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Course Information

- Lecture: M/W 11:00-12:15am Zoom Online Lecture

- Instructor: Prof. Dongjun Lee (O] 55

Office: 1517@301 880-1724
Interactive & Networked Robotics Lab

- Office hour: M/W 1-2pm or by appointment (email me beforehand)

- Teaching assistants: Minji Lee (O| 21 Z]|)
(R211, 880-1690) Minhyeong Lee (O] 21&)
Undergraduate Course Assistants (TBA)

- TA session: 5-6 sessions during the semester (1 absence = -0.5%)
problem solving (HW, previous exams) + computer SW
start from the week of g9/14 (TAs will announce)
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Course Information

- Grading: quiz 15%; HW 15%; mid-exam 30%; final-exam 40%
mid-term: 10/29 (Th) 7-9:00pm?/on-site (one A4 paper allowed)
final: 12/14 (M) 7:00-9:30pmZ/on-site (two A4 papers allowed)

students with other exam/class: *can start late if before gpm; 2can start earlier if stay until 7pm (or arranged w/TA)

- Attendance mandatory: more than or equal to 5 unjustified absences = F
1 absence = -2%; 1tardiness (more than 15min late) = -0.5%
1 attendance cheating = 3 absences

- HW assigned almost every other week
should be turned in before the class on the due data
0.0/0.5/1.0-scale; 50% on the same day / 0% otherwise
all the quizzes will be on the due-date class and from the HW

- Any academic dishonesty is strictly prohibited;
if caught = F + academic disciplinary action;
work-ethics/integrity for better society w/o excessive societal cost

- This is English-based course, yet, Korean will (and can) be used whenever
@Donwgegemed necessary or more efficient (question, summary, emphasis, etc)

R
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Course Information

- Text: F. P. Beer, E. R. Johnston & P. J. Cornwell, “Vector Mechanics
for Engineers: Dynamics”, McGraw-Hill, 12th Ed
* Edition doesn’t matter: all HW problems will be scanned/posted
* Supplementary materials may also be uploaded from time to time

- Course Obijectives:
* able to formulate, solve and analyze the kinematics and dynamics of
a particle (and particles) in 2D and 3D
* able to formulate, solve and analyze the kinematics and dynamics
of arigid body in 2D and 3D

* able to apply the conceptsftools of dynamics for the analysis/design
of real/new engineering systems

©DongjunLee
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Relevant Systems
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Atlas - Parkour

Boston Dynamics

@ ENGINEERIN




Course Topics

Ch 1. Particle kinematics

Ch 12. Particle dynamics: Newton’s second law

Ch 13. Particle dynamics: energy, momentum, impulse, impact
Ch 14. Systems of particles

Ch 15. Rigid body kinematics in 2D and 3D

Ch.16. Rigid body dynamics in 2D: force & acceleration

Ch.17. Rigid body dynamics in 2D: energy & momentum method
Ch.18. Rigid body dynamics in 3D, gyroscopic motion

+

Brief introduction on Lagrangian (analytical) dynamics if time permits

SGDR ENGINEERING
{88} ENGzNEERING
Dongjun Lee & n

Kinematics vs Dynamics

¢ Kinematics: study of the geometry of motion; used to relate displacement,
velocity, acceleration of objects without reference to the cause of
motion = how to describe the object’s motion?

¢ Dynamics (kinetics): study of the relation between the forces/torques
acting on an object and its motion; used to predict the motion caused
by given force or to determine the force required to produce a given
motion = how the object’s motion evolves w/ actuation or interaction?

el e Robot Dynamics: M(z)a+ C(z,v)v+G(z) =u+ f
e x € SE(3) actuation/interaction
e T=v |
v
s i=a =M Y2)[u+ f— C(z,v)v — G(z)]
s a=j =4 (MY (2)[u+ f— C(z,v)v— G(z)))
kinematics dynamics

C Dong un Lee b1zt
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Rectilinear Motion

a=-9.81 m/s?
Ys

yp=12m

E Dons un Lee

e Particle moving along a straight line is said

to be in rectilinear motion.

¢ Motion of a particle is given by its scalar

position coordinate x € R from a fixed origin
on the line.

¢ Kinematics of rectilinear motion (scalar):

. . Ax
xX(t) = i}%g =v(t)
. . Av
v(t) = BE%E =a(t)
e Curvilinear motion: motion of a particle
along a curved line in two or three

dimensions (i.e., xis not a scalar, but a
vector (e.g., X € R3)).

