 4 _ 0 4 2 4

O 0 1 O O 0 1 2 0O 0 1 2

O 0 =7 1 O 0 7 17 0O 0 0 3

4.5 LU Decomposition Method

LU decomposition using the Gauss elimination procedure

*e

*%

® Procedure

:A3

L3'L2'L1'A

Ls-A,

S O O

O O I~

o O O O

— O O O

o O O

S O - O

O I

— O O O

O O O

O O - O

O - O O

— N — N

OO O

S O - O

O - O O

S O - O

O - O O

oMM — AN

S O O

O O I~

O T

— N — N

SO O
O O O

S A F

S O O

01A_14.

- O O O

O O O

S O IS

S - O O

4.5 LU Decomposition Method

*** LU decomposition using the Gauss elimination procedure
® Algorithm

Algorithm 20.1. Gaussian Elimination without Pivoting

U=A L=1
fork=1tom -1
forj=k+1tom

all a12 6113 el al
k — O a22 (123 el a2n b2

0 Q3 Q33 ... Az, by

k+1~m > ah e

|

0 G, ay3 ... 4y, b

¢ LU decomposition using Crout's method

la][x]

1]

[LIU] ;

4.5 LU Decomposition Method

|L]: lower triangular matrix ; [U]: upper triangular matrix

= The diagonal elements of the matrix [U] are all 1 s.

® |llustration with 4x4 matrix

Ly o 0 of[y Up Ugs)

LyyLy 0 0110 1 Uy Uy,

L3y Ly Lyz O flo 0 1 Us,

Lyy Lag Laz Laaf|0 O 0 1

Ly (L11U12) (L11U13) (L11U14)

Ly (Ly1UpptLly) (Ly1 U3+ LpUys) (Ly1Uig+ Ly Uyy)

Ly (Ly1UptLlsy) (L3 Uzt LyUszt Lys) (L31Uyat LapgUsy + L33Usy)
Ly (LyyUptly) (LyUptLpUptly) (LygUptLpUyt LiUsgt Ly)

4.5 LU Decomposition Method

¢ LU decomposition using Crout's method

® |llustration with 4x4 matrix

By Sqp By Gy Ly (L 1U12) (L1 1U13) (L11Uq4)
91 922 923 9 Ly (LyUpytLly) (L Ups + LypUy) (L Uys+ LypUy)
931 A3z 933 93 Ly (L3 UpptLs) (L3 UpstLypUsy+ L) (L31U g+ L3pUsq + L33Usg)

a1 Qa2 a3 Gaa) | Ly (LygyUpptly) (LyUptLpUyptLly) (LyUnt LU+ LyUsst Ly)
— a _ 4
Lin=ay Up = —= Uy = — U, = 214
L L 1 14 L
11 1 11
_ Gy —LyUy _ Ly Uy
Ly = ay Ly = ayn—LyUyp Uy = 7 and Uy = 7
22 22

Ayy— Ly Uy — Lyp Uy
L,

Ly =ay, Lyp=ap—LyUp, and Ly =a3—LyUj;3— LUy,

Ly=as, Ly = ap—LyUy, Lz =ap—LyUp—LypUsy, Ly = agy—LygUyy— LUy —LsygUsy

4.5 LU Decomposition Method

¢ LU decomposition using Crout's method

® For nxn matrix
= Step 1: Calculating the first column of [L]:
fori = 1,2,...,n Ly = a;
= Step 2: Substituting 1s in the diagonalof [U]: U, = 1

I

= Step 3: calculating the elements in the first row of [U] (except U;; which was already calculated):

forj = 2,3,...,n U.. = -l

= Step 4: calculating the rest of the elements row after row. The elements of [L] are calculated first

because they are used for calculating the elements of [U] :
fori = 2,3,...,n

forj = 2,3,...,i

forj =0+ 1),0+ 2),...,n

4.5 LU Decomposition Method

¢ LU decomposition using Crout's method

® Example

Example 4-5: Solving a set of four equations using LU decomposition with Crout’s

method.
Solve the following set of four equations (the same as in Example 4-1) using LU decomposition with
Crout’s method.
4x;—2xy —3x3+ 6x, = 12
—6x,+7xy+6.5x;—6x, = —6.5
x;+7.5x; +6.25x3 +5.5x, = 16
—12x; + 22x,+ 15.5x3 — x4 = 17
4 0 00 1-05-075" 15
L=|64 00 qu=I[01 05 075
1 8 3 0 0 0 1 —0.6667

-12 16 -1.5 4 0 0 0 1

4.5 LU Decomposition Method

¢ LU decomposition using Crout's method

® Example

Example 4-6: MATLAB user-defined function for solving a system of equations using

LU decomposition with Crout’s method.

