

INTRODUCTION TO NUMERICAL ANALYSIS

Cho, Hyoung Kyu

Department of Nuclear Engineering Seoul National University

5. EIGENVALUES AND EIGENVECTORS

- 5.1 Background
- 5.2 The Characteristic Equation
- 5.3 The Basic Power Method
- 5.4 The Inverse Power Method
- 5.5 The Shifted Power Method
- 5.6 The QR Factorization and Iteration Method
- 5.7 Use of MATLAB Built-In Functions

Eigenvalue

The word eigenvalue is derived from the German word eigenwert, which means "proper or characteristic value."

 $[a][u] = \lambda[u]$

Generalized form

 $Lu = \lambda u$

- *L* : operator that can represent multiplication by a matrix, differentiation, integration, and so on.
- Ex) : second differentiation with respect to *x*, *y*

$$\frac{d^2y}{dx^2} = k^2y$$

 λ : eigenvalue associated by the operator L

u: eigenvector or eigenfunction corresponding to the eigenvalue λ and operator L

5.1 Background

Importance of eigenvalues and eigenvectors in science and engineering

- Ex) vibration
 - Eigenvalues represent the natural frequencies of a system or component.
 - Eigenvectors represent the modes of these vibrations.
 - Important to identify these natural frequencies
 - Periodic external loads at or near these frequencies, resonance can cause the motion of the structure to be amplified.
 - Leading to failure of the component
- Mechanics of materials
 - The principal stresses are the eigenvalues of the stress matrix.
 - The principal directions are the directions of the associated eigenvectors.

5.1 Background

Importance of eigenvalues and eigenvectors in science and engineering

- Quantum mechanics
 - In Heisenberg's formulation of quantum mechanics

 $L\Psi=c\Psi$

- $-\ \Psi$: any quantity that can be measured or inferred experimentally, wave function
 - Such as position, velocity, or energy
- c : eigenvalue
- Ex)

$$\frac{ih}{2\pi}\frac{\partial\Psi}{\partial t} = E\Psi \qquad \qquad -i\frac{h}{2\pi}\vec{\nabla}\Psi = \vec{p}\Psi$$

$$\frac{ih}{2\pi}\frac{\partial}{\partial t}($$
) : energy operator $-i\frac{h}{2\pi}\vec{\nabla}($) : momentum operator

Importance of eigenvalues and eigenvectors in science and engineering

- Link between eigenvalue problems involving differential equations and eigenvalue problems involving matrices ?
- Numerical solution of eigenvalue problems involving ODEs
 - Results in systems of simultaneous equations

 $[a][u] = \lambda[u]$

- Eigenvalues of a matrix can also provide useful information
 - Jacobi and Gauss-Siedel iterative methods

 $x_i^{(k+1)} = b'_i - [a] x_i^{(k)}$

- It turns out that whether or not these iterative methods converge to a solution depends on the eigenvalues of the matrix [a].
- How quickly the iterations converge depends on the magnitudes of the eigenvalues of [*a*].

Eigenvalues of a matrix

 $[a-\lambda I][u] = 0$

- $[a \lambda I]$: non-singular (if it has an inverse) $\Rightarrow [u] = 0$ (trivial solution)
- $[a \lambda I]$: singular (if it does not have an inverse) $\Rightarrow [u] = 0$ (non-trivial solution is possible.)

Characteristic equation

 $\det[a - \lambda I] = 0$

- Polynomial equation for λ
- For a small matrix [*a*]
 - The eigenvalues can be determined directly by calculating the determinant and solving for the roots
 of the characteristic equation.
- For a large matrix
 - Difficult to determine
 - Various numerical methods: power method and QR factorization method

Power method

- Iterative procedure for determining the <u>largest real eigenvalue</u> and the corresponding eigenvector of a matrix
- For a $(n \times n)$ matrix [a], n distinct real eigenvalues and n associated eigenvectors

$$\lambda_1, \lambda_2, \dots, \lambda_n \qquad [u]_1, [u]_2, \dots, [u]_n$$
$$\lambda_1 |> |\lambda_2|> \dots > |\lambda_n|$$

- Eigenvectors are linearly independent!
 - Any vector can be written as a linear combination of the basis vectors.

