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Dynamics (동역학)

Lecture 1: Particle Kinematics

Dongjun Lee (이동준)

Department of Mechanical Engineering
Seoul National University

Dongjun Lee

Course Information
- Lecture: M/W  11:00-12:15am   Zoom Online Lecture

- Instructor: Prof. Dongjun Lee (이동준)
Office: 1517@301 djlee@snu.ac.kr 880-1724
Interactive & Networked Robotics Lab
https://www.inrol.snu.ac.kr/

- Office hour: M/W 1-2pm or by appointment (email me beforehand)

- Teaching assistants: Minji Lee (이민지) mingg8@snu.ac.kr
(R211, 880-1690)       Minhyeong Lee (이민형) minhyeong@snu.ac.kr

Undergraduate Course Assistants (TBA)   

- TA session: 5-6 sessions during the semester (1 absence = -0.5%)
problem solving (HW, previous exams) + computer SW
start from the week of 9/14 (TAs will announce)
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Course Information
- Grading: quiz 15%;  HW 15%;  mid-exam 30%;  final-exam 40% 

mid-term: 10/29 (Th)   7-9:00pm1/on-site (one A4 paper allowed)
final: 12/14 (M)   7:00-9:30pm2/on-site (two A4 papers allowed)
students with other exam/class: 1can start late if before 9pm; 2can start earlier if stay until 7pm (or arranged w/ TA)

- Attendance mandatory: more than or equal to 5 unjustified absences = F
1 absence = -2%;  1 tardiness (more than 15min late) = -0.5%
1 attendance cheating = 3 absences

- HW assigned almost every other week
should be turned in before the class on the due data
0.0/0.5/1.0-scale;  50% on the same day / 0% otherwise
all the quizzes will be on the due-date class and from the HW      

- Any academic dishonesty is strictly prohibited; 
if caught = F + academic disciplinary action; 
work-ethics/integrity for better society w/o excessive societal cost

- This is English-based course, yet, Korean will (and can) be used whenever    
deemed necessary or more efficient (question, summary, emphasis, etc)

Dongjun Lee

- Text: F. P. Beer, E. R. Johnston & P. J. Cornwell, “Vector Mechanics 
for Engineers: Dynamics”, McGraw-Hill, 12th Ed 
* Edition doesn’t matter: all HW problems will be scanned/posted
* Supplementary materials may also be uploaded from time to time

- Course Objectives: 
* able to formulate, solve and analyze the kinematics and dynamics of 

a particle (and particles) in 2D and 3D
* able to formulate, solve and analyze the kinematics and dynamics 

of a rigid body in 2D and 3D
* able to apply the concepts/tools of dynamics for the analysis/design 

of real/new engineering systems

Course Information
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Course Information
-초안지

up to 20 초안지will be accepted at the end of this lecture
priority:

1) register the course for the first time (재수강x)
2) foreign students (other section in Korean still has space)
3) students who sent email to me before
4) otherwise first come, first serve (선착순)

-재수강
this 재수강 creates problems for students, faculty, university, society
gives 재수강 students unfair advantage, who created the problems
also creates grade-first/selfish culture!
must address this problem sooner or later, at least starting from SNU
will put demerit on 재수강 students, likely Ao-> A-, B+ -> B0
grading criteria is up to each faculty
if grade is concerned, may consider to go to another section…

Dongjun Lee

Relevant Systems

KUKA VR-ride RC-car drifting

Gyrobike Deep drone acrobatic

CUBI Atlas - Parkour
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Course Topics

Ch 11.   Particle kinematics

Ch 12.   Particle dynamics: Newton’s second law

Ch 13.   Particle dynamics: energy, momentum, impulse, impact

Ch 14.   Systems of particles

Ch 15.   Rigid body kinematics in 2D and 3D

Ch.16.   Rigid body dynamics in 2D: force & acceleration

Ch.17.   Rigid body dynamics in 2D: energy & momentum method

Ch.18.   Rigid body dynamics in 3D, gyroscopic motion

+

Brief introduction on Lagrangian (analytical) dynamics if time permits

Dongjun Lee

Kinematics vs Dynamics

• Kinematics: study of the geometry of motion; used to relate displacement, 
velocity, acceleration of objects without reference to the cause of 
motion  how to describe the object’s motion?