Determine the currents i, i,, i3, and i, in the circuit shown in the
figure (same as in Fig. 4-1).Write the system of equations that has to
be solved in the form [a][i] = [b]. Solve the system by using the LU
decomposition method, and use Crout’s method for doing the
decomposition.

SOLUTION

The currents are determined from the set of four equations, Eq. (4.1).
The equations are derived by using Kirchhoff’s law. In matrix form,
[a][i] = [&], the equations are:

9 4-2 0f[h 24
—4 17 -6 -3 fz _ |-16 (444)
-2 -6 14 —6||i3 0
0 =3=6 1|\[2 18

¢ LU decomposition using Crout's method

® Example

function [L, U] = LUdecompCrout(A)

4.5 LU Decomposition Method

% The function decomposes the matrix A Into a lower triangular matrix L
% and an upper triangular matrix U, using Crout®"s method such that A=LU.
% Input variables:

% A The matrix of coefficients.

% Output variable:

% L Lower triangular matrix.
% U Upper triangular matrix.

[R,

for

end

end
for

end

Py

1+1:R

4.5 LU Decomposition Method

** LU decomposition using Crout's method
® Example
= BackwardSub.m
= ForwardSub.m
= LUdecompCrout.m

*= Program4_6.m

% This script file soves a system of equations bu using
% the LU Crout®"s decomposition method.

a [9 -4 -2 0; -4 17 -6 -3; -2 -6 14 -6; 0 -3 -6 11];
b [24; -16; O; 18];

[L, U] = LUdecompCrout(a);

y = ForwardSub(L,b);

1 = BackwardSub(U,y)

4.5 LU Decomposition Method

*** LU Decomposition with Pivoting
® Pivoting might also be needed in LU decomposition

® |If pivoting is used, then the matrices [L] and [U] that are obtained are not the

decomposition of the original matrix [a].

® The product [L][U] gives a matrix with rows that have the same elements as [a], but due to

the pivoting, the rows are in a different order.

® When pivoting is used in the decomposition procedure, the changes that are made have to

be recorded and stored.

® This is done by creating a matrix [P], called a such that:

® The order of the rows of [b] have to be changed ! o

4.5 LU Decomposition Method

*** LU Decomposition with Pivoting

® Pivoting might also be needed in LU decomposition

1 0 0 O i1 Q12 Q13 Qg4 i1 A1 Q13 Qg4
0O 1 0 O A1 Q1 Az3 Q4 | [d21 Q21 Q23 dpg
O 0 0 1 31 A3z QA33 0d34 Ag1 Ay Qyu3 Ay
O 0 1 0 Qg1 Ay Qg3 Ayq 31 A3z Q33 d34
® Sequential pivoting
1000 1000 1000
0010 T [0010 1 |oo1o0
a = a = a =
0100 0100 0100
® Characteristic of permutation matrix 0001 0001 0001
1000 1000
0100 0010
b —-_ b-a:
0001 0001

0010 0100

—

a1 dip A3 Ay
Ay1 Ay Apz Ay

Q3] A3y Q33 A3y

Ay Qap Q43 Ayy

Ay A3 Ay
dyy dos
a3y diz

daz Qa3

dip A3
dyy Ayz
d3p diz

gy Ag3

X11 X12 X13 X14
X21 X2z X23 Xp4

X31 X33 X33 X34

X41 X442 %43 X44

—

11 1
X211 _ |0
X31 0
X41 0
*13 0
X231 _ |0
X33 1
%43 0)

“* Inverse of a square matrix [a]

1000
0100
0010

s Separate systems of equation

an

000 1]

an

1
I

I
|

|
|

4.6 Inverse of a Matrix

oo = O

ol =~

LU decomposition
Gauss-Jordan elimination

4.6 Inverse of a Matrix

¢ Calculating the inverse with the LU decomposition method

Example 4-7: Determining the inverse of a matrix using the LU decomposition

method.

Determine the inverse of the matrix [a] by using the LU decomposition method.

02 53 04 0
05 1 7 -2 03
[al =106 2 4 3 01
3 082 043
(05 3 2 04 1|

Do the calculations by writing a MATLAB user-defined function. Name the function invA =
InverseLU (A), where A is the matrix to be inverted, and invA is the inverse. In the function, use
the functions LUdecompCrout, ForwardSub, and BackwardSub that were written in Exam-