 $[x] = c_1[u]_1 + c_2[u]_2 + \dots + c_n[u]_n \qquad c_i \neq 0$

5.3 Basic Power Method

Power method

• Successive iteration

$$[a][x]_{1} = c_{1}[a][u]_{1} + c_{2}[a][u]_{2} + \dots + c_{n}[a][u]_{n} = \lambda_{1}c_{1}[x]_{2}$$
$$[a][x]_{2} = \lambda_{1}[u]_{1} + \frac{c_{2}\lambda_{2}^{2}}{c_{1}\lambda_{1}}[u]_{2} + \dots + \frac{c_{n}\lambda_{n}^{2}}{c_{1}\lambda_{1}}[u]_{n} = \lambda_{1}[x]_{3}$$
$$[a][x]_{3} = \lambda_{1}[u]_{1} + \frac{c_{2}\lambda_{2}^{3}}{c_{1}\lambda_{1}^{2}}[u]_{2} + \dots + \frac{c_{n}\lambda_{n}^{3}}{c_{1}\lambda_{1}^{2}}[u]_{n} = \lambda_{1}[x]_{4}$$

$$[x]_{2} = [u]_{1} + \frac{c_{2}\lambda_{2}}{c_{1}\lambda_{1}}[u]_{2} + \dots + \frac{c_{n}\lambda_{n}}{c_{1}\lambda_{1}}[u]_{n}$$
$$[x]_{2} = [u]_{1} + \frac{c_{2}\lambda_{2}^{2}}{c_{1}\lambda_{1}}[u]_{2} + \dots + \frac{c_{n}\lambda_{n}^{2}}{c_{1}\lambda_{1}}[u]_{n}$$

$$[x]_{3} = [u]_{1} + \frac{1}{c_{1}} \frac{1}{\lambda_{1}^{2}} [u]_{2} + \dots + \frac{1}{c_{1}} \frac{1}{\lambda_{1}^{2}} [u]_{n}$$

$$[x]_{k+1} = [u]_1 + \frac{c_2}{c_1} \frac{\lambda_2^k}{\lambda_1^k} [u]_2 + \dots + \frac{c_n}{c_1} \frac{\lambda_n^k}{\lambda_1^k} [u]_n$$

5.3 Basic Power Method

Power method

Successive iteration

$$[x]_{k+1} = [u]_1 + \frac{c_2}{c_1} \frac{\lambda_2^k}{\lambda_1^k} [u]_2 + \dots + \frac{c_n}{c_1} \frac{\lambda_n^k}{\lambda_1^k} [u]_n$$

• When k is sufficiently large,

$$[x]_{k+1} = [u]_1 + \frac{c_2 \lambda_2^k}{c_1 \lambda_1^k} [u]_2 + \dots + \frac{c_n \lambda_n^k}{c_1 \lambda_1^k} [u]_n \qquad [x]_{k+1}$$

$$[x]_{k+1} = [u]_1$$

 $[a][x]_{k+1} \rightarrow \lambda_1[u]_1$

Power method

- Algorithm of the power method
 - Start with a column eigenvector $[x]_i$ of length n. (the vector can be any non zero vector)
 - Multiply the vector $[x]_i$ by the matrix $[a] \Rightarrow [x]_{i+1}$

 $[x]_{i+1} = [a][x]_i$

- Normalizing $[x]_{i+1}$
- Assign the normalized vector and go back to the first step
- Convergence criteria

 $\|[x]_{i+1} - [x]_i\|_{\infty} \leq Tolerance$

5.3 Basic Power Method

Power method

• Example

Example 5-2: Using the power method to determine the largest ei	genvalue of a matrix.
Determine the largest eigenvalue of the following matrix: $ \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} $	(5.21)

Use the power method and start with the vector $x = [1, 1, 1]^T$.

$[x]_{2} = [a][x]_{1} = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 2 \end{bmatrix} = 7 \begin{bmatrix} 0.5714 \\ 1 \\ 0.2857 \end{bmatrix}$	$[x]_5 = [a][x]_4 = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} 0.3936 \\ 1 \\ 0.3723 \end{bmatrix} = \begin{bmatrix} 2.8298 \\ 7.5851 \\ 3.2979 \end{bmatrix} = 7.5851 \begin{bmatrix} 0.3731 \\ 1 \\ 0.4348 \end{bmatrix}$
$[x]_{3} = [a][x]_{2} = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} 0.5714 \\ 1 \\ 0.2857 \end{bmatrix} = \begin{bmatrix} 3.7143 \\ 7.1429 \\ 4 \end{bmatrix} = 7.1429 \begin{bmatrix} 0.52 \\ 1 \\ 0.56 \end{bmatrix}$	$[x]_{6} = [a][x]_{5} = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} 0.3731 \\ 1 \\ 0.4348 \end{bmatrix} = \begin{bmatrix} 2.6227 \\ 7.6886 \\ 3.0070 \end{bmatrix} = 7.6886 \begin{bmatrix} 0.3411 \\ 1 \\ 0.3911 \end{bmatrix}$
$[x]_{4} = [a][x]_{3} = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} 0.52 \\ 1 \\ 0.56 \end{bmatrix} = \begin{bmatrix} 2.96 \\ 7.52 \\ 2.8 \end{bmatrix} = 7.52 \begin{bmatrix} 0.3936 \\ 1 \\ 0.3723 \end{bmatrix}$	$[x]_{9} = [a][x]_{8} = \begin{bmatrix} 4 & 2 & -2 \\ -2 & 8 & 1 \\ 2 & 4 & -4 \end{bmatrix} \begin{bmatrix} 0.3272 \\ 1 \\ 0.3946 \end{bmatrix} = \begin{bmatrix} 2.5197 \\ 7.7401 \\ 3.0760 \end{bmatrix} = 7.7401 \begin{bmatrix} 0.3255 \\ 1 \\ 0.3974 \end{bmatrix}$