Kinematics Integration

dv

E=a=f(t) dv=f(t)dt
x(t)
% () dx=v(t)dt

RO

* Acceleration given as a function of time, a=f{(t), t;=x, v

jdx = jv(t)dt

w(t) t t
dv=[f(t)dr | v(t)=vo =] f(t)dt
Vo 0 0

t

x(0)=xo = [v(e)di
0

0

C Dong unlee
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* Acceleration given as a function of position, a = f(x), t; = x, v Q‘. >r>
k \
W— <G
v=— or dt:@ a:@ora:v@:f(x) =
t v dt dx
v(x) X X
vdv = f(x)dx jvdv = ff(x)dx %v(x)2 —%v% = ff(x)dx
Yo X0 X0
x(t) dx
=
v, V)




Kinematics Integration

* Acceleration given as a function of velocity, a = f{\v), ty = x, v

v(1)

Frame

a0 o] T

0

VIO fiw - e
Aol aem xiéxzvv}:);?:)
*(6)=xg = ();‘?\:})

[eDongiunLee
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Motion of Several Particles: Relative Motion

* For particles moving along the same line, if

o A B . . .
- time be recorded from the same starting instant
—xA—~|— Xp/a— and displacements be measured from the same
B origin in the same direction.

XB/g=Xp—Xy= relative position of B
from 4
Xp =Xy +xB/A

VB/A =VB V4 = relative velocity of B
from A
VB :VA "rVB/A

ap/4 =ap —a, = relative acceleration of B

from 4
ap =dy +aB/A

©DongjunLee
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Sample Problem 11.2

1‘/0{,: +10m/s

a=-9.81 m/s?

yo=+20m

BN BN RN BB
o B OEDOEN BN OER

Ball tossed with 10 m/s vertical velocity
from window 20 m above ground.

Determine:

* velocity and elevation above ground at
time ¢,

* highest elevation reached by ball and
corresponding time, and

* time when ball will hit the ground and
corresponding velocity.

[eDongiunLee

SOLUTION:

Integrate twice to find v(¢) and y(?),
each being first and second order
polynomials w.r.t. 7.

Solve for ¢ at which velocity equals
zero (time for maximum elevation)
and evaluate corresponding altitude.

Solve for ¢ at which altitude equals
zero (time for ground impact) and
evaluate corresponding velocity.

=

Sample Problem 11.2

v(m/s)
10

dy

25.1 —_——— dt
- )

Position-time J.

curve

Yo 0

©DongjunLee

SOLUTION:
* Integrate twice to find v(¢) and y(7).

dy =[(10-9.81¢)dr

’ \QQ—M @:az_glglm/SZ
| dt
“ | )
s e o | Jav=—[081d  vle)-vo =981
Yo
y(m) ¥

v(t)lem—(9.81nzljt

S S

—=v=10-9.81¢

y(t)-y =10r-19.81¢7

y(t)=20m +(10mjt —(4.905 n;]tz
S S

&




v(m/s)

10

922 —————————

y(m) Py

25.1

20
Position-time
curve
|
|

Sample Problem 11.2

Velocity-time curve

— \\(/ e
28 4(s)

» Solve for ¢ at which velocity equals zero and evaluate
corresponding altitude.

v(t)lem—(9.81nzljt:0
S S

* Solve for y at which velocity becomes zero.

y(t)=20m+ 1022 || 4.905 2 |2
S 52

y=20m+|10™](1.0195)—| 49052 |(1.019s)?
2
S S

‘
0 1019 3.28

[eDongiunLee
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Sample Problem 11.2

* Solve for ¢ at which altitude equals zero and
evaluate corresponding velocity.

(1) = 20m+(10m)t —(4.905“3]:2 =0
S S

t = —1.243s (meaningless)
t=3.28s

©DongjunLee

328  t(s)

v(t)lem—(9.81n21jt
S S

v(s.zss):lom—(9.81“21](3.28s)
S S

y=-2221
S




Sample Problem 11.4

vg=18m/s

t=0
a=-9.81m/s2

yo=12m

Ball thrown vertically from 12 m level
in elevator shaft with initial velocity of
18 m/s. At same instant, open-platform
elevator passes 5 m level moving
upward at 2 m/s.

Determine (a) when and where ball hits
elevator and (b) relative velocity of ball
and elevator at contact.