(4.49)

ple 4-6.
02 -5 3 04 0|[xy] [1 [02 =5 3 04 0][x 02 -5 3 04 0][x3 [0
05 1 7 =2 03|[xn| |0 [-05 1 7 -2 03||xx| 1] |[-05 1 7 -2 03||xys| |0
06 2 -4 3 01||x;|=|0]> |06 2 -4 3 0.1||x5|= 0> |06 2 -4 3 0.1f[xy5|7|1
3 082 —04 3||xy| |0 | 3 08 2 -04 3 |[|xy| [0 3 0.8 2 —04 3 ||xgs| [0
05 3 2 04 1]|xsy) [0 [05 3 2 04 1[|xs3 (0] [05 3 2 04 1]|xs5] [0
0.2 -5 3 04 0|[xg [0 [02 =5 3 04 0lxs] [@
051 7 -2 03||x4] 0] |-05 1 7 2 03||xs [0
06 2 -4 3 0.1|[xy|T[0]> [06 2 -4 3 0.1||x35= |0
3 08 2 —04 3 ||xg |1 3 08 2 —04 3 |[|xs| [0
(05 3 2 04 1|xss (0] [05 3 2 04 1|xss) [

4.6 Inverse of a Matrix

** Calculating the inverse with the LU decomposition method

function 1nvA = InverseLU(A)

% The function calculates the i1Inverse of a matrix
% Input variables:

% A The matrix to be i1nverted.

% Output variable:

% itnvA The 1nverse of A.

[NR nC] = size(A);

I=eye(nR);

[L U]= LUdecompCrout(A);

for j=1:nC
y=ForwardSub(L,1(:,}));
invA(:,j)=BackwardSub(U,y);

end

A=[0.2-530.40,-0.517-20.3;062-430.1;30.82-0.43;0.5320.41]
InverseLU(A)

*** Direct method
® Gauss elimination
® Gauss-Jordan elimination

® LU decomposition

= Using Gauss elimination

= Crout’s method

= Pivoting

[Plla] = [L][U]

s Crout’s method vs. Gauss elimination

k=y-1
Ly = a;— 2 LipUy;
k=1

i L..

all a12 013 "o

a21 a22 a23 se e

EBI aszl dsz ...

an.l anz an3 b

Review

dy Ay dy3 --- Ay

ay |y a3 - Gy, by

a3y |d3; A3z ... A3, by

.1 850 Qg vin e D

e

Review

** Pivoting
® M1P1A - Az
® MyP,(MPA) = A3

® (Mn—lpn—l)(Mn—zpn—z) (MZPZ)(MlplA) =A,=U

® (Pp_1Ppp--P)A=LU

p
® M,P,(M,P,A) = A, (1000 1000 1000 (1 lollo] 0)
0010 1100 2010 1{ofi1] 0

= PR Ll:= P2.1.1 = L1-P2 =
M P A = PpLaA3 0100 2010 R 2 l1llol o
P1A = L1PLyA;3 0001 3001 300 1) 3 [ofo] 1

P,PiA = |(P,L,P)|L, A5

1000)
2 0D
1010
3 0 W

P3P2P1A - (P3L,1L2P3)L3A3 P2:L1-P2 =

Review

ing

ivot

P

\/
’0

L)

|
|

1 00O
0 100
-1 010
1 001

N\
o o o
o o «dH o
o +4 o o
- o T -
N—

I

~

-
7\
O «4 o o
O o «H o
o o o o
- o o o
N—

n

~

o
N\
N O o o
Do T
A 4 o o
- o o o
N

Il

<

a ¥

N

a W
7\

1000
0100
0010
00-11

Review

*** Floating point operation counts (FLOP)

® Gauss elimination: forward elimination

i=1 i ayy ayp Az ... ay, b
= Division: (n—1) (n—1) Gy Ay Ap3 - Gy by
= Multiplication: (n—1)(n) m—Dn—-i+1) a3 Az Az ... Az, bs
=t/ (n—1n) nmn—in—-i+1)

19n1 Gp2 Gp3 - Apy bn_

n—1 n—1
Z(n —Dn—i+2) = Z(:ﬁ — 24 P 4 20 —2i)

= i=1

n—1 n—1 n—1

n—I1
= Z(i?—i)3+22(n—i) = ZF+2Z:‘
=1 i=1 i=1 i=1

(n— DnRn —1) N 2(11 —Dn 2nd+3n*>—5n

6) N 6

n—1 n—1

Z(n — A —d 3 1) = Z(n2 —ni+ it 4+n—i

=1 i=1

n—I1 n—1 n—1 n—1

=Y m—*+Y n—p=Y i+ i
i=1 i=1 i=1 i=1

_ (n— Dn@2n—1) (n—1)n B n—n
B 6 23

Review

*** Floating point operation counts (FLOP)

® Gauss elimination: back-substitution

I=n [
= Division: 1 1
= Multiplication: 0 (n—1)
= 4/ 0 n—i—1)

T With (n — i) terms

Multiplications/divisions

n—1 n—I1
l—I—Z((n—i)—i—l)z I +(Z(n—i))+n—l
i=1

n—1 n—1

9]
1~ +n
l:nJrE(n—i)qurE i:’ ;H
i=1 i=1 -

Additions/subtractions

n—1 n—1 n—1

d@—i-D+D=) —d=) i= ”32—”

=1 i=1 i=1

Ly T a3 e
0 022 023 s s

aln

Ao b,

0 0 ajz ...