Power method

- Convergence of the power method
 - Converges very slowly unless the starting vector [x] is close to the eigenvector [u]
 - A problem can arise when c_1 is zero.

$$[x]_{k+1} = [u]_1 + \frac{c_2}{c_1} \frac{\lambda_2^k}{\lambda_1^k} [u]_2 + \dots + \frac{c_n}{c_1} \frac{\lambda_n^k}{\lambda_1^k} [u]_n$$

- When can the power method be used?
 - Only the largest eigenvalue is desired.
 - The largest eigenvalue cannot be a repeated root of the characteristic equation.
 - Other eigenvalues with the same magnitude
 - The largest eigenvalue must be real.
 - Two eigenvalues with the same magnitude.

Inverse Power Method

- To determine the <u>smallest eigenvalue</u>
- Power method: for the <u>largest eigenvalue</u>
- Apply the power method to the inverse of the given matrix [a]
 - This works because the eigenvalues of the inverse matrix $[a]^{-1}$
 - Reciprocals of the eigenvalues of [*a*]

 $[a][x] = \lambda[x] \implies$

 $[a]^{-1}[a] = [I] \Rightarrow$

- $1/\lambda$: eigenvalue of the inverse matrix $[a]^{-1}$
- Application of the power method \Rightarrow the largest value of $1/\lambda$ \Rightarrow the smallest value of λ

5.4 Inverse Power Method

Procedure

Starting vector [x]_i

Multiplied by $[a]^{-1}$

$$[x]_{i+1} = [a]^{-1}[x]_i$$

- Normalization
- Inverse matrix $[a]^{-1}$ has to be calculated before iterations !
 - Calculating the inverse of a matrix is computationally inefficient and not desirable.

$$[x]_{i+1} = [a]^{-1}[x]_i \implies [a][x]_{i+1} = [x]_i$$

- By solving systems of linear equations, $[x]_{i+1}$ can be obtained.
- This can best be done by using the LU decomposition method.
- With the power method and inverse power method, the largest and the smallest eigenvalues of a matrix can be found.
- In some instances, it is necessary to find all the eigenvalues.
 - Shifted power method, QR factorization method

5.5 Shifted Power Method

Shifted Power Method

 Once the largest or the smallest eigenvalue is known, the shifted power method can be used for finding the other eigenvalues.

 $[a][x] = \lambda[x]$

- λ₁: the largest or smallest eigenvalue obtained by using the power method or inverse power method
- Shifted matrix

- α : eigenvalues of the shifted matrix $\alpha = (\lambda \lambda_1)$
- $\lambda = \lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$

$$\alpha = 0, \lambda_2 - \lambda_1, \lambda_3 - \lambda_1, \lambda_4 - \lambda_1, \dots, \lambda_n - \lambda_1$$

5.5 Shifted Power Method

Shifted Power Method

• Shifted matrix

$$[a - \lambda_1 I] \qquad \alpha = 0, \lambda_2 - \lambda_1, \lambda_3 - \lambda_1, \lambda_4 - \lambda_1, \dots, \lambda_n - \lambda_1$$

- Apply the basic power method !
- The largest eigenvalue of the shifted matrix, α_k can be determined.
- The eigenvalue λ_k can be determined. $\alpha_k = \lambda_k \lambda_1$
- Repeat this process together with shifted inverse power method!
- Comment
 - Tedious and inefficient process!
 - QR factorization

QR factorization and iteration method

- Popular means for finding all the eigenvalues of a matrix
- Based on the facts
 - Similar matrices have the same eigenvalues and associated eigenvectors.
 - The eigenvalues of an upper triangular matrix are the elements along the diagonal.
- Strategy
 - Transform the matrix into a **similar matrix** that is **upper triangular**.
 - Iterative process is required.
- The QR factorization method finds all the eigenvalues of a matrix, but cannot find the corresponding eigenvectors.
- For real eigenvalues
 - QR factorization method eventually factors the given matrix into an orthogonal matrix and an upper triangular matrix
- For complex eigenvalues (not covered in this course)

Similar matrices

- Two matrices [a] and [b] are similar if
 - : similarity transformation
 - Similar matrices have the same eigenvalues and associated eigenvectors.