• Dynamics (kinetics): study of the relation between the forces/torques 
acting on an object and its motion; used to predict the motion caused 
by given force or to determine the force required to produce a given
motion  how the object’s motion evolves w/ actuation or interaction?

kinematics dynamics

actuation/interaction
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Rectilinear Motion
• Particle moving along a straight line is said 

to be in rectilinear motion.

• Motion of a particle is given by its scalar
position coordinate 𝑥 ∈ ℜ from a fixed origin 
on the line.

• Curvilinear motion:  motion of a particle 
along a curved line in two or three 
dimensions (i.e., x is not a scalar, but a 
vector (e.g., 𝑥⃗ ∈ ℜଷ)).
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• Kinematics of rectilinear motion (scalar):
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Kinematics Integration

• Acceleration given as a function of time,  a = f(t), tf  x, v
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• Acceleration given as a function of position, a = f(x), tf  x, v
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• Acceleration given as a function of velocity, a = f(v), tf  x, v
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Kinematics Integration
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Motion of Several Particles:  Relative Motion
• For particles moving along the same line, if 

time be recorded from the same starting instant 
and displacements be measured from the same 
origin in the same direction.

 ABAB xxx relative position of B
from A

ABAB xxx 

 ABAB vvv relative velocity of B
from A

ABAB vvv 

 ABAB aaa relative acceleration of B
from A

ABAB aaa 
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Sample Problem 11.2

Determine:

• velocity and elevation above ground at 
time t, 

• highest elevation reached by ball and 
corresponding time, and 

• time when ball will hit the ground and 
corresponding velocity.

Ball tossed with 10 m/s vertical velocity 
from window 20 m above ground. 

SOLUTION:

• Integrate twice to find v(t) and y(t), 
each being first and second order 
polynomials w.r.t. t.

• Solve for t at which velocity equals 
zero (time for maximum elevation) 
and  evaluate corresponding altitude. 

• Solve for t at which altitude equals 
zero (time for ground impact) and 
evaluate corresponding velocity.

Dongjun Lee

Sample Problem 11.2
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SOLUTION:
• Integrate twice to find v(t) and y(t).
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Sample Problem 11.2

• Solve for t at which velocity equals zero and  evaluate 
corresponding altitude. 
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Sample Problem 11.2

• Solve for t at which altitude equals zero  and 
evaluate corresponding velocity.

  0
s

m
905.4

s
m

10m20 2
2














 ttty

 
s28.3

smeaningles  s243.1




t

t

 

   s28.3
s

m
81.9

s
m

10s28.3

s

m
81.9

s

m
10

2

2

















v

ttv

s

m
2.22v



9

Dongjun Lee

Ball thrown vertically from 12 m level 
in elevator shaft with initial velocity of 
18 m/s.  At same instant, open-platform 
elevator passes 5 m level moving 
upward at 2 m/s.  

Determine (a) when and where ball hits 
elevator and (b) relative velocity of ball 
and elevator at contact.

SOLUTION:

• Compute 𝑦஻ (quadratic in t)

• Compute 𝑦ா (linear in t)

• Find time 𝑡௖ s.t. 𝑦஻ 𝑡௖ = 𝑦ா(𝑡௖)

• Find 𝑦̇஻ 𝑡௖ − 𝑦̇ா(𝑡௖)

Sample Problem 11.4

Dongjun Lee

SOLUTION:

• Substitute initial position and velocity and constant 
acceleration of ball into general equations for 
uniformly accelerated rectilinear motion.
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• Write equation for relative position of ball with respect to 
elevator and solve for zero relative position, i.e., impact.
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Sample Problem 11.3
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Brake mechanism used to reduce gun 
recoil consists of piston attached to barrel 
moving in fixed cylinder filled with oil.  
As barrel recoils with initial velocity v0, 
piston moves and oil is forced through 
orifices in piston, causing piston and 
cylinder to decelerate at rate proportional 
to their velocity.  