L)

Review

Floating point operation counts (FLOP)

® Gauss elimination: in total

Multiplications/divisions

2n° + 3n? — 5n £ n+n n gl n
6 2 3 3

Additions/subtractions

- " . 5
nw—n n‘—n n n- 5n

3 i 2 3+2 6

The amount of computation and the time required increases
with n in proportion to n3!

*** Floating point operation counts (FLOP)

® LU decomposition

= Forward/Backward substitution: O (n?)

® Repeated solution of Ax = b with several bs

= Significantly less than elimination,

particularly for large n.

Review

Multiplications/divisions

n—1 n—1
I+Z((n—i)+l)=l+(Z(H—i))+n—l

i=1 =1

n—1 n—1

l=11—|—Z(n—i)=n+Zi=W:_”
i=1 i=1 B

Additions/subtractions

n—1 n—1 n—1

Z((”_II— l)+l)=Z(”_i}=ZI.=H‘7—n

i=1 i=1 i=1 -

¢ Iterative approach

® Same as in the fixed-point iteration method

Vi y=x\

g(x;)

g(x,) ,8(xs) True

Solution

yi

y =g(x)

g(x))

A/ITS

Y=

A

X4=g(x3)

f(x) =0

-
x=g(x;) X3=g(x;)

4.7 Ilterative Methods

Y==K~ y=g(x)

True
Solution B(x)

g(x,)
| 18(x;) f

o A

XTs =g (x,) X,=g(xy)

x = x+f(x) = g(x)

® Explicit form for a system of four equations

apX;tapx, tapxstagx, = b
ay Xyt apx, tayxstayx, = b,
a3 X+ apXx; +azxs +ayx, = bs
Ay Xy +agpXy + agxs T aux, = by

Writing the equations
in an explicit form.

xy = [by—(appx, +apx; +ayx,)]/ay
X3 = [by—(ay1x) +apx; +ayx,)]/as;

_ =

(64— (@31 + agpx; + ag3x3)]/ay,

¢ Iterative approach

® Solution process

= |nitial value assumption (the first estimated solution)

Xl —

= [b,—(a;3x;
= [by— (ayyx,
= [b3—(azyx,
= [by— (ayx

T ayxs
+azix,

+ayix

+ aygxq)]/ a
tasgxy)]/as;

+audx3)]/ as,

4.7 Iterative Methods

= Inthe first iteration, the first assumed solution is substituted on the right-hand side of the

equations = the second estimated solution.

= In the second iteration, the second solution is substituted back = the third estimated solution

= The iterations continue until solutions converge toward the actual solution.

4.7 Ilterative Methods

¢ Iterative approach

® Condition for convergence

= A sufficient condition for convergence (not necessary)

— The absolute value of the diagonal element is greater than the sum of the absolute values of the off-
diagonal elements.

® Two specific iterative methods

= Jacobi

— Updated all at once at the end of each iteration

" Gauss-Seidel Xy = [by = (apx, + apx; + ayxy))/ay

01|+ a3xs + ayux,)]/ay

x|+ a3+ A34%4)]/ 33
(ayey)+ aghoolt a,fis)]/as,

— Updated when a new estimated is calculated

4.7 Iterative Methods

+* Jacobi iterative method

x| = [by = (apfxy|t a)]/ay,

- e
JCS2) - L bi— jz aijxg,'l) i = 1,2, B2 S ol T [b2 (a2 X+ a;)]/6122
i o3| = [b3 — (a3 x|t aspx,|t asgxg)]/ass

L
- =
Q Q

N =

P =

s j=1,j=i

X4 = [b4— (ayfxq)t agxs|t+ agdxa)]/ay,

T | P) T
7o
11

j=1,j#i

® Convergence check

= Absolute value of relative error of all unknowns

(k+1)

X —xY i=1,2,..n
%)
Xj

L)

4.7 Iterative Methods

Gauss-Siedel iterative method

k+1) _ 1 ' &
xl = —_— bl —Za“xj

an =2
x5k+1) . b, -
aj
i=2,3,...,n—1
i=n—1
k+1) _ 1 T (k+1)
Xn o a_ bn - Z nj*t j

® Comment

= Gauss-Siedel method converges faster than the Jacobi method and requires less computer memory.

4.7 Iterative Methods

*** Example

Example 4-8: Solving a set of four linear equations using Gauss—Seidel method.