Orthogonal matrix

Whose inverse is the same as its transpose

 $\Rightarrow [Q]^T[Q] = [Q]^{-1}[Q] = [I]$

QR factorization and iteration procedure

• Start with the matrix $[a]_1$

• $[Q]_1$: orthogonal matrix, $[R]_1$: upper triangular matrix

QR factorization and iteration procedure

The first iteration

 $[a]_1 = [Q]_1[R]_1 \qquad [R]_1 = [Q_1]^{-1}[a]_1$

$$[a] = [c]^{-1}[b][c]$$

• $[R]_1$ is multiplied by $[Q]_1$ from the right

 $\Leftarrow [R]_1[Q]_1 = [Q_1]^{-1}[a]_1[Q]_1 = [Q_1]^T[a]_1[Q]_1$

- [a]₁ and [a]₂ are similar; have the same eigenvalues.
- The second iteration

 $= [Q_2]^T [a]_2 [Q]_2$

- [a]₂ and [a]₃ are similar; have the same eigenvalues.
- Iterations continue until an upper triangular matrix is resulted in.

The eigenvalues of an upper triangular matrix are the elements along the diagonal.

$$\begin{bmatrix} \lambda_1 & X & X & X \\ 0 & \lambda_2 & X & X \\ 0 & 0 & \lambda_3 & X \\ 0 & 0 & 0 & \lambda_4 \end{bmatrix}$$

QR factorization

[a] = [Q][R]

• Householder matrix [*H*] for factorization

$$[H] = [I] - \frac{2}{[v]^{T}[v]} [v] [v]^{T}$$

- [v]: n-element column vector $[v] = [c] + ||c||_2[e]$ $||c||_2 = \sqrt{c_1^2 + c_2^2 + c_3^2 + \dots + c_n^2}$
- $[v]^T$: row vector
- $[v]^T[v]$: scalar
- $[v][v]^T : (n \times n)$ matrix
- Special properties of [H]
 - Symmetric
 - Orthogonal
 - [H][a][H] : similar to [a]

$$[H]^{-1} = [H]^{T} = [H]$$

$$[a] = [c]^{-1}[b][c]$$

$$[H]^{-1}[H][a][H][H] = [a]$$

QR factorization

[a] = [Q][R]

Step 1: identify the vector [c] and [e]

$$[c] = \begin{bmatrix} a_{11} \\ a_{21} \\ \cdots \\ a_{n1} \end{bmatrix} \qquad [e] = \begin{bmatrix} \pm 1 \\ 0 \\ 0 \\ \cdots \\ 0 \end{bmatrix}$$

- In [*e*], the first element is
 - +1 : if the first element of [c] (a_{11}) is positive.
 - -1 : if the first element of [c] (a_{11}) is negative.
- $[H]^{(1)}$ can be constructed.
- $[Q]^{(1)} = [H]^{(1)}$ $[R]^{(1)} = [H]^{(1)}[a]$

$$[H] = [I] - \frac{2}{[v]^{T}[v]} [v] [v]^{T}$$

$$[v] = [c] + ||c||_2[e]$$

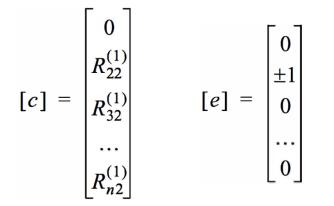
$$\|c\|_2 = \sqrt{c_1^2 + c_2^2 + c_3^2 + \dots + c_n^2}$$

$R_{11}^{(1)}$	$R_{12}^{(1)}$	$R_{13}^{(1)}$	$R_{14}^{(1)}$	$R_{15}^{(1)}$
0	$R_{22}^{(1)}$	$R_{23}^{(1)}$	$R_{24}^{(1)}$	$R_{25}^{(1)}$
0	$R_{32}^{(1)}$	$R_{33}^{(1)}$	$R_{34}^{(1)}$	$R_{35}^{(1)}$
0	$R_{42}^{(1)}$	$R_{43}^{(1)}$	$R_{44}^{(1)}$	$R_{45}^{(1)}$
0	$R_{52}^{(1)}$	$R_{53}^{(1)}$	$R_{54}^{(1)}$	$R_{55}^{(1)}$

QR factorization

[a] = [Q][R]

Step 2: identify the vector [c] and [e]



- In [*e*], the second element is
 - +1 : if the first element of [c] ($R_{22}^{(1)}$) is positive.
 - -1 : if the first element of [c] ($R_{22}^{(1)}$) is negative.