Determine v(t), x(t), and v(x).

kva 

SOLUTION:

• Integrate a = dv/dt = -kv to find v(t).

• Integrate v(t) = dx/dt to find x(t).

• Integrate a = v dv/dx = -kv to find 
relation between v(x) as a function 
of x.

Sample Problem 11.3
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SOLUTION:

• Integrate a = dv/dt = -kv to find v(t).
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• Integrate v(t) = dx/dt to find x(t).
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• Integrate a = v dv/dx = -kv to find v(x).
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• Position of a particle may depend on position of one 
or more other particles.

• Position of block B depends on position of block A.  
Since rope is of constant length, 

 BA xx 2 constant  (one degree of freedom)

• For linearly related positions, similar relations hold 
between velocities and accelerations.
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• If no slack, no slip and no bearing friction, tension T
along the (taut) string is all the same (vs capstan)

• Thus, force is amplified, while motion scaled-down  

Particles with Constraints: Pulleys 

Dongjun Lee

Pulley D is attached to a collar which 
is pulled down at 75mm/s.  At t = 0, 
collar A starts moving down from K
with constant acceleration and zero 
initial velocity. Knowing that 
velocity of collar A is 300 mm/s as it 
passes L, determine the change in 
elevation, velocity, and acceleration 
of block B when block A is at L.

SOLUTION:

• Draw 𝑥஺, 𝑥஽, 𝑥஻.

• Compute 𝑥஺(𝑡); Find t s.t. 𝑥஺ 𝑡 = 𝐿

• Compute 𝑥஽(𝑡)

• Identify constraint among 𝑥஺, 𝑥஽, 𝑥஻

• Use the constraint to compute 
𝑥஻ 𝑡 , 𝑣஻ 𝑡 , 𝑎஻(𝑡)

Sample Problem 11.5

𝑥஺ 𝑥஽
𝑥஻

stringBDA Ltxtxtx  )()(2)(



13

Dongjun Lee

 

s 333.1
s

mm
225

s

mm
300

2

0





tt

tavv AAA

SOLUTION:

• Define origin at upper horizontal surface with 
positive displacement downward.

• Collar A has uniformly accelerated rectilinear motion.  
Solve for acceleration and time t to reach L.
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Sample Problem 11.5
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• Pulley D has uniform rectilinear motion.  Calculate 
change of position at time t.
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• Block B motion is dependent on motions of  collar 
A and pulley D.  Write motion relationship and 
solve for change of block B position at time t.  

Total length of cable remains constant,
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Sample Problem 11.5
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• Differentiate motion relation twice to develop equations for 
velocity and acceleration of block B.
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Sample Problem 11.5
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Graphical Solution of Rectilinear Motion

11 - 28

• Given the x-t curve, the v-t curve is equal to 
the x-t curve slope.

• Given the v-t curve, the a-t curve is equal 
to the v-t curve slope.
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Graphical Solution of Rectilinear Motion

11 - 29

• Given the a-t curve, the change in velocity between t1 and t2 is 
equal to the area under the a-t curve between t1 and t2.

• Given the v-t curve, the change in position between t1 and t2 is 
equal to the area under the v-t curve between t1 and t2.

Dongjun Lee

Other Graphical Methods

11 - 30

• Moment-area method to determine particle position at 
time t directly from the a-t curve:

  


1

0

)()(110

01

v

v

dvvtvttv

tvxx curve  under   area

using  dv = a(t) dt ,

  
1

0
11001 )(

t

dttatttvxx

  
1

0

1

t

dtatt first moment of area under a-t curve 
with respect to t = t1 line.

