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5.1 Background 
 Eigenvalue 

 The word eigenvalue is derived from the German word eigenwert, which means "proper or 

characteristic value.“ 

     [𝑎][𝑢]  =  𝜆[𝑢] 

 Generalized form 

     𝐿𝐿 =  𝜆𝑢  

 𝐿 : operator that can represent multiplication by a matrix, differentiation, integration, and so on. 

 Ex) : second differentiation with respect to 𝑥, 𝑦 

 

 

      

 
 

 

 

 

 

 

 
 

 

𝑑2𝑦
𝑑𝑥2 = 𝑘2𝑦 

𝜆: eigenvalue associated by the operator 𝐿 

𝑢: eigenvector or eigenfunction corresponding to the eigenvalue 𝜆 and operator 𝐿 



5.1 Background 
 Importance of eigenvalues and eigenvectors in science and engineering 

 Ex) vibration 

 Eigenvalues represent the natural frequencies of a system or component. 

 Eigenvectors represent the modes of these vibrations. 

 Important to identify these natural frequencies 

– Periodic external loads at or near these frequencies, resonance can cause the motion of the structure to be 

amplified.  

– Leading to failure of the component 

 

 Mechanics of materials 

 The principal stresses are the eigenvalues of the stress matrix. 

 The principal directions are the directions of the associated eigenvectors. 

 

 

      

 
 

 

 

 

 

 

 
 

 



5.1 Background 
 Importance of eigenvalues and eigenvectors in science and engineering 

 Quantum mechanics 

 In Heisenberg’s formulation of quantum mechanics 

     𝐿Ψ = 𝑐Ψ 

– Ψ : any quantity that can be measured or inferred experimentally, wave function 

 Such as position, velocity, or energy 

– 𝑐 : eigenvalue 

 Ex)  

: energy operator : momentum operator 



5.1 Background 
 Importance of eigenvalues and eigenvectors in science and engineering 

 Link between eigenvalue problems involving differential equations and eigenvalue problems 
involving matrices ? 
 

 Numerical solution of eigenvalue problems involving ODEs 
 Results in systems of simultaneous equations 

 
 

 Eigenvalues of a matrix can also provide useful information 
 Jacobi and Gauss-Siedel iterative methods 

 
 
 

 It turns out that whether or not these iterative methods converge to a solution depends on the 
eigenvalues of the matrix [𝑎]. 

 How quickly the iterations converge depends on the magnitudes of the eigenvalues of [𝑎]. 

[𝑎][𝑢]  =  𝜆[𝑢] 



5.2 The Characteristic Equation 
 Eigenvalues of a matrix 

 
 

 [𝑎 − 𝜆𝐼] : non-singular  (if it has an inverse) ⇒ [𝑢] = 0 (trivial solution) 

 [𝑎 − 𝜆𝜆]  : singular  (if it does not have an inverse) ⇒ [𝑢] = 0  (non-trivial solution is possible.) 

 

 Characteristic equation 

 
 Polynomial equation for 𝜆 

 For a small matrix [𝑎] 

 The eigenvalues can be determined directly by calculating the determinant and solving for the roots 
of the characteristic equation. 

 For a large matrix 

 Difficult to determine 

 Various numerical methods: power method and QR factorization method 

 

 



5.3 Basic Power Method 
 Power method 

 Iterative procedure for determining the largest real eigenvalue and the corresponding 
eigenvector of a matrix 

 For a (𝑛 × 𝑛) matrix [𝑎], 𝑛 distinct real eigenvalues and 𝑛 associated eigenvectors 

 

 

 

 Eigenvectors are linearly independent! 

 Any vector can be written as a linear combination of the basis vectors. 

