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Facts about MSC Napoli

 One of the world’s largest container ships when built (1991)

 Built to BV Class and changed to DNV 2002

 Last renewal survey carried out in 2004 in Singapore

 Built 1991

 Length over all   275.66 m

 Breadth 37.13 m

 Draught 13.50 m

 Gross tonnage   53,409 GRT

 Capacity 4419 TEU
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Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Accident January 2007 – MSC Napoli

 Ship left Antwerp 17 January 2007 

heading for Sines in Portugal

 18 January - water ingress in engine 

room reported 

 All 26 crew members safely rescued 

 Ship beached in Lyme Bay near 

Branscombe, UK on 19 January 

2007
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Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Accident January 2007 – MSC Napoli

 The vessels was split into two in  

July 2007

 Forward part was towed to 

Belfast for recycling

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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B200 Plate panel in uni-axial compression

 Unstiffened Plate (Plating between stiffeners)

 Elastic and Inelastic Buckling

 Post-Buckling and Ultimate strength

DNV Rule for Classification of Ships  Part 3 Chapter 1, Section 13

Classification Rule

Johnson-Ostenfeld plasticity correction formula
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Buckling of a Wide Column

 The plate is acting more as a wide column than as a plate. The product EI is 

replaced by the plate flexural rigidity D.

 The thickness / length ratio plays the same role as  the slenderness ratio for 

columns. 

 The width b plays no part, no support along the unloaded edge → It is 

inefficient to use
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12.1 Elastic Plates Subjected to Uniaxial Compression
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Large-Deflection Plate Theory by von Karman

 Small-Deflection Plate Theory

 Large-Deflection Plate Theory

9.2 Combined Bending and Membrane Stresses-Elastic Range
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 Plate is assumed to be free to move inward under the action of the in-plane 

compression. → The strain energy of deformation is due to bending only

Buckling of a Simply Supported Plate

 From large-deflection plate theory

 Since the edges are simply supported, the 

deflected shape can be expressed in the form:

which satisfies both the boundary conditions and 

the general biharmonic equation.
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12.1 Elastic Plates Subjected to Uniaxial Compression
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Strain Energy Density for plane stress (σz=0)
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Strain Energy for plane stress (σz=0)

 In Chapter 9 (Lecture 03), Plate bending (Derivation of Plate 

Bending Equation), the followings are derived

Reference
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Strain Energy Density for plane stress (σz=0)
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Work done for plane stress
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Buckling of a Simply Supported Plate

 Likewise, the work done by the in-plane compressive stress is 

 Because of W=U, and hence, 

 The minimum value of σa is given by taking only one term, say Cmn,

where m and n indicate the number of half-waves in each direction in the 

buckled shape.

 When n=1, σa gives the smallest value. Hence the plate will buckle into only 

one half-wave transversely.
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12.1 Elastic Plates Subjected to Uniaxial Compression
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Buckling of a Simply Supported Plate

 A buckling coefficient k is generally used. It depends on the type of 

boundary support.

 For design applications, in which the plate thickness is to be determined, it 

is usually written like this:

12.1 Elastic Plates Subjected to Uniaxial Compression
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Buckling of a Simply Supported Plate

 For long simply supported plates it is 

usually assumed that  k=4.

 Assuming v=0.3
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12.1 Elastic Plates Subjected to Uniaxial Compression
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Buckling of a Simply Supported Plate

16

12.1 Elastic Plates Subjected to Uniaxial Compression

a/b=1, m=1 a/b=2, m=2

a/b=3, m=3
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Buckling of a Simply Supported Plate

 For a wide plate, in which the aspect ratio(a/b) is less than 1.0, m=1

 For a general "wide plate“, in terms of a 

because a<b

 For design purposes it may be written as:

For v=0.30
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12.1 Elastic Plates Subjected to Uniaxial Compression
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Buckling of a Simply Supported Plate