  
Ct

tta-ttvxx

 centroid of abscissa

curve under  area 11001







16

Dongjun Lee

Other Graphical Methods

11 - 31

• Method to determine particle acceleration 
from v-x curve:
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Curvilinear Motion
• Particle moving along a curve other than a straight line 

is in curvilinear motion.

• Position vector  𝑟(𝑡) = 𝑂𝑃 ∈ ℜଷ

• Kinematics relations:
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• In general, acceleration vector is not tangent to
particle path and velocity vector.

• How to describe the vector 𝑟 ?
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Cartesian Coordinates
• When position vector of particle P is given by its 

(fixed) rectangular (or Cartesian) components,
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zd
j

dt

yd
i

dt

xd
a

zyx
















2

2

2

2

2

2

 with each 𝑖, 𝑗, 𝑘 fixed (i.e., , 
ௗ௜

ௗ௧
=

ௗ௝

ௗ௧
=

ௗ௞

ௗ௧
= 0), 

component in each direction can be analyzed separately
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Derivatives of Vector Functions

 uP


• Let be a vector function of scalar variable u,

   
u

uPuuP

u

P

du

Pd

uu 











00
limlim

• Derivative of vector sum,

 
du
Qd

du
Pd

du
QPd






 
du

Pd
fP

du

df

du

Pfd







• Derivative of product of scalar and vector functions,

• Derivative of scalar product and vector product,

 

 
du

Qd
PQ

du

Pd

du

QPd

du

Qd
PQ

du

Pd

du

QPd T
TT















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Projectile Motion

• Rectangular components particularly effective 
when component accelerations can be integrated 
independently, e.g., motion of a projectile,

00  zagyaxa zyx 

with initial conditions,
      0,,0 000000  zyx vvvzyx

Integrating twice yields

   
    0

0
2

2
1

00

00





zgtyvytvx

vgtvvvv

yx

zyyxx

• Motion in horizontal direction is uniform.

• Motion in vertical direction is uniformly accelerated.

• Motion of projectile could be replaced by two 
independent rectilinear motions.
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Motion Relative to a Frame in Translation
• Designate one frame as the fixed (inertia) frame of 

reference.  All other frames not rigidly attached to the 
fixed frame are moving (body) frames of reference.

• Position vectors for particles A and B with respect to 
the fixed frame of reference Oxyz are . and 3BA rr



• Vector joining A and B defines the relative 
position of B from A w.r.t. Ax’y’z’

ABr


ABAB rrr




• Differentiating twice,

ABv


relative velocity of B from 
A w.r.t. Ax’y’z’.

ABAB vvv
 

ABa
 relative accel. of B from 

A w.r.t. Ax’y’z’.
ABAB aaa

 

• Absolute motion of B can be obtained by combining the motion of A and the 
relative motion of B from A w.r.t. A’x’y’z’.
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Sample Problem 11.4

Automobile A is traveling east at the 
constant speed of 36 km/h. As 
automobile A crosses the intersection 
shown, automobile B starts from rest 
35 m north of the intersection and 
moves south with a constant 
acceleration of 21.2 m / s . Determine
the position, velocity, and
acceleration of B relative to A 5 s
after A crosses the intersection.

Strategy:

• Define inertial axes for the system.

• Determine the position, speed, and 
acceleration of car A at t = 5 s.

• Determine the position, speed, and 
acceleration of car B at t = 5 s.

• Using vectors (Equation 11.30, 11.32, 
and 11.33) or a graphical approach, 
determine the relative position, velocity, 
and acceleration.
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Sample Problem 11.4

A

A

A

0

10m / s

50 m


 
 

a

v

r

2
B

B

B

1.2 m / s

6 m / s

20 m

 

 

 

a

v

r

We can solve the problems geometrically, and apply the arctangent relationship:

B Ar 53.9 m 21.8   11.66m / sB Av 31.0  

Or we can solve the problems using vectors to obtain equivalent results:

 B A B/ Ar r r

20 50

20 50 (m)

 
 

B/A

B/A

j i r

r j i  

 B A B/Av v v

6 10

6 10 (m/s)

  
  

B/A

B/ A

j i v

v j i  

 B A B/Aa a a

2

1.2 0

1.2 (m/s )

  

 
B/ A

B/A

j i a

a j  

Physically, a rider in car A would “see” car B travelling south and west.
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Sample Problem 11.10

A motorist is traveling on curved 
section of highway at 90 km/h.  The 
motorist applies brakes causing a 
constant deceleration rate (tangential).  