E Dons un Lee

SOLUTION:

* Compute yp (quadratic in ¢)

e Compute yg (linear in )

* Find time t, s.t. y5(t.) = yg(t.)

Find yp(t;) — ye(tc)

Sample Problem 11.3

 t=t

vo=18m/s

 t= 0
—— 0= —9.81 m/s?

yo=12m

SOLUTION:

* Substitute initial position and velocity and constant
acceleration of ball into general equations for
uniformly accelerated rectilinear motion.

m
vg =vg+at=18—-

m
9.81— |t
S ( szj

YE

C Dong unlee

__Yp=5m

g =yo+vot+Lar® = 12m+(18r:jt—[4.905:21jt2

+ Substitute initial position and constant velocity of
elevator into equation for uniform rectilinear motion.

m
VE = 2=—
vp=2m/s S

YE =Yo+VEt :5m+(2mjt
s




Sample Problem 11.3

» Write equation for relative position of ball with respect to
elevator and solve for zero relative position, i.e., impact.

vy = 12+18:-4905¢ )~ (5+26)=0
t =-0.39s (meaningless)
t=3.65s

~ « Substitute impact time into equations for position of elevator
and relative velocity of ball with respect to elevator.

yg =5+2(3.65)

vg/p =(18-9.817)-2
=16-9.81(3.65)

vp/p =—19.817
S

E Dons un Lee

SOLUTION:
* Integrate a = dv/dt = -kv to find v(¢).

oil * Integrate v(f) = dx/dt to find x(?).
a=—kv
) * Integrate a = v dv/dx = -kv to find
Brak.e mechanlsm gsed to reduce gun relation between v(x) as a function
recoil consists of piston attached to barrel of x.

moving in fixed cylinder filled with oil.
As barrel recoils with initial velocity v,
piston moves and oil is forced through
orifices in piston, causing piston and
cylinder to decelerate at rate proportional
to their velocity.

Determine v(%), x(f), and v(x).

C Dong unlee
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Sample Problem 11.3
° SOLUTION:
Yo
* Integrate a = dv/dt = -kv to find v(7).
w(t) t
a=Y— _ky j@:—kjdt ln@:—kt
dt Y 0 Vo
0
o t
v(t)= voe_kt
* Integrate v(¢) = dx/dt to find x(7).
dx —kt
t)=—=
v(t) 4 vge
() - 1w
J.dx:VOJ.E dt x(t):vo[—e }
0 0 k 0
x(t)= Yo (1 —eH
k
leDongjunLe 'g)
Sample Problem 11.3
» * Integrate a = v dv/dx = -kv to find v(x).
o dv v X
a=v—=—kv dv=—kdx fdv:—kjdx
dx ; 0
0
v—vo =—kx
v=vy —kx
o 20 x
&
* Alternatively,
with x(¢)= %0 (1 - eik’)
and V()= voefkt or e ¥ = @
Yo
t
then x(t)= vo(l - v()j
k VO
v=vy —kx
[oDongjunLee 7‘[_%‘7 EN
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Particles with Constraints: Pulleys

* Position of a particle may depend on position of one
or more other particles.

f J * Position of block B depends on position of block 4.
i Since rope is of constant length,

x,+2x, = constant (one degree of freedom)

* For linearly related positions, similar relations hold
between velocities and accelerations.

dﬁ+2dﬂ:0 or v,+2v, =0

dt dt

a,,e dv dv
£+ —A42-L=0 or a,+2a,=0

- Thoad = Thotae"? dt dt

* If no slack, no slip and no bearing friction, tension 7'
; along the (taut) string is all the same (vs capstan)

* Thus, force is amplified, while motion scaled-down

1
Fp =2F, =2T, UB=7§UA Favg + Fgug =0

BB ENcINEERIN
[onongjuntee &)

Sample Problem 11.5

SOLUTION:
xl """ e V) - * Draw x4, Xp, Xg.
4l K
____-F_[ xA(t)+2xD(t)+xB(t) :Lsm'ng
200 mm
» Compute x4 (t); Find ¢ s.t. x,(t) = L
L

Pulley D is attached to a collar which « Compute x;, (¢)

is pulled down at 75Smm/s. At¢=0,

collar 4 starts moving down from K

with constant acceleration and zero ~ * Identify constraint among x4, xp, Xp
initial velocity. Knowing that
velocity of collar 4 is 300 mm/s as it
passes L, determine the change in
elevation, velocity, and acceleration
of block B when block 4 is at L.