 

 

 
𝑐1𝜆1 𝑢 1 𝑐2𝜆2 𝑢 2 𝑐𝑛𝜆𝑛 𝑢 𝑛 



5.3 Basic Power Method 
 Power method 

 Successive iteration 

 

 

 



5.3 Basic Power Method 
 Power method 

 Successive iteration 

 

 

 

 𝜆1 : largest eigenvalue 

 

 When 𝑘 is sufficiently large,  

 

 

 



5.3 Basic Power Method 
 Power method 

 Algorithm of the power method 

 Start with a column eigenvector 𝑥 𝑖 of length 𝑛. (the vector can be any non zero vector) 

 Multiply the vector 𝑥 𝑖 by the matrix [𝑎] ⇒ 𝑥 𝑖+1 

 

 

 Normalizing 𝑥 𝑖+1 

 Assign the normalized vector and go back to the first step 

 

 Convergence criteria 



5.3 Basic Power Method 
 Power method 

 Example 



5.3 Basic Power Method 
 Power method 

 Convergence of the power method 

 Converges very slowly unless the starting vector [𝑥] is close to the eigenvector 𝑢  

 A problem can arise when 𝑐1 is zero. 

 

 

 

 When can the power method be used? 

 Only the largest eigenvalue is desired.  

 The largest eigenvalue cannot be a repeated root of the characteristic equation. 
– Other eigenvalues with the same magnitude 

 The largest eigenvalue must be real. 
– Two eigenvalues with the same magnitude.  

 

 



5.4 Inverse Power Method 
 Inverse Power Method 

 To determine the smallest eigenvalue 

 Power method: for the largest eigenvalue 
 Apply the power method to the inverse of the given matrix [𝑎] 

 This works because the eigenvalues of the inverse matrix 𝑎 −1 

– Reciprocals of the eigenvalues of [𝑎] 

 

 𝑎 𝑥 = 𝜆[𝑥]   ⇒    𝑎 −1 𝑎 𝑥 = 𝑎 −1𝜆 𝑥 = 𝜆 𝑎 −1 𝑥  

 

 𝑎 −1 𝑎 = [𝐼] ⇒    𝑥 = 𝜆 𝑎 −1 𝑥    ⇒   𝑎 −1 𝑥 = 1
𝜆
𝑥  

 

 𝟏/𝝀 : eigenvalue of the inverse matrix  𝒂 −𝟏 

 

 Application of the power method ⇒ the largest value of   1/𝜆   

 ⇒ the smallest value of 𝝀 



5.4 Inverse Power Method 
 Procedure 

 Starting vector 𝑥 𝑖 

 Multiplied by 𝑎 −1  

 Normalization 
 

 Inverse matrix 𝑎 −1 has to be calculated before iterations ! 

 Calculating the inverse of a matrix is computationally inefficient and not desirable.  

 

 
 

 By solving systems of linear equations, 𝑥 𝑖+1 can be obtained.  

 This can best be done by using the LU decomposition method. 
 

 With the power method and inverse power method, the largest and the smallest eigenvalues 
of a matrix can be found.  

 In some instances, it is necessary to find all the eigenvalues.  

 Shifted power method, QR factorization method 

 



5.5 Shifted Power Method 
 Shifted Power Method 

 Once the largest or the smallest eigenvalue is known, the shifted power method can be used 
for finding the other eigenvalues.  

 

 

 𝜆1 : the largest or smallest eigenvalue obtained by using the power method  

            or inverse power method 

 Shifted matrix 

 

 

 

 𝛼 :  eigenvalues of the shifted matrix  𝛼 = 𝜆 − 𝜆1  

 𝜆 = 𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑛  

 

𝑎 𝑥 = 𝜆[𝑥]    

𝑎 − 𝜆1𝐼 𝑥 = 𝛼[𝑥]    

𝑎 𝑥 = 𝜆[𝑥]    
𝜆 − 𝜆1 𝑥 = 𝛼[𝑥]    



5.5 Shifted Power Method 
 Shifted Power Method 

 Shifted matrix 

 

 

 Apply the basic power method ! 

 The largest eigenvalue of the shifted matrix, 𝛼𝑘  can be determined.  

 The eigenvalue 𝜆𝑘  can be determined.    𝛼𝑘 = 𝜆𝑘 − 𝜆1  

 Repeat this process together with shifted inverse power method! 

 

 Comment 

 Tedious and inefficient process! 

 QR factorization 

 

𝑎 − 𝜆1𝐼  



5.6 QR Factorization and Iteration Method 
 QR factorization and iteration method 

 Popular means for finding all the eigenvalues of a matrix 

 Based on the facts 

 Similar matrices have the same eigenvalues and associated eigenvectors. 