 $[H] = [I] - \frac{2}{[v]^{T}[v]} [v] [v]^{T}$ $[v] = [c] + ||c||_{2} [e]$ $||c||_{2} = \sqrt{c_{1}^{2} + c_{2}^{2} + c_{3}^{2} + \dots + c_{n}^{2}} \begin{bmatrix} R_{11}^{(2)} & R_{12}^{(2)} & R_{14}^{(2)} & R_{15}^{(2)} \\ 0 & R_{12}^{(2)} & R_{13}^{(2)} & R_{14}^{(2)} & R_{15}^{(2)} \\ 0 & R_{22}^{(2)} & R_{23}^{(2)} & R_{24}^{(2)} & R_{25}^{(2)} \\ 0 & 0 & R_{33}^{(2)} & R_{34}^{(2)} & R_{35}^{(2)} \\ 0 & 0 & R_{43}^{(2)} & R_{44}^{(2)} & R_{45}^{(2)} \\ 0 & 0 & R_{53}^{(2)} & R_{54}^{(2)} & R_{55}^{(2)} \end{bmatrix}$

 $[a] = [H]^{(1)}[R]^{(1)} = [Q]^{(1)}[R]^{(1)}$ $[R]^{(1)} = [H]^{(2)}[R]^{(2)}$ $[a] = [Q]^{(1)}[H]^{(2)}[R]^{(2)} = [Q]^{(2)}[R]^{(2)}$

• $[H]^{(2)}$ can be constructed. $[Q]^{(2)} = [Q]^{(1)}[H]^{(2)}$ $[R]^{(2)} = [H]^{(2)}[R]^{(1)}$

QR factorization

[a] = [Q][R]

Step 3: identify the vector [c] and [e]

$$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ R_{33}^{(2)} \\ R_{34}^{(2)} \\ \dots \\ R_{n3}^{(2)} \end{bmatrix} \begin{bmatrix} e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \pm 1 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

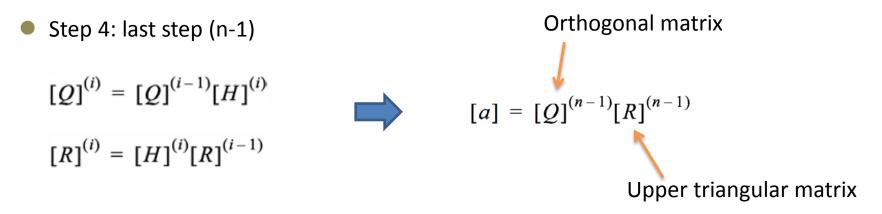
- In [*e*], the third element is
 - +1: if the first element of [c] ($R_{33}^{(1)}$) is positive.
 - -1: if the first element of [c] ($R_{33}^{(1)}$) is negative.
- $[H]^{(3)}$ can be constructed.

$$[Q]^{(3)} = [Q]^{(2)}[H]^{(3)} \qquad [R]^{(3)} = [H]^{(3)}[R]^{(2)}$$

-				-
$R_{11}^{(3)}$	$R_{12}^{(3)}$	$R_{13}^{(3)}$	$R_{14}^{(3)}$	$R_{15}^{(3)}$
0	$R_{22}^{(3)}$	$R_{23}^{(3)}$	$R_{24}^{(3)}$	$R_{25}^{(3)}$
0	0	$R_{33}^{(3)}$	$R_{34}^{(3)}$	$R_{35}^{(3)}$
0	0	0	$R_{44}^{(3)}$	$R_{45}^{(3)}$
0	0	0	$R_{54}^{(3)}$	$R_{55}^{(3)}$

QR factorization

[a] = [Q][R]



- Eigenvalue ?
 - $\ [a]_n = [R]_{(n-1)} \ [Q]_{(n-1)}$
 - $\ [a]_n = [Q]_{(n)} \ [R]_{(n)}$
 - $\ [a]_{n+1} = [R]_{(n)} \ [Q]_{(n)}$

Step for the factorization!

QR factorization

• Example

Example 5-3: QR factorization of a matrix.	
Factor the following matrix $[a]$ into an orthogonal matrix $[Q]$ and an upper tr	iangular matrix [R]:
$[a] = \begin{bmatrix} 6 & -7 & 2 \\ 4 & -5 & 2 \\ 1 & -1 & 1 \end{bmatrix}$	(5.56)

Step 1: The vector [c] is defined as the first column of the matrix [a]:

$$[c] = \begin{bmatrix} 6\\ 4\\ 1 \end{bmatrix}$$

The vector [e] is defined as the following three-element column vector:

$$[e] = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$

QR factorization

Example

Using Eq. (5.40), the Euclidean norm, $||c||_2$, of [c] is: $||c||_2 = \sqrt{c_1^2 + c_2^2 + c_3^2} = \sqrt{6^2 + 4^2 + 1^2} = 7.2801$

Using Eq. (5.39), the vector [v] is:

$$[v] = [c] + ||c||_{2}[e] = \begin{bmatrix} 6\\4\\1 \end{bmatrix} + 7.2801 \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 13.2801\\4\\1 \end{bmatrix}$$