* Use the constraint to compute
xp(t), vp(t), ap(t)

tczDonﬁ'un Lee
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Sample Problem 11.g
%) SOLUTION:

‘?Dons'un Lee

Xalo

| a4 b
K T

1
200 mm i
1

* Define origin at upper horizontal surface with
positive displacement downward.

Jl”"‘ + Collar 4 has uniformly accelerated rectilinear motion.
Solve for acceleration and time ¢ to reach L.

Vi = (VA )é +2a, [xA - (xA )o]
mm

2
[300“““] =2a,(200mm)  a,=225—
S

& 4 = 300 mm/s

S2

Va= (VA )o tay
30070 = 2250
S S

t t=1.333s

(&

Sample Problem 11.5

* Pulley D has uniform rectilinear motion. Calculate

Xplo

change of position at time ¢.
Xp = (XD )0 +vpl
Xp
mm
Xp _(XD )o = (75 s

)(1.3335):100 mm

* Block B motion is dependent on motions of collar
l vp= 75 mm/s A and pulley D. Write motion relationship and
solve for change of block B position at time .

Total length of cable remains constant,

tczDonﬁ'un Lee

n X+ 2xp +xp = (XA )o + 2(XD )0 + (XB )0
[XA _(XA)0]+2[XD _(XD)O]+ [xB _(xB)O]: 0

¥ (200mm)+2(100mm)+[x, —(x,),]=0

1, = (x, ), =—400mm|

13



Sample Problem 11.5
« Differentiate motion relation twice to develop equations for
velocity and acceleration of block B.
‘o x,+2x,+x, =constant
4 v, +2vy+v; =0
mm mm
(300)+2(75]+v5 =0 v, =450 28
S S S
a,+2a,+a,=0
mm
225 3 +VB=0 a :,225@
S B 52
ﬁDons'un Lee ?1%\, 3
Graphical Solution of Rectilinear Motion
x v a
< ¥ o
C}o C}OQ
dx _ P (- do_,
| ; ™ | 1t ~ |
:x ' ' 1T> ‘ \‘H :
I
I i | |
t t ty t t) t
* Given the x-f curve, the v-¢ curve is equal to
the x- curve slope.
* Given the v-f curve, the a-f curve is equal
to the v-7 curve slope.
[©DongjunLee 117%8‘
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Graphical Solution of Rectilinear Motion

* Given the a-f curve, the change in velocity between ¢, and ¢, is
equal to the area under the a-f curve between ¢, and ¢,.

* Given the v-f curve, the change in position between ¢, and ¢, is
equal to the area under the v-f curve between ¢; and #,.

E Dons un Lee

Other Graphical Methods

e Moment-area method to determine particle position at

time ¢ directly from the a-f curve:

X, —x, =area under v—¢ curve

=vofy + T(a () = £(v))dv

using dv=a(t) dt,
n
X, =Xy =Vt + J‘(t1 —t)a(t)dt
0
4
0 with respect to ¢ = ¢, line.

x; = xo +vot; + (area under a- curve)(t; —7)

t = abscissa of centroid C

C Dong unlee

'[(fw ~t)adt = first moment of area under a-f curve

15



Other Graphical Methods

* Method to determine particle acceleration
from v-x curve:

a=v—
X

= ABtan6
= BC = subnormal to v-x curve

[eDongiunLee

1R

©DongjunLee

Curvilinear Motion

« Particle moving along a curve other than a straight line
is in curvilinear motion.

s Position vector 7(t) = OP € R3

 Kinematics relations:
velocity (vector)
.. AF dF
v=Ilm—=—=
A0 At dt
speed (scalar)

AS —
A—0 At dl v4 =90 kvh
%

750 m

* In general, acceleration vector is not tangent to
particle path and velocity vector.

» How to describe the vector 7 ?