 The eigenvalues of an upper triangular matrix are the elements along the diagonal.  

 Strategy 

 Transform the matrix into a similar matrix that is upper triangular.  

 Iterative process is required.  

 

 The QR factorization method finds all the eigenvalues of a matrix, but cannot find the 
corresponding eigenvectors. 
 

 For real eigenvalues 
 QR factorization method eventually factors the given matrix into an orthogonal matrix and an upper 

triangular matrix 

 For complex eigenvalues (not covered in this course) 
 
 

 



5.6 QR Factorization and Iteration Method 
 Similar matrices 

 Two matrices 𝑎  and 𝑏  are similar if  

     𝑎 = 𝑐 −1 𝑏 𝑐      : similarity transformation 

 Similar matrices have the same eigenvalues and associated eigenvectors.  

 

 Orthogonal matrix 
 Whose inverse is the same as its transpose 

 

 

 QR factorization and iteration procedure 
 Start with the matrix 𝑎 1 

 

 

 𝑄 1 : orthogonal matrix,  𝑅 1: upper triangular matrix 

 
 
 

 

𝑎 1 = 𝑄 1 𝑅 1 

𝑄 −1 = 𝑄 𝑇    ⇒   𝑄 𝑇 𝑄 = 𝑄 −1 𝑄 = [𝐼] 



5.6 QR Factorization and Iteration Method 
 QR factorization and iteration procedure 

 The first iteration 

 
 

 𝑅 1 is multiplied by 𝑄 1 from the right 

 

 
 𝑎 1 and 𝑎 2 are similar; have the same eigenvalues. 

 

 The second iteration 

 

 

 

 𝑎 2 and 𝑎 3 are similar; have the same eigenvalues. 

 

 Iterations continue until an upper triangular matrix is resulted in.  

 

 

 

 
 

 

𝑎 1 = 𝑄 1 𝑅 1 

𝑎 2 = 𝑅 1 𝑄 1 

𝑅 1 = 𝑄1 −1 𝑎 1  

𝑅 1 𝑄 1 = 𝑄1 −1 𝑎 1 𝑄 1 = 𝑄1 𝑇 𝑎 1 𝑄 1 

𝑎 = 𝑐 −1 𝑏 𝑐       

𝑎 2 = 𝑄 2 𝑅 2 

𝑎 3 = 𝑅 2 𝑄 2= 𝑄2 𝑇 𝑎 2 𝑄 2 

The eigenvalues of an upper 
triangular matrix are the 
elements along the diagonal.  



5.6 QR Factorization and Iteration Method 
 QR factorization  

 

 

 Householder matrix [𝐻] for factorization  

 

 

 [𝑣] : n-element column vector 

 𝑣 𝑇 : row vector 

 𝑣 𝑇[𝑣] : scalar 

 [𝑣] 𝑣 𝑇 : (𝑛 × 𝑛) matrix 

 

 Special properties of [𝐻] 

– Symmetric 

– Orthogonal 

– 𝐻 𝑎 𝐻  : similar to [𝑎] 

 

 

 

 

 

 

 

 

 

𝑎 = 𝑄 𝑅  

𝑎 = 𝑐 −1 𝑏 𝑐       

𝐻 −1 𝐻 𝑎 𝐻 𝐻 = [𝑎]      



5.6 QR Factorization and Iteration Method 
 QR factorization  

 

 

 Step 1: identify the vector [𝑐] and [𝑒] 

 

 

 

 

 In [𝑒], the first element is 

– +1 : if the first element of [𝑐] (𝑎11)is positive. 

– −1 : if the first element of [𝑐] (𝑎11)is negative. 

 

 𝐻 (1)  can be constructed. 

   

 

 

 

𝑎 = 𝑄 𝑅  



5.6 QR Factorization and Iteration Method 
 QR factorization  

 

 

 Step 2: identify the vector [𝑐] and [𝑒] 

 

 

 

 

 

 

 In [𝑒], the second element is 

– +1 : if the first element of [𝑐] (𝑅22
(1))is positive. 

– −1 : if the first element of [𝑐] (𝑅22
(1))is negative. 