Solve the following set of four linear equations using the Gauss—Seidel iteration method.
9x,—2x,+3x;3+2x, = 54.5
2x;+8x,—2x;+3x, = -14
—3x; T 2%+ 110, — 4, = 125
—2x; +3xy+2x; + 10x, = 21

k =1; x1 = 0; x2 =0; x3 =0; x4 = 0;

disp(" k x1 X2 X3 xX4%)
fprintf (" %2.0F %-8.5F %-8.5F %-8.5F %-8.5F \n", k, x1, x2, x3, x4)
for k=2 : 8
x1 = (54.5 - (-2*x2 + 3*x3 + 2*x4))/9;
x2 = (-14 - (2*x1 - 2*x3 + 3*x4))/8;
x3 = (12.5 - (-3*x1 + 2*x2 - 4*x4))/11;
x4 = (-21 - (-2*x1 + 3*x2 + 2*x3))/10;
fprintf(" %2.0F %-8.5F %-8.5F %-8.5F %-8.5F \n", k, x1, x2, x3, x4)

end

4.8 Use of MATLAB Built-in Functions

** MATLAB operators
® Left division \

= To solve a system of n equations written in matrix form [a][x] = [b]

[x=a\b]

® Right division /

= To solve a system of .equations written in matrix form [x][a] = [b]

[x=b/a]
® Matrix inversion >> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1];
- inv(a) >> b=[12; -6.5; 16; 17]:;
A >> x=a”-1*b | The same result is obtained by typing >>x = inv(a)*b. |
- an-1 =
2.0000
4.0000
-3.0000

0.5000

4.8 Use of MATLAB Built-in Functions

*** MATLAB's built-in function for LU decomposition

/{, [L, U, P] = lu(a)

L 1s a lower triangular matrix.
U 1s an upper triangular matrix.
P 1s a permutation matrix.

[LILU] = [P]la]

a 1s the matrix to
be decomposed.

® Without pivoting, [P] = [/]

4.8 Use of MATLAB Built-in Functions

*** MATLAB's built-in function for LU decomposition

® Example

>> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1];
>> b=[12; -6.5; 16; 17];

>> [L, U, P]=lu(a) [Decomposition of [a] using MATLAB’s 1u function.]
L=

1.0000 0 0 0

-0.0833 1.0000 0 0

-0.3333 0.5714 1.0000 0

0.5000 -0.4286 -0.9250 1.0000
U =
-12.0000 22.0000 15.5000 -1.0000
0 9.3333 7.5417 5.4167
0 0 -2.1429 2.5714
0 0 0 -0.800

4.8 Use of MATLAB Built-in Functions

*** MATLAB's built-in function for LU decomposition

® Example
pa= [L . . 1
Multiplying [P][a] gives the pivoted [a]
0 0 0 1 >> P*a
0 0 1 0 ans =
1 0 0 0 -12.0000 22.0000 15.5000 -1.0000
1.0000 7.5000 6.2500 5.5000
0 1 0 0 Solve for y in 4.0000 -2.0000 -3.0000 6.0000
>> y=L\ (P*b) Eq. (4.23). -6.0000 7.0000 6.5000 -6.0000 o)
— . . LU=PA
Vector [5] is multiplied by the permutation matrix.]
PT LUx=b
- L[Ux]=Pb
17.0000 Solve Ly=Pb
17.4167 Then Ux:y
7.7143
-0.4000
>> x=U\y [deeﬁnxh1Eq(422)]
X =
2.0000
4.0000
-3.0000

0.5000

4.8 Use of MATLAB Built-in Functions

+» Additional MATLAB built-in functions

® Example
Function Description Example
inv (R) Inverse of a matrix. > A=[-310.6; 0.2 -4 3; 0.1 0.5 2];
A is a square matrix. Returns the inverse |>> ain=inv(a)
of A. Ain =
-0.3310 -0.0592 0.1882
-0.0035 -0.2111 0.3178
0.0174 0.0557 0.4111
Function Description Example
d=det (A) Determinant of a matrix > A=[-310.6; 0.2 -4 3; 0.1 0.5 2];
A 1s a square matrix, d is the determi- |>> d=det(a)
nant of A. d =
28.7000

4.9 Tri-diagonal Systems of Equations

*» Tri-diagonal systems of linear equations

® Zero matrix coefficients except along the except along the diagonal, above-diagonal, and
below-diagonal elements

4,4, 0 0 0 0 0 o |[x B,
Aoy s Ao, W O 0 0 0 || x B,
0 Ay Ayy Ay O 0 0 0 || x, B,
0 0 0 0 4,5,3 44202 4nana 0 *n-2 B,
0 0 0 0 0 A,y n2 4pa,na Apy,n| [Fn-1 B,
000 0 0 0 0 Aypy Awo||l %] | B.

