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5.1 Background

**» Eigenvalue

® The word eigenvalue is derived from the German word eigenwert, which means "proper or

characteristic value.”
la][u] = A[u]
® Generalized form
Lu = Au
= L :operator that can represent multiplication by a matrix, differentiation, integration, and so on.

= Ex) :second differentiation with respect to x, y

d?y

ax2 =K

A: eigenvalue associated by the operator L

u: eigenvector or eigenfunction corresponding to the eigenvalue A and operator L



5.1 Background

** Importance of eigenvalues and eigenvectors in science and engineering

® Ex) vibration
= Eigenvalues represent the natural frequencies of a system or component.
= Eigenvectors represent the modes of these vibrations.

= Important to identify these natural frequencies

— Periodic external loads at or near these frequencies, resonance can cause the motion of the structure to be
amplified.

— Leading to failure of the component

® Mechanics of materials
= The principal stresses are the eigenvalues of the stress matrix.

= The principal directions are the directions of the associated eigenvectors.



5.1 Background

** Importance of eigenvalues and eigenvectors in science and engineering

® Quantum mechanics

= In Heisenberg’s formulation of quantum mechanics
LY = c¥
— W :any quantity that can be measured or inferred experimentally, wave function

» Such as position, velocity, or energy

—  :eigenvalue

= Ex)
ihoY _ EWY —iie‘P = ﬁ)‘P
21 Ot 2n
ig( ) : energy operator —lﬁe( ) : momentum operator
27Ot 2T



5.1 Background

** Importance of eigenvalues and eigenvectors in science and engineering

® Link between eigenvalue problems involving differential equations and eigenvalue problems
involving matrices ?

® Numerical solution of eigenvalue problems involving ODEs

= Results in systems of simultaneous equations

la][u] = Alu]
® Eigenvalues of a matrix can also provide useful information
= Jacobi and Gauss-Siedel iterative methods

k+1 , k
XD = by alx”

= |t turns out that whether or not these iterative methods converge to a solution depends on the
eigenvalues of the matrix [a].

= How quickly the iterations converge depends on the magnitudes of the eigenvalues of [a].



5.2 The Characteristic Equation

*» Eigenvalues of a matrix

[a—Al][u] = O
® [a — AI] : non-singular (if it has an inverse) = [u] = 0 (trivial solution)
® [a — AlI] :singular (if it does not have an inverse) = [u] = 0 (non-trivial solution is possible.)

*» Characteristic equation
detfa—AI] = 0

® Polynomial equation for A

® For a small matrix [a]

= The eigenvalues can be determined directly by calculating the determinant and solving for the roots
of the characteristic equation.

® For a large matrix
= Difficult to determine

= Various numerical methods: power method and QR factorization method



5.3 Basic Power Method

** Power method

® |[terative procedure for determining the largest real eigenvalue and the corresponding
eigenvector of a matrix

® Fora (n X n) matrix [a], n distinct real eigenvalues and n associated eigenvectors
Ay Aoy ooy Ay, [u]), [ul,, ..., [u],
Ay > Ao > .o > |2

® Eigenvectors are linearly independent!

= Any vector can be written as a linear combination of the basis vectors.

[x] = cy[u]y T cylul, + ...+ ¢, [u], c;#0



** Power method

® Successive iteration

[allx]; = ¢ lallul, +cylallul, +
A A
[a)(x], = Aylu)y + 22[uly + ...+ 22 (ul,
C1/ C1M
)&.3 3
[a][x];= A [u]1+——"[u]2
CIA] 1A}
Cz 2 Cphyy
[x], = [u]1+ [ L+...+—=—[ul],
¢
A A2
[x]s = [u]; + 2 2[ uly+ ot 2],
L c. A
[Jeey = [l + 22 [ul, + ..+ 222 (),
ll Clll

+——"[t¢] = x4

5.3 Basic Power Method

- telallul, = Aeilx];

= Mlx];



