

Course Information		
- Lecture: M/W 11:00-12:15am Zoom Online Lecture		
- <u>Instructor</u> : Prof. Dongjun Lee (이동준) Office: <u>1517@301</u> <u>djlee@snu.ac.kr</u> 880-1724 Interactive & Networked Robotics Lab <u>https://www.inrol.snu.ac.kr/</u>		
- <u>Office hour</u> : M/W 1-2pm or by appointment (email me beforehand)		
- <u>Teaching assistants</u> : Minji Lee (이민지) <u>mingg8@snu.ac.kr</u> (R211, 880-1690) Minhyeong Lee (이민형) <u>minhyeong@snu.ac.kr</u> Undergraduate Course Assistants (TBA)		
- <u>TA session</u> : 5-6 sessions during the semester (1 absence = -0.5%) problem solving (HW, previous exams) + computer SW start from the week of 9/14 (TAs will announce)		
SDongjun Lee		

ngjun Le

Sample Problem 11.10		
$a_t = 0.625 \text{ m/s}^2$ Motion $a_n = 0.833 \text{ m/s}^2$	SOLUTION: • Calculate tangential and normal components of acceleration. $a_t = \frac{\Delta v}{\Delta t} = \frac{(25-20) \text{ m/s}}{8 \text{ s}} = -0.625 \frac{\text{m}}{\text{s}^2}$ $a_n = \frac{v^2}{\rho} = \frac{(25 \text{ m/s})^2}{750 \text{ m}} = 0.833 \frac{\text{m}}{\text{s}^2}$	
90km/h = 25m/s 72km/h = 20m/s	• Determine acceleration magnitude and direction with respect to tangent to curve. $a = \sqrt{a_t^2 + a_n^2} = \sqrt{(-0.625)^2 + 0.833^2} a = 1.041 \frac{\text{m}}{\text{s}^2}$	
	$\alpha = \tan^{-1} \frac{a_n}{a_t} = \tan^{-1} \frac{0.833}{0.625}$ polar coordinates? straight outlet?	
©Dongjun Lee		

Sample Problem 11.12	
e e e e e e e e e e e e e e e e e e e	SOLUTION: • Evaluate time t for $\theta = 30^{\circ}$. $\theta = 0.15t^2$ $= 30^{\circ} = 0.524 \text{ rad}$ $t = 1.869 \text{ s}$
	• Evaluate radial and angular positions, and first and second derivatives at time <i>t</i> .
$\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta$ $\vec{a} = \left(\vec{r} - r\dot{\theta}^2\right)\vec{e}_r + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right)\vec{e}_\theta$	$r = 0.9 - 0.12t^{2} = 0.481 \text{ m}$ $\dot{r} = -0.24t = -0.449 \text{ m/s}$ $\ddot{r} = -0.24 \text{ m/s}^{2}$
	$\theta = 0.15t^2 = 0.524 \text{ rad}$ $\dot{\theta} = 0.30t = 0.561 \text{ rad/s}$ $\ddot{\theta} = 0.30 \text{ rad/s}^2$
©Dongjun Lee	