16



Cartesian Coordinates

» When position vector of particle P is given by its
(fixed) rectangular (or Cartesian) components,

F:xl?+y]'+zl€

* Velocity vector,
_dx dy»da B
O R =%+ 3]+ 2k
S Tad Tar T T TE

\\,wy
=Vl +v, ] +v.k ‘

tangeyftial

{B}

normal

¢ Acceleration vector,

2 2 2
i=2 ;?+d ;]+d—21€:5c'7+j}]’+21€
dt dt dt

=ayi +a,j+azk

. . . di _dj _dk
/ X = with each i, j, k fixed (i.e.,, 249 __ 0),

dt ~ dt  dt
component in each direction can be analyzed separately

[epongiuntee Ty

Derivatives of Vector Functions

Let P(u) be a vector function of scalar variable u,

P dP . AP . P(u +Au)— f’(u)
Plu + Au) 2 -~ =lim —= lim ———24 -~ v/
du  Au—0Au  Au—0 Au

¢ Derivative of vector sum,

d(P+Q)_dP a0

Plu)

du du du
:  Derivative of product of scalar and vector functions,
d(fP)_df 5 post?
du du

* Derivative of scalar product and vector product,

!PTQ} dPTQ PTdQ

du du du
dlP<Q)_dP ;5. 5 d0
z du du du

©DongjunLee
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Projectile Motion

» Rectangular components particularly effective
when component accelerations can be integrated
independently, e.g., motion of a projectile,

a,=x¥=0 a,=y=-g a,=2=0
with initial conditions,

x0=y0=20=0 (), (v, )-(v2)y =0
Integrating twice yields

Vx=(vx)0 vy=(vy)0—gl v, =0

x= (vx)ot y= (vy)oy—%gt2 z=0

* Motion in horizontal direction is uniform.

* Motion in vertical direction is uniformly accelerated.

* Motion of projectile could be replaced by two
independent rectilinear motions.

E Dons un Lee

Motion Relative to a Frame in Translation

y' » Designate one frame as the fixed (inertia) frame of
reference. All other frames not rigidly attached to the
fixed frame are moving (body) frames of reference.

* Position vectors for particles A and B with respect to
the fixed frame of reference Oxyz are 7, and 7, € R>.

* Vector 7g/4 joining 4 and B defines the relative
position of B from A w.r.t. Ax’y’z’

Py =T+,
« Differentiating twice,

Vg =V4+Vp/4 Vp/4 = relative velocity of B from
Awrt Axy’z’.

dp=dy+dpy dpy= relative accel. of B from
Awrt Axy’z’.

* Absolute motion of B can be obtained by combining the motion of 4 and the
relative motion of B from 4 w.rit. A'x’y’z’.

©DongjunLee f&»; ENGINEERIN
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Sample Problem 11.4

___B[H Strategy:
f :
35m e=——1.2m/s" . .
l * Define inertial axes for the system.
iy == + Determine the position, speed, and

36 km/! i
Bl accelerationof carAatr=5s.

* Determine the position, speed, and

. . . acceleration of carBatt=5s.
Automobile 4 is traveling east at the

constant speed of 36 km/h. As » Using vectors (Equation 11.30, 11.32,
automobile A4 crosses the intersection and 11.33) or a graphical approach,
shown, automobile B starts from rest determine the relative position, velocity,
35 m north of the intersection and and acceleration.

moves south with a constant
acceleration of 1.2 m/s%. Determine
the position, velocity, and
acceleration of B relativeto 4 5 s
after A crosses the intersection.

(]

[eDongiunLee

Sample Problem 11.4

a, =0 a,=12m/s*{
v,=10m/s— vy=6m/s{
r,=50m-— r, =20m{

We can solve the problems geometrically, and apply the arctangent relationship:
10 m/s

T4 ¢ I
"
20 m a) 6 mis 1.2 m/s? aAp/a
VB/A
50 m
I.B/A:53.9m azzl.go VB/AZII.ﬁf)m/S ﬂ:310°
rpa = 539 m = 21.8°  vpa = 11.66 m/s 7 31.0° ag, = 1.2 m/s* |

Or we can solve the problems using vectors to obtain equivalent results:

Ty =T, +15, Vg =Vat Vg ag=a, tag,
20j="50i+ry,, —60j=10i+ vy, -1.2j=0i+ay,,
Iy, =20j—50i (m) Via =—0j—10i (m/s) ay, =—1.2j (m/s?)

Physically, a rider in car A would “see” car B travelling south and west.

©DongjunLee
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Sample Problem 11.10

{B}:body frame
(rotating/moving)  SOLUTION:

vy =9 IV

tangepftial

* Calculate tangential (forward) and
normal (sideway) components of

normal acceleration.

750 m = convenient to describe motion

along longitudinal and sideway
{O} :inertial (world/fixed) frame for car/driver

A motorist is traveling on curved
section of highway at 90 km/h. The
motorist applies brakes causing a = not Cartesian anymore
constant deceleration rate (tangential).