5.3 Basic Power Method

** Power method

® Successive iteration

cy s ¢, X
(X1 = [u]; + 22l + .+ 22 ]u],
11'1 cl}b]
= When k is sufficiently large,
Y e 1
[X]ps1 = [u]y + 22[ul, + ... + 2=2[u], [x]g+1 = [u]
Cih k k
lll (1}”]

[allx]i 1 = Ay [u],



5.3 Basic Power Method

** Power method

® Algorithm of the power method
= Start with a column eigenvector [x]; of length n. (the vector can be any non zero vector)

= Multiply the vector [x]; by the matrix [a] = [x];4+1

[x]i+1 = lallx];

= Normalizing [x];41

= Assign the normalized vector and go back to the first step

® Convergence criteria

I[x1; 41— [x1|, < Tolerance



5.3 Basic Power Method

** Power method

® Example

Example 5-2: Using the power method to determine the largest eigenvalue of a matrix.

Determine the largest eigenvalue of the following matrix:

4222
28 1 (5.21)
2 44

Use the power method and start with the vector x = [1, 1, 17".

4 220 4 0.5714 [4 2 -2][0.3936 2.8298 0.3731

[xI = lallxly = |28 1||1| = |7] = 7| 1 [x]s = [allx]ls = |28 1 1 | = |7.5851] = 73851 4
2 4 _4ll1 5 0.2857 (2 4-4]]03723 3.2979 0.4348
4 2 2|fos714]  [3.7143 [0.52 [4 2 2|[03731]  [2.6227 0.3411

[x]; = [allx]ls = |2 8 1 1 | = |7.1429] = 7.1429| [x]e¢ = [allx]s = |2 8 1 1 | = |7.6886| = 7-6886| |
2 4 -4]|0.2857 4 0.56 |2 4-4]|0.4348 3.0070 0.3911
4 2-2|0.52 2.96 0.3936 4 2 -2[[0.3272 2.5197 0.3255

[xls = [allx]s; = |28 1|]| 1|~ |752] =732| | [x]o = [allx]s = |2 8 1 1 | = |7.7401| = 7.7401)
2 4 -4|0.56 2.8 0.3723] 2 4 -4{0.3946 3.0760 0.3974




5.3 Basic Power Method

** Power method

® Convergence of the power method
= Converges very slowly unless the starting vector [x] is close to the eigenvector [u]

= A problem can arise when ¢4 is zero.

k k
c, A

_ 021‘2 n'*n
[x]k+l = [u]1+C_1_fi-'[u]2+.”+c_l}~_’If[u]n

® When can the power method be used?
= Only the largest eigenvalue is desired.

= The largest eigenvalue cannot be a repeated root of the characteristic equation.
— Other eigenvalues with the same magnitude

= The largest eigenvalue must be real.
— Two eigenvalues with the same magnitude.



5.4 Inverse Power Method

*** Inverse Power Method

® To determine the smallest eigenvalue

® Power method: for the largest eigenvalue

® Apply the power method to the inverse of the given matrix [a]

= This works because the eigenvalues of the inverse matrix [a] ™!

— Reciprocals of the eigenvalues of [a]

lal[x] = A[x] =

= 1/1: eigenvalue of the inverse matrix [a]~1

® Application of the power method = the largest value of 1/4

— the smallest value of 4




5.4 Inverse Power Method

*¢* Procedure

® Starting vector [x];

P P
® Multiplied by [a] ™! [%]ivr = Lal "1x];

® Normalization

® Inverse matrix [a] ™! has to be calculated before iterations !

= Calculating the inverse of a matrix is computationally inefficient and not desirable.

[x],21 = [a] '[x], == [allx],s; = [x],

= By solving systems of linear equations, [x];;; can be obtained.

= This can best be done by using the LU decomposition method.

® With the power method and inverse power method, the largest and the smallest eigenvalues
of a matrix can be found.

® In some instances, it is necessary to find all the eigenvalues.

= Shifted power method, QR factorization method



5.5 Shifted Power Method

+¢* Shifted Power Method

® Once the largest or the smallest eigenvalue is known, the shifted power method can be used
for finding the other eigenvalues.