Next, the products $[v]^{T}[v]$ and $[v][v]^{T}$ are calculated:

$$\begin{bmatrix} v \end{bmatrix}^{T} \begin{bmatrix} v \end{bmatrix} = \begin{bmatrix} 13.2801 & 4 & 1 \end{bmatrix} \begin{bmatrix} 13.2801 \\ 4 \\ 1 \end{bmatrix} = 193.3611$$
$$\begin{bmatrix} v \end{bmatrix} \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} v \end{bmatrix}^{T} = \begin{bmatrix} 13.2801 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} 13.2801 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 176.3611 & 53.1204 & 13.2801 \\ 53.1204 & 16 & 4 \\ 13.2801 & 4 & 1 \end{bmatrix}$$

QR factorization

Example

The Householder matrix $[H]^{(1)}$ is then: $[H]^{(1)} = [I] - \frac{2}{[v]^{T}[v]} [v] [v]^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{2}{193.3611} \begin{bmatrix} 176.3611 & 53.1204 & 13.2801 \\ 53.1204 & 16 & 4 \\ 13.2801 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -0.8242 & -0.5494 & -0.1374 \\ -0.5494 & 0.8345 & -0.0414 \\ -0.1374 & -0.0414 & 0.9897 \end{bmatrix}$ Once the Housholder matrix $[H]^{(1)}$ is constructed, [a] can be factored into $[Q]^{(1)} [R]^{(1)}$, where:

$$[Q]^{(1)} = [H]^{(1)} = \begin{bmatrix} -0.8242 & -0.5494 & -0.1374 \\ -0.5494 & 0.8345 & -0.0414 \\ -0.1374 & -0.0414 & 0.9897 \end{bmatrix}$$

and

$$[R]^{(1)} = [H]^{(1)}[a] = \begin{bmatrix} -0.8242 & -0.5494 & -0.1374 \\ -0.5494 & 0.8345 & -0.0414 \\ -0.1374 & -0.0414 & 0.9897 \end{bmatrix} \begin{bmatrix} 6 & -7 & 2 \\ 4 & -5 & 2 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -7.2801 & 8.6537 & -2.8846 \\ 0 & -0.2851 & 0.5288 \\ 0 & 0.1787 & 0.6322 \end{bmatrix}$$

This completes the first step.

QR factorization

Step 2

$$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} 0 \\ R_{22}^{(1)} \\ R_{32}^{(1)} \end{bmatrix} = \begin{bmatrix} 0 \\ -0.2851 \\ 0.1787 \end{bmatrix} \qquad \begin{bmatrix} e \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$

Using Eq. (5.40), the Euclidean norm, $||c||_2$, of [c] is: $||c||_2 = \sqrt{c_1^2 + c_2^2 + c_3^2} = \sqrt{0^2 + (-0.2851)^2 + 0.1787^2} = 0.3365$ Using Eq. (5.39), the vector [v] is:

$$[v] = [c] + ||c||_{2}[e] = \begin{bmatrix} 0 \\ -0.2851 \\ 0.1787 \end{bmatrix} + 0.3365 \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.6215 \\ 0.1787 \end{bmatrix}$$

Next, the products $[v]^{T}[v]$ and $[v][v]^{T}$ are calculated:

$$\begin{bmatrix} v \end{bmatrix}^{T} \begin{bmatrix} v \end{bmatrix} = \begin{bmatrix} 0 & -0.6215 & 0.1787 \end{bmatrix} \begin{bmatrix} 0 & \\ -0.6215 & \\ 0.1787 \end{bmatrix} = 0.4183$$
$$v \end{bmatrix} \begin{bmatrix} v \end{bmatrix}^{T} = \begin{bmatrix} 0 & \\ -0.6215 & \\ 0.1787 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & \\ 0 & 0.3864 & -0.1111 & \\ 0 & 0.1111 & 0.0319 \end{bmatrix}$$