 Longitudinal stiffeners: a>>b(=s), 

 Transverse stiffeners: a<<b, a=s, b=B, 

 Longitudinally stiffened plating have the great advantage over   

transversely stiffened plating in ship structures, and the former is used 

wherever possible.
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12.1 Elastic Plates Subjected to Uniaxial Compression
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Reproducing the event in a computer model

 Direct wave load calculations

 Linear strength analysis

 Non-linear strength analysis 

 Load and strength comparisons

 Simulation of crack propagation

Slide 19

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Most severe wave for engine room area

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun

Wave crest around midship

Vertical ”g” force

Aft ship out of water

Hull forces: Shear force and moment
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Structural arrangement in Engine room zone

21

Failure of MSC Napoli Container ship
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Not sufficient buckling capacity

 The buckling capacity might not have been checked sufficiently 

when the ship was built

 Potentially insufficient buckling strength in the engine room 

bulkhead

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Four stages of progressive collapse Outer shell

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Four stages of progressive collapse Inner structure

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Four stages of progressive collapse Inner structure

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Alternative correcting actions

 The likelihood of reoccurrence is 
very low:

 Damage statistics are very 
good

 Little likelihood of such a harsh 
sea state

 The ship’s strength was below 
the strength of similar ships 

 Maybe not all ships checked in 
this area

 However – the consequences 
are major

 Increase buckling strength 

 Minor modifications – small 
amount of steel to be added

 Aft of the engine room 
bulkhead

 Can be done while in service 

Failure of MSC Napoli Container ship – DNV Report by Olav Nortun
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Solutions for Some Principal Cases

 When unloaded edge (A) is replaced 

by simply supported, the critical 

buckling stress drops more than when 

loaded edge (B) is by simply supported.
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12.2 Other Boundary Conditions

Buckling coefficient k in the design formula 

for flat plates in uniaxial compress
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B: Loaded edge 
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Solutions for Some Principal Cases

28

12.2 Other Boundary Conditions

Buckling stress coefficient k for flat plates 

in uniaxial compression
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Solutions for Some Principal Cases

29

12.2 Other Boundary Conditions

Buckling stress coefficient k for flat plates 

in uniaxial compression

Buckling coefficient k in the design formula 

for flat plates in uniaxial compress
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Clamped Edges

 For in-plane loads, as in the case of lateral loads, it is not possible to obtain 

finite expressions for the solution of clamped plates. 

 Numerical solutions by Faxen, Maulbetsch, and Levy. 
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12.2 Other Boundary Conditions

Buckling coefficient k for clamped plates 
under uniaxial compression
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Unloaded Edges Rotationally Restrained

 Lundquist and Stowell have 

investigated the case in which 

the support along the unloaded 

edges is intermediate between 

simply  supported and clamped.

 The degree of rotational restraint 

is specified in terms of a 

coefficient of restraint, defined as 

 Cy : rotational stiffness of the 

supporting structure along the 

unloaded edge
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12.2 Other Boundary Conditions
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Loaded Edges Rotationally Restrained

 The important boundary conditions are those along the longer edges of the 

plate. Thus, for short wide plates the edge restraint along the loaded  edges 

becomes significant. 

 Similar to end conditions in a column, by using an effective length ae:

for clamped ends ae = 1/2a

for one end simply supported and 

the other clamped ae = 0.707a

 Using a coefficient of restraint ζ :

Cx : rotational stiffness of the supporting structure along the unloaded edge

 The solution to this case is obtained from 

in which K1 and K2 are related to the buckling coefficient k. 
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12.2 Other Boundary Conditions
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Loaded Edges Rotationally Restrained

33

12.2 Other Boundary Conditions

a<b

Buckling coefficient  𝑘 for wide plates in compression 
elastically restrained on the loaded edges

kbak 2)/(



OPen INteractive Structural Lab

Loaded Edges Rotationally Restrained

 The corresponding coefficient   in the 

"design" version of the wide plate 

formula

 In ship structures the rotational restraint 

is usually provided by flange-and-web 

type of transverse stiffeners.