= basis (unit) vectors e, e, rotate

» Determine acceleration magnitude and
direction with respect to tangent to
curve.

Knowing that after 8 s the speed has
been reduced to 72 km/h, determine
the acceleration of the automobile
immediately after the brakes are
applied.

t’C‘Dongjun Lee

(]

Tangential and Normal Components

e/« Velocity vector of particle is tangent to the path
of particle. In general, acceleration vector is not.
Given a path, often convenient to express motion
in terms of tangential and normal components.

* ¢ and & are tangential unit vectors for the
particle path at P and P’. When drawn with
respect to the same origin, Aé, =&/ —¢, and
i A0 is the angle between them.

o

Ae, =2sin(A6/2)e,
lim 2% _ g S2(80/2);
A0>0 AQ 400 AH/Z

- _de
¢

t

nzﬁ

©DongjunLee 117{{"’_@0
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Tangential and Normal Components

. o with ¥ =1¢,
_ dv _dv_ de, dv_. de dOds
a=—=—e tV—=—e +tV———
dt dt dt dt d@ ds dt
where
de, ds
—L=e df=ds =
a7 :
° After substituting,
! aee Ve gl Y
dt t P n t dt n P

» Tangential component of acceleration reflects
change of speed and normal component reflects
change of direction.

» Tangential component may be positive or

04 - negative. Normal component always points
toward center C of path segment curvature.
E Dons un Lee “Hj EN

Tangential and Normal Components

Osc';lating  Relations for tangential and normal acceleration
S also apply for particle moving along space curve.

a=Pe Vo o, Y
- = =4 =
/ dt t P n t dt n P
2 x * Plane containing tangential and normal unit
vectors is called the osculating plane.

* Normal to the osculating plane is found from

d_T:nN, ebzelXen
ds
‘Z_N i B, €, = principal normal
S
dB
— =—71N é. =bi
4 i ey, =binormal

T
N
B

[;L} _ { 0~ O} [T}  Acceleration has no component along binormal.

RR EN
©DongjunLee [1::9]
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Sample Problem 11.10

{B}: body frame

vy =9 IV

tangepftial
normal

750 m

{O} :inertial (world/fixed) frame

A motorist is traveling on curved
section of highway at 90 km/h. The
motorist applies brakes causing a
constant deceleration rate.

Knowing that after 8 s the speed has
been reduced to 72 km/h, determine
the acceleration of the automobile
immediately after the brakes are
applied.

t’C‘Dongjun Lee

=" +—¢

(rotating/moving)  SOLUTION:

Calculate tangential and normal
components of acceleration.

Determine (total) acceleration
magnitude and direction with respect to
tangent to curve.

= a, =—
dt p " a " p

(]

Sample Problem 11.10

a, = 0625 m/s2

a, =0.833 m/s2”

90km/h =25m/s
72km/h =20m/s

t’n‘;Dongjun Lee

SOLUTION:

* Calculate tangential and normal components of
acceleration.

o =2 (25-20)m/s _ ~0.625
At 8s S
2 2
A el L) 0.8332
P 750m S

* Determine acceleration magnitude and direction
with respect to tangent to curve.

a=Ja’+a’ =\(-0.625) +0.833 |a=10417

S

., 0.833

0.625

-1 aﬂ
o =tan — =tan
at

polar coordinates?

straight outlet?

22



Polar Coordinates

* When particle position is given in polar coordinates,
it is convenient to express velocity and acceleration
with components parallel (radial # normal) and
perpendicular (transversal # tangential) to OP.

* The particle velocity vector is

ﬁ—i(ré )—ﬂé +rdﬁ—ﬂé +rﬁé
a7 a T a da T ar
Zfér-i-l”gég
F=re,
_ - * Similarly, the particle acceleration vector is
@ g, Po__; d(d 6
—_— = 0 — =€, - v -
do do S i R
¢ dt(dte’ rdteg)
&, _de. do_,; _dlr  drde, drdo.  d’0. . d0de
di  do dr o a2 " drdt drdr 00 g2 ar oar
de, _de,do _ ~(#-r62), + (-6 +270)z,
dt do dt ’

C Dong unlee

Cylindrical Coordinates

* When particle position is given in cylindrical
coordinates, it is convenient to express the
velocity and acceleration vectors using the unit
vectors €, €, (rotating) and £ (fixed).