QR factorization

Step 2

The Householder matrix $[H]^{(2)}$ is then: $[H]^{(2)} = [I] - \frac{2}{[v]^{T}[v]} [v] [v]^{T} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} - \frac{2}{0.4183} \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0.3864 & -0.1111 \\ 0 & 0.1111 & 0.0319 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & -0.8474 & 0.5311 \\ 0 & 0.5311 & 0.8473 \end{vmatrix}$ Once the Housholder matrix $[H]^{(2)}$ is constructed, [a] can be factored into $[Q]^{(2)}[R]^{(2)}$, where: $[Q]^{(2)} = [Q]^{(1)}[H]^{(2)} = \begin{bmatrix} -0.8242 & -0.5494 & -0.1374 \\ -0.5494 & 0.8345 & -0.0414 \\ -0.1374 & -0.0414 & 0.9897 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.8474 & 0.5311 \\ 0 & 0.5311 & 0.8473 \end{bmatrix} = \begin{bmatrix} -0.8242 & 0.3927 & -0.4082 \\ -0.5494 & -0.7291 & 0.4082 \\ -0.1374 & 0.5607 & 0.8166 \end{bmatrix}$ and $\begin{bmatrix} R \end{bmatrix}^{(2)} = \begin{bmatrix} H \end{bmatrix}^{(2)} \begin{bmatrix} R \end{bmatrix}^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.8474 & 0.5311 \\ 0 & 0.5311 & 0.8473 \end{bmatrix} \begin{bmatrix} -7.2801 & 8.6537 & -2.8846 \\ 0 & -0.2851 & 0.5288 \\ 0 & 0.1787 & 0.6322 \end{bmatrix} = \begin{bmatrix} -7.2801 & 8.6537 & -2.8846 \\ 0 & 0.3365 & -0.1123 \\ 0 & 0 & 0.8165 \end{bmatrix}$

QR factorization

• Example

Example 5-3: QR factorization of a matrix.	
Factor the following matrix $[a]$ into an orthogonal matrix $[Q]$ and an upper triangular i	matrix [<i>R</i>]:
$[a] = \begin{bmatrix} 6 & -7 & 2 \\ 4 & -5 & 2 \\ 1 & -1 & 1 \end{bmatrix}$	(5.56)

$[a] = [Q]^{(2)}[R]^{(2)}$		6 -7 2		-0.8242	0.3927	-0.4082	-7.2801	8.6537	-2.8846
$[a] = [Q]^{(2)}[R]^{(2)}$	or	4 -5 2	=	-0.5494	-0.7291	0.4082	0	0.3365	-0.1123
		1 -1 1		_0.1374	0.5607	0.8166	0	0	0.8165

$$\mathbf{q} = \begin{pmatrix} 0.824 & 0.393 & 0.408 \\ 0.549 & -0.729 & -0.408 \\ 0.137 & 0.561 & -0.816 \end{pmatrix} \mathbf{n} \qquad \mathbf{q} = \begin{pmatrix} 0.992 & -0.113 & 0.047 \\ 0.102 & 0.976 & 0.192 \\ -0.068 & -0.186 & 0.98 \end{pmatrix} \mathbf{n} \qquad \mathbf{q} = \begin{pmatrix} 0.999 & 0.04 & 0.026 \\ -0.042 & 0.997 & 0.072 \\ -0.023 & -0.073 & 0.997 \end{pmatrix} \mathbf{n} \qquad \mathbf{q} = \begin{pmatrix} 1 & -0.028 & 0.01 \\ 0.028 & 0.999 & 0.032 \\ -0.011 & -0.032 & 0.999 \end{pmatrix} \mathbf{n}$$

Iteration

Repeat the factorization until the last matrix in the sequence is upper triangular.

 $A_n = [R]_{(n-1)} [Q]_{(n-1)}$

$$\begin{bmatrix} \lambda_{1} & X & X & X \\ 0 & \lambda_{2} & X & X \\ 0 & 0 & \lambda_{3} & X \\ 0 & 0 & 0 & \lambda_{4} \end{bmatrix}$$

Example

Example 5-4: Calculating eigenvalues using the QR factorization and iteration method.

The three-dimensional state of stress at a point inside a loaded structure is given by:

$$\sigma_{ij} = \begin{bmatrix} 45 & 30 & -25 \\ 30 & -24 & 68 \\ -25 & 68 & 80 \end{bmatrix} \text{ MPa}$$

Determine the principal stresses at this point by determining the eigenvalues of the stress matrix, using the QR factorization method.

Example

```
function [Q R] = QRFactorization(R)
% The function factors a matrix [A] into an orthogonal matrix [Q]
% and an upper-triangular matrix [R].
% Input variables:
% A The (square) matrix to be factored.
% Output variables:
% Q Orthogonal matrix.
% R Upper-triangular matrix.
nmatrix = size(R);
n = nmatrix(1);
I = eye(n);
O = I;
for j = 1:n-1
    c = R(:, j);
    c(1:j-1) = 0;
    e(1:n,1)=0;
    if c(j) > 0
                                              clear all
        e(i) = 1;
                                              A = [45 \ 30 \ -25; \ 30 \ -24 \ 68; \ -25 \ 68 \ 80]
    else
                                              for i = 1:100
        e(j) = -1;
                                                   [q R] = QRFactorization(A);
    end
    clength = sqrt(c'*c);
                                                   A = R^*q;
    v = c + clength*e;
                                              end
    H = I - 2/(v'*v)*v*v';
                                              Α
    O = O^*H;
                                              e = diaq(A)
    R = H^*R_i
```