= A, :the largest or smallest eigenvalue obtained by using the power method

or inverse power method

® Shifted matrix

A=A =
[a][x] = A[x] = ( Dlx] = a[x]

= «: eigenvalues of the shifted matrix a = (1 — 1;)

= /1 - 111/12)/13) ’ATL

o= 0,A —ApAs—ApAg—Ap oo hy— A



5.5 Shifted Power Method

+¢* Shifted Power Method

® Shifted matrix

[a_ﬂ,ll] o = 0’2'2_}'1'—'2'3_A’19?\‘4_k15""—'kn_kl

Apply the basic power method !

The largest eigenvalue of the shifted matrix, a; can be determined.

The eigenvalue A, can be determined. a; =1, — 14

Repeat this process together with shifted inverse power method!

® Comment

= Tedious and inefficient process!

= QR factorization



5.6 QR Factorization and Iteration Method

** QR factorization and iteration method
® Popular means for finding all the eigenvalues of a matrix

® Based on the facts

= Similar matrices have the same eigenvalues and associated eigenvectors.

= The eigenvalues of an upper triangular matrix are the elements along the diagonal.
® Strategy

= Transform the matrix into a similar matrix that is upper triangular.

= |terative process is required.

® The QR factorization method finds all the eigenvalues of a matrix, but cannot find the
corresponding eigenvectors.

® For real eigenvalues

= QR factorization method eventually factors the given matrix into an orthogonal matrix and an upper
triangular matrix

® For complex eigenvalues (not covered in this course)



5.6 QR Factorization and Iteration Method

* Similar matrices
® Two matrices [a] and [b] are similar if

: similarity transformation
= Similar matrices have the same eigenvalues and associated eigenvectors.
/ .
** Orthogonal matrix

® Whose inverse is the same as its transpose

** QR factorization and iteration procedure

® Start with the matrix [a]4

= [Q]; : orthogonal matrix, [R],: upper triangular matrix



5.6 QR Factorization and Iteration Method

** QR factorization and iteration procedure

® The first iteration

[a]; = [Q11[R], [R]y = [Q1] 7 [al, [a] = [c] 7" [b]Ic]
= [R]; is multiplied by [Q]; from the right

@ [RIL[Q]y = [@1]7 als[Q]: = [Q1][al1[@Q]4

= [a]; and [a], are similar; have the same eigenvalues.

The eigenvalues of an upper
triangular matrix are the

® The second iteration elements along the diagonal.
M X XX
=[Q,]"[al,[Q], 0 A X X
= [a], and [a]5 are similar; have the same eigenvalues. 0 0 7\.3 X
0 0 0 A,

® |[terations continue until an upper triangular matrix is resulted in.



5.6 QR Factorization and Iteration Method

+* QR factorization

la]l = [QIIR]

® Householder matrix [H] for factorization

[H] = [[]- ——[[v]

[v] [v]

v] : n-element column vector  [v] = [¢] +|cl;[e]

- T

v|' :row vector

[v]
[v]
[v]T [v] : scalar
[v]

v][v]T : (n X n) matrix

Special properties of [H]
— Symmetric

— Orthogonal

lell,=JJc? +c2+c3+ ...+ c?

~ [H1[al[H] : similar to [a] [H]7'[H][a][H][H] = [a]



5.6 QR Factorization and Iteration Method

+* QR factorization

la] = [Q][R]
® Step 1: identify the vector [c] and [e]
] 1]
a 0
[e] = | el = |0
Fn1l 0

= In [e], the first element is

— +1:if the first element of [c] (a;4)is positive.

— —1:if the first element of [c] (a;4)is negative.

= [H]™ can be constructed.

(01" = (a1

(R = [H]"[a]

[A] = []-

Vi)'

[V] "[v]

[v] = [c] +llcll,[e]

lell,=Jc? +c3 +c2+ ...+ c?