 

 𝐻 (2)  can be constructed.  

 

 

 

𝑎 = 𝑄 𝑅  

𝑎 = 𝐻 (1) 𝑅 (1) = 𝑄 (1) 𝑅 (1) 
 

𝑅 (1) = 𝐻 (2) 𝑅 (2)  
 

𝑎 = 𝑄 (1) 𝐻 (2) 𝑅 (2)= 𝑄 (2) 𝑅 (2) 
 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 

 

 Step 3: identify the vector [𝑐] and [𝑒] 

 

 

 

 

 

 

 In [𝑒], the third element is 

– +1 : if the first element of [𝑐] (𝑅33
(1))is positive. 

– −1 : if the first element of [𝑐] (𝑅33
(1))is negative. 

 

 𝐻 (3)  can be constructed.  

 

 

 

𝑎 = 𝑄 𝑅  



5.6 QR Factorization and Iteration Method 
 QR factorization  

 

 

 Step 4: last step (n-1) 

 

 

 

 

 Eigenvalue ? 

– 𝑎 𝑛 = 𝑅 𝑛−1  𝑄 𝑛−1   

– 𝑎 𝑛 = 𝑄 𝑛  𝑅 𝑛   

– 𝑎 𝑛+1 = 𝑅 𝑛  𝑄 𝑛   

 

 

 

 

 

 

 

 

𝑎 = 𝑄 𝑅  

Upper triangular matrix 

Orthogonal matrix 

Step for the factorization! 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 Example 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 Example 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 Example 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 Step 2 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 Step 2 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 QR factorization  

 Example 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 Iteration 

 Repeat the factorization until the last matrix in the sequence is upper triangular.  

 𝐴𝑛 = 𝑅 𝑛−1  𝑄 𝑛−1   

 

 

 

 

 Example 
 

 

 

 

 

 

 

 

 



5.6 QR Factorization and Iteration Method 
 Example 

 

 

 

 

 

 

function [Q R] = QRFactorization(R) 
% The function factors a matrix [A] into an orthogonal matrix [Q] 
% and an upper-triangular matrix [R]. 
% Input variables: 
% A  The (square) matrix to be factored. 
% Output variables: 
% Q  Orthogonal matrix. 
% R  Upper-triangular matrix. 
  
nmatrix = size(R); 
n = nmatrix(1); 
I = eye(n); 
Q = I; 
for j = 1:n-1 
    c = R(:,j); 
    c(1:j-1) = 0; 
    e(1:n,1)=0; 
    if c(j) > 0 
        e(j) = 1; 
    else 
        e(j) = -1; 
    end 
    clength = sqrt(c'*c); 
    v = c + clength*e; 
    H = I - 2/(v'*v)*v*v'; 
    Q = Q*H; 
    R = H*R; 
end 

clear all 
A = [45 30 -25; 30 -24 68; -25 68 80] 
for i = 1:100 
    [q R] = QRFactorization(A); 
    A = R*q; 
end 
A 
e = diag(A) 



5.6 QR Factorization and Iteration Method

 QR factorization 

 Householder matrix transformation

 Characteristics 

 Eigenvalue: ‐1

 Orthogonal vector 

 Eigenvector of householder matrix

 Eigenvalue: 1

2 T

T

uuH I
u u

 

   2 2 2T THu I uu u Iu u u u u u u       

0Tu v uv 

   2 2T THv I uu v v u u v v    



5.6 QR Factorization and Iteration Method

 QR factorization 

 Characteristics

 Symmetric

 Orthogonal
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T T TT T T T T T T TH I uu I uu I u u I uu H        

  2 2 4 4
TT T T T T THH I uu I uu I uu uu uu I      



5.6 QR Factorization and Iteration Method

 QR factorization 

 Characteristics
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5.6 QR Factorization and Iteration Method

 QR factorization 

 Characteristics
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5.6 QR Factorization and Iteration Method

 QR factorization with Householder matrix

 Step 1

 Step 2
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5.7 MATLAB Built-in Functions 
 Eigenvalues and eigenvectors 

 

 

 

 

 

 



5.7 MATLAB Built-in Functions 
 QR factorization 
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