QR factorization

Householder matrix transformation

$$H = I - \frac{2uu^T}{u^T u}$$

• Characteristics

$$Hu = \left(I - 2uu^{T}\right)u = Iu - 2u\left(u^{T}u\right) = u - 2u = -u$$

- Eigenvalue: -1
- Orthogonal vector v

$$u^T v = uv = 0$$

$$Hv = \left(I - 2uu^{T}\right)v = v - 2u\left(u^{T}v\right) = v$$

- Eigenvector of householder matrix
- Eigenvalue: 1

QR factorization

• Characteristics

$$H^{T} = (I - 2uu^{T})^{T} = I^{T} - 2(uu^{T})^{T} = I^{T} - 2(u^{T})^{T} u^{T} = I - 2uu^{T} = H$$

• Symmetric

$$HH^{T} = (I - 2uu^{T})(I - 2uu^{T})^{T} = I - 4uu^{T} + 4uu^{T}uu^{T} = I$$

Orthogonal

 $\alpha = \|x\|$

QR factorization

• Characteristics

$$v = x + \alpha e$$
 $\alpha = ||x||$ $\alpha^2 = x^T x$

$$e^{T}x = x^{T}e, e^{T}e = 1$$
 $\alpha e = [\alpha, 0, \dots, 0]^{T}$

$$\|v\|^{2} = (x + \alpha e)^{T} (x + \alpha e) = x^{T} x + \alpha e^{T} x + \alpha x^{T} e + \alpha^{2} e^{T} e = 2\alpha^{2} + 2\alpha e^{T} x = 2\alpha(\alpha + e^{T} x)$$

$$Hx = \left(I - \frac{2vv^{T}}{v^{T}v}\right)x = x - 2\frac{vv^{T}}{v^{T}v}x = x - 2\frac{vv^{T}}{\|v\|^{2}}x = x - \frac{1}{\alpha(\alpha + e^{T}x)}vv^{T}x = -\alpha e$$

$$vv^{T}x = (x + \alpha e)(x + \alpha e)^{T}x = (xx^{T} + \alpha ex^{T} + \alpha xe^{T} + \alpha^{2}ee^{T})x$$

$$= xx^{T}x + \alpha ex^{T}x + \alpha xe^{T}x + \alpha^{2}ee^{T}x = \alpha^{2}x + \alpha^{3}e + \alpha(e^{T}x)x + \alpha^{2}(e^{T}x)e$$

$$= \alpha(\alpha + e^{T}x)x + \alpha^{2}(\alpha + e^{T}x)e = \alpha(\alpha + e^{T}x)(x + \alpha e)$$

$$x = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{bmatrix} \to Hx \to \begin{bmatrix} -\alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 \vec{x}

œ

 \vec{v}

QR factorization

• Characteristics

$$Hx = \left(I - \frac{2uu^{T}}{u^{T}u}\right)x = \left(-\alpha, 0, \dots, 0\right)^{T}$$

$$x = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \qquad \alpha^2 = x^T x = 17 \qquad \alpha = 4.123$$

$$u = x + \alpha e = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} + \begin{pmatrix} 4.123 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4.123 \\ 4 \\ 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & -0.97 & -0.243 \\ -0.97 & 0.059 & -0.235 \\ -0.243 & -0.235 & 0.941 \end{pmatrix} \bullet H \cdot x = \begin{pmatrix} -4.123 \\ 0 \\ 0 \end{pmatrix} \bullet$$

QR factorization with Householder matrix

• Step 1

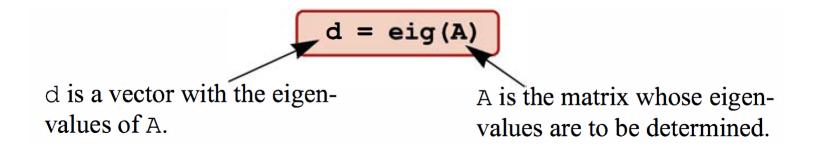
$$H_{1}A = H_{1} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \cdots & * \end{pmatrix} \qquad H = \begin{pmatrix} I - \frac{2uu^{T}}{u^{T}u} \end{pmatrix} \qquad \alpha = x^{T}x \qquad x = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$

• Step 2

$$H_{2}A_{1} = H_{2} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \cdots & 0 \\ 0 & & \cdots & 0 \\ 0 & & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & * & \cdots & * \\ \vdots & 0 & & \vdots \\ 0 & 0 & \cdots & * \end{pmatrix}$$

5.7 MATLAB Built-in Functions

Eigenvalues and eigenvectors



 \lor is a matrix whose columns are the eigenvectors of A. D is a diagonal matrix whose diagonal elements are the eigenvalues.

A is the matrix whose eigenvalues and eigenvectors are to be determined.

5.7 MATLAB Built-in Functions

QR factorization