[ )
Rll

o O O

R &Y R Y
R(I) R(l) Rtl) R(l)
R(I) R(l) R(l) R(l)
R(I) R(l) R(l) R(l)
R(l) R(l) R(l) R(l)




5.6 QR Factorization and Iteration Method

+* QR factorization

la] = [QlIR] [H] = [1]—[ SR R R R R
Vv vV
(2) p(2) p(2) p(2)
® Step 2: identify the vector [¢] and [e] 0 Ry Ry Ryy Rys
e . laentl e vector |c| ana |e
P Y [v] = [e] + el le] 0 0 RY RY RY
0| Kl U O R R
1
R3) 41 lel,=Jct+e3+c+..+c2 |0 0 RY RG RY)
= 1 =
le] = |RY) [e] 0
1 0
Red -

[a] = [H]D[R]® =[Q] W [R]™
= In [e], the second element is [R](l) _ [H](Z) [R](Z)
— +1:if the first element of [c] (R( ))IS positive.

[a] = [QIV[H]P[R]@ =[Q]P[R]®
— —1:if the first element of [c] (R( ))IS negative.

- [H](Z) can be constructed. [Q](z) [Q](l)[H](l) [R](z) — [H](z)[R](l)




5.6 QR Factorization and Iteration Method

+* QR factorization

la]l = [QIIR]

® Step 3: identify the vector [c] and [e]

. .
0 0
@- 5] e b
RY) R(s) R RO R® R(s)
éé) 0 R R g®) g®
"3 0 R RD gD

= In [e], the third element is 0 0 R(3) R(3)

— +1:if the first element of [c] (R§13))is positive.

0
0
0
0 0 0 Ry RS
— —1:if the first element of [c] (R.2)is negative.

= [H]® can be constructed. [Q]m = [Q](Z)[_l1(](3]I [R]m = [H]G)[R](z)



5.6 QR Factorization and Iteration Method

+* QR factorization

la]l = [QIIR]
® Step 4: last step (n-1) Orthogonal matrix
() _ (=1 gy
[Q] (O] “[HA] » (a] = (01" V[R]"

(R = [H1P[R]" Y
Upper triangular matrix
= Eigenvalue?
- [aln = [Rltn-1) [Q](n-1)
— [aln = [Qlm) [Rlm)
= [aln+1 = Rl [Qlw




5.6 QR Factorization and Iteration Method

+* QR factorization

® Example

Example 5-3: QR factorization of a matrix.

Factor the following matrix [a] into an orthogonal matrix [Q] and an upper triangular matrix [R] :

6-72
[a] = |4 52 (5.56)

1-11

Step 1: The vector [c] is defined as the first column of the matrix [a]:

6
[c] = |4
1

The vector [e] 1s defined as the following three-element column vector:

i
[e] = |0
0]

—



5.6 QR Factorization and Iteration Method

+* QR factorization

® Example

Using Eq. (5.40), the Euclidean norm, |¢|, , of [c] is:

lel,=Jc? +c2+c2 =462+ 42 +1% = 7.2801

Using Eq. (5.39), the vector [v] is:

6 1 13.2801
[v] = [c] +cl,[e] = |4] +7.2801 || = 4
1 0 1

Next, the products [v]'[v] and [v][v]T are calculated:

13.2801

T
V'] = [132801 4 1]| 4 | = 1933611
1
 [13.2801 176.3611 53.1204 13.2801
VIV = | 4 |[1328014 1] = | 53.1204 16 4

1 13.2801 4 1



5.6 QR Factorization and Iteration Method

+* QR factorization

® Example

The Householder matrix [H ](1) is then:

) 5 . |100 5, |176.3611 53.1204 13.2801| |-0.8242 —0.5494 —0.1374
LHY =] ——[IVI =10 1 0|~ 553477 | 531204 16 4 |T[-0.5494 0.8345 —0.0414
vl L] 001 13.2801 4 1 ~0.1374 —0.0414 0.9897

Once the Housholder matrix [H ](1) is constructed, [a] can be factored into [Q]“)[R]“) , Where:

o o —0.8242 —0.5494 —0.1374
(O] 7 = [H]" =|_05494 0.8345 —0.0414
~0.1374 —0.0414 0.9897

and
" o 0.8242 —0.5494 —0.1374] [6 -7 2] [-7.2801 8.6537 —2.8846
[R]" = [H] ’[a] =|_0.5494 08345 —0.0414| |4 52| =| 0 —02851 0.5288
01374 —0.0414 09897 | |1 -1 1 0 01787 0.6322

This completes the first step.