¢ Position vector,

F=ré+zk
* Velocity vector,
dr
dt

V="—=7e +r0é,+zk
¢ Acceleration vector,
av

JZE:(f—rﬁ'z)Er +(rG+2i0)6, +2k

11 igh e
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in seconds. Collar B
arm such that »=0.9
in meters.

observed in) the arm.

[eDongiunLee

Sample Problem 11.12

SOLUTION:

¢ Evaluate time ¢ for 8= 30°.

 Evaluate radial and angular positions,
and first and second derivatives at

time ¢.
Rotation of the arm about O is defined * Calculate velocity and acceleration in
by 6= 0.15# where 61is in radians and ¢ cylindrical coordinates.

slides along the

- 0.122 where ris  Evaluate acceleration with respect to

arm.

After the arm has rotated through 30°, ;
determine (a) the total velocity of the v=re +r0e,
collar, () the total acceleration of the
collar, and (c) the relative acceleration
of the collar with respect to (as

i=(7-r6%)e +(r6+2:6)6,

=

©DongjunLee

Sample Problem 11.12

SOLUTION:
¢ Evaluate time ¢ for = 30°.

0 =0.15¢>
=30°=0.524rad  ¢=1.869s

 Evaluate radial and angular positions, and first
and second derivatives at time ¢.

r=0.9-0.12¢> =0.481m
7 =—-0.24¢ =-0.449m/s

¥ =—-0.24m/s>

0=0.15¢>=0.524rad
0 =0.30¢ =0.561rad/s

d= 0.30rad/s2

&
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v=v.e,+Ugey
a=a,e, +agey

E Dons un Lee

Sample Problem 11.12

* Calculate velocity and acceleration.
v, =i =—0.449m/s
vg =r0 =(0.481m)(0.561rad/s) = 0.270m/s

1,
v=«/vr2+v£ ,thanl—g

v,
v=0524m/s  B=31.0°

”

Vg = (0.270 m/s)ey a, =i— r6?
=-0.240m/s? - (0.481m)(0.561rad/s)?
=-0.391m/s>
ag =r6 + 270
= (0.481m)(o.3rad/ 52)+ 2(~0.449m/s)0.561rad/s)
=-0.359m/s?
a=«/a3+a5 yztanflz—g

r

a=0.531m/s  y=42.6°

e

Gy

C Dong unlee

N 2 = d? —
— dcjp =re, =4z(re)

Sample Problem 11.12

* Evaluate relative acceleration with respect to arm.

» Relative motion of the collar with respect to the
arm as observed in/within the (rotating) arm.

= by observer sitting on arm tracking within
motion in rod w/o knowing s/he is rotating

* Motion of collar with respect to arm is defined
by the coordinates along &,., 8¢ and thus

rectilinear. ‘ i =-0.240m/s? (= (¥) B)‘

» Expressed in body-frame {B} (rotating together):
expressed in the body-frame coordinates &, 8y

= relative acceleration as expressed in {B}

deig=Gde—do =Adc
- oL AN f
Ao = (r -r0 ) e, + (r0 +2r9)ea =dg,, =(F-r0°;r0+2r0)
# relative acceleration as observed in {B}

~obs.B _

&
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Relative Motion as Observed in {A}

* Position of B can be written by:

Y30 = Va0 T V14 <

where {O} is a fixed frame with basis vectors I, J, I_c),

{4} is a moving frame w/ basis vectors &, &, €; and

FB/A is the relative position of B from A (or w.r.t. {4}).
+ Differentiating twice,

Vo =Vt Vg VBja = Tpa: relative velocity of B

from A4 (or w.r.t. {4})
gio =0y +dy, Gga= T a: relative acceleration of B
from A4 (or w.r.t. {A})
* All the vectors can be expressed in {O} orin {4} =

FB/A = TE/AZ+ 7'%/‘454- rhak = W'E/Aé'g

* Relative motions as observed in {4} (cf. observed on Earth, only along é;, é,, €5):
position as observed in {4}: % /462

velocity as observed in {A}: 7% & (=ié. # Fpja = 1€, + r0€)

acceleration as observed in [A}: %, (i€, # Fpja = (i = r6%)&, + (rf + 270)&)

[epongiuntee &) =

=N

Key Equations

» Tangential and normal components given a path

y

Osculating
plane

v =ve,
L odv. V. dv v
a=—e, +—e, a=— a,=—
) dt Vo dt o,

tczDonﬁ'un Lee