 In this case ζ is given approximately by

d : depth of the web

I : second moment of area of the stiffener about 

the midthickness of the web

J : Saint-Venant’s torsion constant for the 

stiffener
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12.2 Other Boundary Conditions
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All Edges Simply Supported

 a is parallel to σax and b to σay. Aspect ratio α=a/b.

 Applying the energy method yields the following expression for the critical 

combination:

 U=W

 If we denote the square plate critical stress and nondimensional form
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12.3 Biaxial Compression
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All Edges Simply Supported
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12.3 Biaxial Compression

Buckling stresses of biaxially loaded 
simply supported plates
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All Edges Simply Supported
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12.3 Biaxial Compression

a/b = 3 a/b = 5

Plate under biaxial load
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B400 Plate panel in bi-axial compression

 For plate panels subject to bi-axial compression the interaction between the 

longitudinal and transverse buckling strength ratios is given by

DNV Rule for Classification of Ships  Part 3 Chapter 1, Section 13
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All Edges Clamped 

 For plates subjected to approximately equal compressive stresses 

(σax ≈σay)the interaction formula is 

 When α=1, 

 For square plates(α=1), critical combinations are given for particular 

values of σax / σay, including cases in which σay is tensile.

 When σax = σay
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12.3 Biaxial Compression
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Pure Shear

 In ship structures the plating is commonly subjected to large shear loads. 

The shearing load can cause buckling since it gives rise to in-plane 

compressive stress.
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12.4 Other Types of In-plane Loads

 For the case of pure shear, in-plane 

compressive stress is equal to the shear stress 

and acts at 45° to the shear axis. 

 In shear buckling, the coefficients are denoted 

as ks and Ks.  

 For simply supported plates

 For clamped plates 
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 For simply supported plates

Pure Shear

12.4 Other Types of In-plane Loads

B300 Plate panel in shear 
(DNV Rule for Classification of Ships  Part 3 Chapter 1, Section 13)
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Pure Shear

 ks and Ks are given for various types of boundary conditions. Because of the 

symmetry of the pure shear loading , the choice of a and b is independent of 

the load. 

12.4 Other Types of In-plane Loads

Buckling coefficient of flat plates 
in shear

Buckling coefficient of flat plates 
in shear (Design formula)
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Biaxial Compression and Shear

 For long plates ks is given approximately by:

– All edges simply supported:

– All edges clamped:

where
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12.4 Other Types of In-plane Loads
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In-plane Bending

 σb denotes the largest or edge 
value of the applied stress. 
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12.4 Other Types of In-plane Loads

 Some approximate formulas to calculate the values of kb

– simply supported edges:

for 

for                 

– clamped edges:

for

– one unloaded edge clamped; the others simply supported

for

– unloaded edges clamped; loaded edges simply supported

for 
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In-plane Bending

 The figure illustrates the case in which the bending is unsymmetric. 

For simply supported edges the value of kb is given approximately by

(             simply supported edges only) 
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Combined In-plane Loads: Interaction Formulas

 Uniaxial compression and in-plane bending

 (σa)cr : critical values of axial loading 

 (σb)cr : critical values of and in-plane bend

 Uniaxial load(compressive or tensile) and shear

 For convenience we adopt the symbol R to denote a critical load ratio. 

In the present case the strength ratios are

 The interaction formula is 

 In-plane bending and shear
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Combined In-plane Loads: Interaction Formulas

 Biaxial compression, in-plane bending, and shear 

 The two compression strength ratios are

 By performing a series of four-variable curve-fitting solutions, 
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Combined In-plane Loads: Interaction Formulas

48

12.4 Other Types of In-plane Loads

Interaction curves for biaxial compression, in-plane bending, and shear drawn for α=2
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Combined In-plane Loads: Interaction Formulas

49
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Plates Without Residual Stress

 Uniaxially loaded, simply supported square plate, with sides free to 

pull in. some typical initial distortion  in the form of a half wave in 

each direction. 