Knowing that after 8 s the speed has 
been reduced to 72 km/h, determine 
the acceleration of the automobile 
immediately after the brakes are 
applied.

SOLUTION:

• Calculate tangential (forward) and 
normal (sideway) components of 
acceleration.

 convenient to describe motion        

along longitudinal and sideway

for car/driver

 basis (unit) vectors 𝑒௧, 𝑒௡ rotate            

 not Cartesian anymore

• Determine acceleration magnitude and 
direction with respect to tangent to 
curve.

normal
tangential

: body frame
(rotating/moving)   

: inertial (world/fixed) frame
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Tangential and Normal Components

11 - 40

• Velocity vector of particle is tangent to the path
of particle.  In general, acceleration vector is not.   
Given a path, often convenient to express motion 
in terms of tangential and normal components.

• are tangential unit vectors for the 
particle path at P and P’.   When drawn with 
respect to the same origin, and

is the angle between them. 

tt ee
  and 

ttt eee
 



 
 












d
ed

e

ee
e

ee

t
n

nn
t

nt





















 2
2sin

limlim

2sin2

00

direction specified 
by plane/curvature 
of path segment
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Tangential and Normal Components

tevv
 • with

dt

ds

ds

d

d

ed
ve

dt

dv

dt

ed
ve

dt

dv

dt

vd
a t

t
t

t















where

v
dt

ds
dsde

d

ed
n

t  





After substituting,



22 v
a

dt

dv
ae

v
e

dt

dv
a ntnt  

• Tangential component of acceleration reflects 
change of speed and normal component reflects 
change of direction.

• Tangential component may be positive or 
negative.  Normal component always points 
toward center 𝐶 of path segment curvature.

(or  ௗఏ

ௗ௧
=

௩

ఘ
)

specified by 
plane/curvature of 
path segment

def. of curvature

Dongjun Lee

Tangential and Normal Components



22 v
a

dt
dv

ae
v

e
dt
dv

a ntnt  

• Relations for tangential and normal acceleration 
also apply for particle moving along space curve.

• Plane containing tangential and normal unit 
vectors is called the osculating plane.

ntb eee
 

• Normal to the osculating plane is found from

binormale

normalprincipal e

b

n

 

 








• Acceleration has no component along binormal.

Frenet-Serret formula*: 

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas
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Sample Problem 11.10

A motorist is traveling on curved 
section of highway at 90 km/h.  The 
motorist applies brakes causing a 
constant deceleration rate.  

Knowing that after 8 s the speed has 
been reduced to 72 km/h, determine 
the acceleration of the automobile 
immediately after the brakes are 
applied.

SOLUTION:

• Calculate tangential and normal 
components of acceleration.

• Determine (total) acceleration
magnitude and direction with respect to 
tangent to curve.



22 v
a

dt
dv

ae
v

e
dt
dv

a ntnt  

normal
tangential

: body frame
(rotating/moving)   

: inertial (world/fixed) frame
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Sample Problem 11.10

• Determine acceleration magnitude and direction 
with respect to tangent to curve.

  2222 833.0625.0  nt aaa 2s

m
041.1a

625.0

833.0
tantan 11  

t

n

a

a  1.53

m/s02km/h27

m/s25km/h90




SOLUTION:

• Calculate tangential and normal components of 
acceleration.