® The system can be solved with the standard methods.
= A large number of zero elements are stored and a large number of needles operations are executed.
® To save computer memory and computing time, special numerical methods have been
developed.
= Ex)

4.9 Tri-diagonal Systems of Equations

¢ Thomas algorithm for solving tri-diagonal systems

® Similar to the Gaussian elimination method
= Upper triangular matrix = back substitution
® Much more efficient because only the nonzero elements of the matrix of coefficients are
stored, and only the necessary operations are executed.
® Procedure
= Assigning the non-zero elements of the TDM [A] to three vectors
= Diagonal vector d , above diagonal vector a, below diagonal vector b

—di=A4; , a;=A4A;i41 , bi=4;;4

da, 00 0 0 0 o B,

bydya, 0 0 0 0 % B,

0 bydyay 0 0 0 0[] x B, Only vectors b, d and a
...... = are stored!

000 0b,,d, ra,, 0||x,, B,

0000 0 b,da.l |8,

0000 0 0 b, 4, x| |B,

4.9 Tri-diagonal Systems of Equations

¢ Thomas algorithm for solving tri-diagonal systems

® Procedure
= First row is normalized by dividing the row by d;. a', = a,/dyand B', = B,/d,
= Element b, is eliminated. d,=d,—bya',and B', = B, B,b,
= Second row is normalized by dividing the row by d;.

= Element b5 is eliminated.

1a,00 0 0 X, B 1a’, 0 0 0 0 0O X, B’
0 by dya; 0 O Xy B, 0bydya; 0 0 O X3 B,

0O 0 0 O bn 2 d, ,a, 0 X 5 Bn_z 0O 0 0 O bn 9 a’m2 a, s 0 Xy Bn_2
0 O 0 0 0 bn—l dn~1 anl xn_l Bn—l O O 0 0 0 bn_] dn—l anl xn 1 Bn—l
0000 O O b, d,|| x 00 00 0 0 b dl|=x B

4.9 Tri-diagonal Systems of Equations

¢ Thomas algorithm for solving tri-diagonal systems

® Procedure

= This process continues row after row until the matrix is transformed to be upper triangular one.

1a', 0 0 0 0 M=1 [8:]
014,000 0 0f(fx B,
00 14300 0 0|x B",
00 0 00 1a,, 0 |[X= B", 5
00 0 000 1 a,4[*-1 B", 4
00 0000 0 1 ||x]| [|B"

= Back substitution

4.9 Tri-diagonal Systems of Equations

¢ Thomas algorithm for solving tri-diagonal systems

® Mathematical form
= Step1
— Define the vectors b = [0,b,, bs,...,b,], d = [dy,d5,...,d,],a = [a4,a3,...,a,-1], and

= Step 2 B
a 1
— Calculate: a; = — and B, = —
dlculate 1 dl 1 dl
= Step3
— Fori=23,..,n-1 and
= Step 4 1 a;_q B;_4
bL L a; [

= Bn_ann—l
" dn_bnan—l

Back substitution

4.9 Tri-diagonal Systems of Equations

¢ Thomas algorithm for solving tri-diagonal systems

® Example

Example 4-9: Solving a tridiagonal system of equations using the Thomas algorithm.

Six springs with different spring constants &; and
unstretched lengths L, are attached to each other
in series. The endpoint B is then displaced such
that the distance between points 4 and B is
L = 1.5 m. Determine the positions x;, x,, ..., X5
of the endpoints of the springs.

The spring constants and the unstretched lengths
of the springs are:

spring 1 2 3 4 5 6

k (kN/m) g8 9 15 12 10 18

L (m) 0.18 0.22 0.26 0.19 0.15 0.30

ky(xy = Ly) = ky[(xy—x)) = Ly]
ko[(x5 = %)) = Lp] = k3[(x3—xy) - Ls]

ka[(x3—xy) = L3] = ky[(xg—x3) = Ly]
k[(x4—x3) = Ly] = ks[(x5—x4)— Ls]
ks[(x5—x4)—Ls] = kg[(L—x5)— L]

4 k ky k3

ky ks

1
|L1| £l ey ‘

ke B

K +ky, —ky
—ky kytky
0 —k,
0 0
0 0

0
_k3
ky + Ky
_k4
0

0
—k,
k, + ks
_ks

=
ks + kg

ko

lel = kZLZ
kil
kyLy—k,L,
kyLy—ksLs

4.9 Tri-diagonal Systems of Equations

¢ Thomas algorithm for solving tri-diagonal systems

® Example
function x = Tridiagonal (A,B)

% The function solve a tridiagonal system of linear equations [a][x]=[b]
% using Thomas algorithm.

% Input variables:

% A The matrix of coefficients.

% B A column vector of constants.

% Output variable:

% x A colum vector with the solution.