5.6 QR Factorization and Iteration Method

+* QR factorization

® Step 2
01 i 0
[c] = [RS)| = |-0.2851 il = |
1
RY|  L0.1787 0

Using Eq. (5.40), the Euclidean norm, ||, , of [c] is:

lel =/ + 3+ c2 =A0% + (-0.2851)2 +0.1787* = 0.3365
Using Eq. (5.39), the vector [v] is:

0 0 0
[v] = [e] +llclle] = |_0.2851| 0-3365|_1| = |_0.6215
0.1787 0 0.1787

Next, the products [v]T[v] and [v][v]T are calculated:
. 0
[VI'[v] = [0 —0.6215 0.1787] |-0.6215| = 04183
0.1787

0 0 0 0

.
VIlVIT = |—0.6215| [0 —0.6215 0.1787] = |0 0.3864 —0.1111
0.1787 0 0.1111 0.0319



5.6 QR Factorization and Iteration Method

+* QR factorization

® Step 2

The Householder matrix [A#]? is then:

o ; . |1, fo o o | 1 o 0
[H] [1]—];—][1*][1’] =10 10|~ 52783 [0 0.3864 —0.1111|7|0 —0.8474 0.5311
v 001 00.1111 0.0319| |0 0.5311 0.8473

Once the Housholder matrix [H#]* is constructed, [a] can be factored into [Q](z)[R](z), where:

—0.8242 —0.5494 -0.1374| |1 0 0 —0.8242 0.3927 —0.4082
[017=101" 1717 = =
—0.5494 0.8345 -0.0414| |0 —0.8474 0.5311 —0.5494 —0.7291 0.4082

—0.1374 —0.0414 0.9897 0 0.5311 0.8473 —0.1374 0.5607 0.8166
and

o o |U0 0 |[-7.2801 8.6537 —2.8846| [-7.2801 8.6537 —2.8846
[RI=[HT7[R] "=|0 -0.8474 0.5311|| 0 -0.2851 0.5288|[=| 0 03365 —0.1123

0 0.5311 0.8473 0 0.1787 0.6322 0 0  0.8165



L)

5.6 QR Factorization and Iteration Method

QR factorization

® Example

Example 5-3: QR factorization of a matrix.

Factor the following matrix [a] into an orthogonal matrix [Q] and an upper triangular matrix [R] :

6-72
[a] = |4 52 (5.56)
1-11

6 -7 2| |-0.8242 0.3927 —0.4082| |-7.2801 8.6537 —2.8846
[a] = [O1P[R]® or |4 -52| =|-0.5494 —0.7291 0.4082 0 03365 -0.1123
1 -11| [-0.1374 0.5607 0.8166 0 0 08165

{0824 0303 0408 !’i 0002 0113 D.D—'I-TH'I_ !: 0000 004 D.Dlﬁh'l_ | —0.028 0017
q= 0540 —0720 —D408 |4 q=| 0102 0576 0.192 |4 q= 0042 0587 007210 5= 0028 0999 0032 |4
\0.137 0561 -0816) \—0.068 —0.136 098 ) \—~0.023 -0.073 0.997) \~0011 —0.032 0999/



5.6 QR Factorization and Iteration Method

+* Iteration

® Repeat the factorization until the last matrix in the sequence is upper triangular.
Ay = [Rln-1) [@](n-1 k .

n = ey Bele-n) M X XX

0 hy X X
0 0 & X
0 0 0 Ay

*** Example

Example 5-4: Calculating eigenvalues using the QR factorization and iteration

method.

The three-dimensional state of stress at a point inside a loaded structure is given by:

45 30 -25
oy = |30 —24 68| MPa
-25 68 80
Determine the principal stresses at this point by determining the eigenvalues of the stress matrix,
using the QR factorization method.