 Plate slenderness 

 The relationship between the applied load (σa) and the axial 

shortening

12.6 Ultimate Strength of Plates

50

Plate strength without welding (σr=0)
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Plates Without Residual Stress

 Slender plate (β>2.4)  

 Buckling stress is well below yield stress and below the curve of collapse 

stress. 

 After buckling (σa) a greater proportion of the load is taken by the region of 

plating near the sides → Non-uniform compressive stress  distribution

 Deflected shape of the buckled portion → overall stiffness of the plate 

(dσa/dεa) is reduced. 

 The center region becomes more pronounced and the maximum stress at 

the sides increases. When the maximum stress = yield stress → collapse. 

12.6 Ultimate Strength of Plates

51Plate strength without welding (σr=0) Post-buckling stress distribution

Ultimate strength

Large margin between 
buckling and collapse
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Plates Without Residual Stress

 Plates of intermediate slenderness (1<β<2.4)  

 Buckling stress ≈ yield stress

 For a rigorous analysis, elasto-plastic large deflection theory to be used. 

 As applied stress increases → magnification of the initial distortion → loss 

of stiffness → some local yield → stress redistribution → yielding of the 

sides → sudden collapse. 

 Pitched roof : allows large axial shortening with minimum strain 

energy.

12.6 Ultimate Strength of Plates

Typical post buckling behavior
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Plates Without Residual Stress

 Sturdy plates (1>β)  

 The initial distortion is smaller and the magnification is less because the 

elastic buckling stress is very large. 

 Plates can carry a load equal to the full “squash load” σa,u= σY.

 After the peak load, the load carrying capacity remains 

approximately constant up to very large strains. 

12.6 Ultimate Strength of Plates

Plate strength without welding (σr=0)
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Plates With Residual Stress

 Departure from linearity occur at the stress which is less σa

less than for a stress-free plate. 

 Sturdy plate (1>β) : no load shedding, but large 

reduction in stiffness → regarded collapse.  

 Intermediately slender and slender plate (1<β) : the 

loss of ultimate strength ≈ σr 

12.6 Ultimate Strength of Plates
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Effects of Other Parameters

 Restraint at Sides 

 Clamping the sides of a plate increase the elastic buckling stress by 

75%, however, the increase in buckling stress even in slender plate ≈ 

10% at most. 

 Stiffeners surrounding the panel is not clamped edge → this restraint 

can be ignored. 

 Initial Deformation

 The effect of initial deformation removes sharp knuckle in curve  of σa

and εa. The increasing lateral deflection causes a progressive reduction

in the in-plane stiffness of the plate. 

 However, the ultimate strength is slightly decreased. 

 Shear stress

 In –plane shear stress tends to lower the resistance  to longitudinal 

compression. 

 Reduced yield stress rτσY

12.6 Ultimate Strength of Plates
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Ultimate Strength of Uniaxial Loaded Plates

 Plating of uniaxially loaded, longitudinally stiffened, 

initial deformation (δp <  0.2βt), residual stress (σr ≈ 0.1σY)

side constrained to remain straight but free to pull in

 For sturdy plate, first loss of stiffness is taken as collapse.

 For plates of greater slenderness : loss of stiffness is gradual. 

 Secant modulus ratio

12.6 Ultimate Strength of Plates

56

Design curves of ultimate strength and secant modulus
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Ultimate Strength of Uniaxial Loaded Plates

 Faulkner’s formula for the ultimate strength of unwedded plates  : good 

agreement with extensive experimental data.

 The effect of residual stress → strength reduction factor Rr

12.6 Ultimate Strength of Plates

57Curves for ultimate strength of plates
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