[nR, nC] = size(A);
for 1 = 1:nR

d(@) = A(1,1);
end

for 1 R

[-

-1
A(i,i+l);

o =

~

d

Q

end
for R

ACi,i-1);

I >

2:
)

O =
~ ll

d
end
ad(1) = ad(1)/d(1); . a sl B B;,—b;B;_,
BC1) = B(L)/d(1): " di—ba;_, - di—ba;_,
for 1 = 2:nR-1
ad(i) = ad(i)/(d(i)-bd(i)*ad(i-1));
B(i)=(B(i)-bd(i)*B(i-1))7(d(i)-bd(i)*ad(i-1)); B,~bB, |

end B =
B(NR)=(B(nR)-bd(nR)*B(nR-1))/(d(nR)-bd(nR)*ad(nR-1)); 7 (in—-bnan_]
x(nR,1) = B(nR);
for 1 = nR-1:-1:1

x(1,1) = B(1)-ad(@)*x(i+1); x, = B X; = Bi—ax;
end

4.9 Tri-diagonal Systems of Equations

** Thomas algorithm for solving tri-diagonal systems

® Example

clear all

% Example 4-9

kl = 8000; k2 = 9000; k3
L
a

= 15000; k4 = 12000; k5 = 10000; k6 = 18000;

1.5; L1 = 0.18; L2 = 0.22; L3 = 0.26; L4 = 0.19; L5 = 0.15; L6 = 0.30;

[k1 + k2, -k2, 0, O, O; -k2, k2+k3, -k3, 0, 0; 0, -k3, k3+k4, -k4, O

0, 0, -k4, k4+k5, -k5; 0, 0, 0, -k5, k5+k6]

b = [k1*L1 - k2*L2; k2*L2 - k3*L3; k3*L3 - k4*L4; k4*L4 - k5*L5; k5*L5 + k6*L - k6*L6]
Xs = Tridiagonal(a,b)

4.10 Error, Residual, Norms, and Condition Number

% Error and residual

® True error
le] = [x7s] — [xns]

= True error cannot be calculated because the true solution is nhot known.

® Residual

= An alternative measure of the accuracy of a solution
[r] =
= This does not really indicate how small the error is.

= |t shows how well the right-hand side of the equations is satisfied when [xys] is substituted for [x]
in the original equations.

= |tis possible to have an approximate numerical solution that has a large true error but gives a small

residual.

® Norm

4.10 Error, Residual, Norms, and Condition Number

¢ Error and residual

® Example

Example 4-10: Error and residual.

The true (exact) solution of the system of equations:
1.02x, +0.98x, = 2
0.98x, +1.02x, = 2
1sx,=x,=1.
Calculate the true error and the residual for the following two approximate solutions:
(@) =102, =102
(b) x,=2, x,=0.

(€] = xrsl— Lxns] = H - 1-02} =[‘°'°2 [r] = [b]-[allxys] = [b]—[a][st]=B —[1-02 0-98] [‘-02] = [‘0'04]

[1.02] [-0.02] 0.98 1.02||1.02 -0.04
| e _ _ _[2] _[1.02 098|[2] _ [~0.04
le] = [xps] —[xy5] = “ —|ﬂ = {11 [r] = [b]-T[allxys]= [b]-[allxys]= -21| - [0.98 1.02] [0i| B [004]

Small residual does not necessarily guarantee a small error.
Whether or not a small residual implies a small error depends on the "magnitude" of the matrix [a].

4.10 Error, Residual, Norms, and Condition Number

s Norms and condition number

® Norm
= A real number assigned to a matrix or vector that satisfies the following four properties;

I[a]l 20 and [[a]|=0 only if [a]=0

”(1 [a]" - |(1| ” [a]" [a] and [—a]: same "magnitude” [10a]: 10 times the magnitude of [a]

Ila]lx1ll < [[allll[*]I

||[a + b]” < ||[a]|| + ||[b]|| Triangle inequality

® Vector norms

= Infinity norm Vll, = max|

= 1-norm ||V||1 _ Z|Vi|

= Euclidean 2-norm [n)1/2

4.10 Error, Residual, Norms, and Condition Number

s Norms and condition number

® Matrix norms

= Infinity norm

I [a]"m = 1 ??é " Z |aij| Summation is done for each row
= 1-norm
n
” [a]" = 1 2’1&2 Z |aij| Summation is done for each column
<Jjsn &
= 2-norm
[a] = [u][d][V] The largest value of the diagonal elements of [d]
ILall, = max(Lallrll) -
”[V]” <— Eigenvector