** Example

5.6 QR Factorization and Iteration Method

function [Q R] = QRFactorization(R)

% The function factors a matrix [A] into an orthogonal matrix [Q]
% and an upper-triangular matrix [R].-

% Input variables:
% A The (square) matrix to be factored.
% Output variables:

% Q

% R Upper-triangular matrix.

Orthogonal matrix.

nmatrix = size(R);

n
I

Q

for

end

nmatrix(l);

eye(n);

1;

jJ = 1:n-1

c = R(:,1);

c(1:3-1) = 0;

e(1:n,1)=0;

ifc@) >0
ed) = 1;

else
ed) = -1;

end

clength = sqrt(c"*c);

v = ¢ + clength*e;
H=1-2/(v"*v)*v*v";
Q = Q*H;

R = H*R;

clear all
A = [45 30 -25; 30 -24 68; -25 68 80]
for 1 = 1:100

[d R] = QRFactorization(A);

A = R*q;
end
A
e = drag(A)



5.6 QR Factorization and Iteration Method

** QR factorization
® Householder matrix transformation

2uu’

H=1
u'u

® Characteristics
Hu :(I —2uuT)u = Iu—2u(uTu) —U—2U=-U

= Eigenvalue: -1

® Orthogonal vector v
uv=uv=0

Hv=(| —2uuT)v=v—2u(uTv)=v

= Eigenvector of householder matrix

= Eigenvalue: 1



5.6 QR Factorization and Iteration Method

** QR factorization
® Characteristics

T T

HT=(I—2uuT) =IT—2(uuT) =IT—2(uT)TuT:I—2uuT=H
= Symmetric

HH' :(I —2uuT)(I —2uu’ )T = —4uu” +4uuwu’ =1

= QOrthogonal



5.6 QR Factorization and Iteration Method

*** QR factorization

® Characteristics

=l
<

_ _ o =[x :
V=X+ae o= HXH a’ =X X e

o
o
.
X
.

e'x=x"e, e'e=1 e =[a,0,---,0]'

||v||2 =(x+ae) (x+ae)=X Xx+ae' x+ax e+a’e’e =2a°+2ce' x=2a(a+e"X)

2w’ w' w'
HX=|l ——— [ X=X-2—X=X-2—75X =X- lT W' X =—qe
V'V V'V HVH a(a+e X)
W' X = (X+oe)(X+ae) x=(xx" +aex’ +axe’ +a’ee’)x 4 —¢
0
= XX' X+ aex x+axe'x+a’ee' x=a’x+a’e+ale' X)x+a’(e'X)e  x= A2 1 5 Hx o

=a(a+e' X)x+a’(a+e'x)e =a(a+e" X)(X+ae)




5.6 QR Factorization and Iteration Method

** QR factorization

® Characteristics

Hx=(| 2w jx=(—a,0,...,O)T

T

uu
0
X=| 4 o’ =x"x=17 a=4.123
1
0 4123 4123
U=X+ae=(4|+| 0 |=| 4

1 0 1

0 —0.97 -0.243 —4.123
H=| -0.97 0.059 -0.235(a H-x= 0 '

—0.243 -0.235 0.941 0



** QR factorization with Householder matrix

® Step 1
d;
a,, a
HA=H,| = 7
anl a'n2
® Step 2
8, a,
0 a
H2A1 = Hz :22
0 a,

,

n

nn

a,

5.6 QR Factorization and Iteration Method

2uu’
H=|1-=
uu a
U=X+oae
CP C d;y
a22 a2n — O
an2 ann O

ay,

A
A,

Ay

,




5.7 MATLAB Built-in Functions

*» Eigenvalues and eigenvectors

d = eig(A)

d 1s a vector with the eigen- A is the matrix whose eigen-
values of A. values are to be determined.

}g,nl = eig(%

V 1s a matrix whose columns are A is the matrix whose eigen-
the eigenvectors of A. Disa values and eigenvectors are
diagonal matrix whose diagonal to be determined.

elements are the eigenvalues.



5.7 MATLAB Built-in Functions

+* QR factorization

[Q,R] = qr(A)

Q 1s an orthogonal matrix, and A is the matrix that is factored.
R 1s an upper-triangular matrix

such that A=Q*R.
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