== 1/2
= Euclidean norm for an m X n matrix [a] el gyctidean = (Z Z aizjj
=1j=1

Frobenius norm 1 Jj=

4.10 Error, Residual, Norms, and Condition Number

** Norms and condition number
® Using norms to determine bounds on the error of numerical solutions

= Residual written in terms of the error

[r] = [allxzs]- [allxys] = [al([xzs] — [xys]) = [alle]
= Error

[e] = [a] '[r]
- gy lallx]l <l[allllx]]

71l = Nlallell < NalllCell Itell = I ta1 110 < a1 ezl
i < el = a1l < lar i
= Relative error and relative residual ILelll/ ||[x7s]| 717 &1

L _l8l el el o gy L2 I
ILalll xzs] NLBIN— (|Lxzs] |Cxzs]] NIL2]

4.10 Error, Residual, Norms, and Condition Number

s Norms and condition number

® Using norms to determine bounds on the error of numerical solutions

L Lol (I Wl gy Lol il
MLall [LezsT 1081~ [Lxzs)] [Lezs T IEB1

® Definition of true solution

[a][x7s] = [B] [xrs] = [a] [B]

= By [allxll <lfallltx)l = Mol < lfall|[xzs]] = "%[Cﬂ']'”su[a]n
TS
1 el

= ezt < Dt el = = s S)

0l el g gy Ll
T e S Tl < 1 1 i

4.10 Error, Residual, Norms, and Condition Number

s Norms and condition number

® Condition number

Cond[a] = ||[a]ll[a]

= The condition number of the identity matrix is 1.
= The condition number of any other matrix is 1 or greater.

= If the condition number is approximately 1, then the true relative error is of the same order of

magnitude as the relative residual.

= |If the condition number is much larger than 1, then a small relative residual does not necessarily

imply a small true relative error.

= For a given matrix, the value of the condition number depends on the matrix norm that is used.

The inverse of a matrix has to be known in order to calculate the condition number of the matrix.

4.10 Error, Residual, Norms, and Condition Number

s Norms and condition number

® Example

Example 4-11: Calculating error, residual, norm and condition number.

Consider the following set of four equations (the same that was solved in Example 4-8).
9x1—2Xxs+3x5+2x, = 54.5
2x; + 8x;—2x3+ 3x, = —14
—Bxy 2l xs —4x, = 12.5
—2x;+3x, +2x; +10x, = -21
The true solution of this system is x,=5, x,=-2, x;=2.5, and x,=-1. When this system was
solved in Example 4-8 with the Gauss—Seidel iteration method, the numerical solution in the sixth
iteration was x, = 4.98805, x,=-1.99511, x;=2.49806, and x,=-1.00347.
(a) Determine the true error,[e], and the residual, [r].
(b) Determine the infinity norms of the true solution, [x;¢], the error, [e], the residual, [r], and the
vector [b].

(c) Determine the inverse of [«], the infinity norm of [a] and [a]”, and the condition number of the
matrix [a].
(d) Substitute the quantities from parts (») and (c) in Eq. (4.85) and discuss the results.

1 Al el y Teal
el e 1061 (2] R GRUC W]

4.11 lll-conditioned Systems

** Meaning
® System in which small variations in the coefficients cause large changes in the solution.
® |Ill-conditioned systems generally has a condition number that is significantly greater than 1.

6x, — 2x, = 10 X, = apby—apby _ -2.17-(-3.85-10) _ 45 _ ..
11.5x1_3.85x2 _ 17 alzaZIrallazz -‘2 ® 11.5“(6“‘385) 01
. ay by —ayb; _ 11.5-10-(6-17) _ 13 _ 130
E a12a21_a11a22 —2 = 115_(6 '_385) 01
_apby—ayb; _ 2.17-(-3.84-10) _ 44 _
_2x, = = = = =2 = 110
s 6"13 gixz i‘; M G ay —ajay, 2 115-(6--3.84) 0.04
g xl_ 3 .fz =
b, —ay;b 10— (6 -
Xy = anf1—auby _ 115-10—(6-17) _ 13 _ 395

® Large difference between denominators of the two equations.

@

Determinant of [a]

4.11 lll-conditioned Systems

*** Example

® Condition number
6x,— 2x, = 10 IZ> (] = { 6 —2] and [a]" = {38.5 -20]
11.5x,-3.85x, = 17 11.5 -3.85 115 —-60
= Using the infinity norm and 1-norm

Cond[a] = ||[a]ll[a]] = 15.35-175 = 2686.25

Cond[a] = |[alll[a]] = 17.5- 153.5 = 2686.25

= 2-norm

Cond[a] = |[alll[a]™ = 13.6774 - 136.774 = 1870.7

With any norm used,
the condition number is much larger than 1!

4.11 lll-conditioned Systems

+» Comment

® Numerical solution of an ill-conditioned system of equations
= High probability of large error
= Difficult to quantify the value of the condition number criterion
® Need to check only

= Whether or not the condition number is much larger than 1