 

 
2

22

2

s

m
833.0

m750

sm25

s

m
625.0

s 8

sm2025













v

a

t

v
a

n

t

polar coordinates?

straight outlet? 
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Polar Coordinates
• When particle position is given in polar coordinates, 

it is convenient to express velocity and acceleration 
with components parallel (radial ≠ normal) and 
perpendicular (transversal ≠ tangential) to OP.

r
r e

d

ed
e

d

ed 














e
dt

d

d

ed

dt

ed rr 




re
dt

d

d

ed

dt

ed 


 



 









erer

e
dt

d
re

dt

dr

dt

ed
re

dt

dr
er

dt

d
v

r

r
r

rr













• The particle velocity vector is

• Similarly, the particle acceleration vector is

    












errerr

dt

ed

dt

d
re

dt

d
re

dt

d

dt

dr

dt

ed

dt

dr
e

dt

rd

e
dt

d
re

dt

dr

dt

d
a

r

r
r

r











22

2

2

2

2











 

rerr
 

Coriolis accelerationcentripetal acceleration
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Cylindrical Coordinates

11 - 46

• When particle position is given in cylindrical 
coordinates, it is convenient to express the 
velocity and acceleration vectors using the unit 
vectors (fixed).  and (rotating) , keer




• Position vector,

kzerr r




• Velocity vector,

kzerer
dt

rd
v r










 

• Acceleration vector,

    kzerrerr
dt

vd
a r








  22
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Sample Problem 11.12

Rotation of the arm about O is defined 
by  = 0.15t2 where  is in radians and t
in seconds.  Collar B slides along the 
arm such that r = 0.9 - 0.12t2 where r is 
in meters.

After the arm has rotated through 30o, 
determine (a) the total velocity of the 
collar, (b) the total acceleration of the 
collar, and (c) the relative acceleration
of the collar with respect to (as
observed in) the arm.

SOLUTION:

• Evaluate time t for  = 30o.

• Evaluate radial and angular positions, 
and first and second derivatives at 
time t.

• Calculate velocity and acceleration in 
cylindrical coordinates.

• Evaluate acceleration with respect to 
arm.
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Sample Problem 11.12

SOLUTION:

• Evaluate time t for  = 30o.

s 869.1rad524.030

0.15 2




t

t

• Evaluate radial and angular positions, and first 
and second derivatives at time t.

2

2

sm24.0

sm449.024.0

m 481.012.09.0






r

tr

tr





2

2

srad30.0

srad561.030.0

rad524.015.0














 t

t

 ererv r







     errerra r




22 
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Sample Problem 11.12

• Calculate velocity and acceleration.

  

r
r

r

v

v
vvv

rv

srv










122 tan

sm270.0srad561.0m481.0

m449.0










 0.31sm524.0 v

  

     

r
r

r

a

a
aaa

rra

rra












122

2

2

2

22

2

tan

sm359.0

srad561.0sm449.02srad3.0m481.0

2

sm391.0

srad561.0m481.0sm240.0



















 6.42sm531.0 a
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Sample Problem 11.12

E
N

R

• Evaluate relative acceleration with respect to arm.

• Relative motion of the collar with respect to the 
arm as observed in/within the (rotating) arm.

= by observer sitting on arm tracking within 
motion in rod w/o knowing s/he is rotating

))((sm240.0 2
Brr  

• Motion of collar with respect to arm is defined 
by the coordinates along 𝑒௥, 𝑒ఏ and thus 
rectilinear.

C

C

• Expressed in body-frame {B} (rotating together): 
expressed in the body-frame coordinates 𝑒௥, 𝑒ఏ

 relative acceleration as expressed in {B}

≠ relative acceleration as observed in {B}

    )2;(2 2
/

2
/

/

 







rrrraerrerra

aaaa
B

OCrOC

COCOC





}{
.

/ )(2

2

Brdt
d

r
Bobs

OC erera






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Relative Motion as Observed in {A}
• Position of B can be written by:

where {O} is a fixed frame with basis vectors 𝚤, 𝚥, 𝑘, 
{A} is a moving frame w/ basis vectors 𝑒ଵ, 𝑒ଶ, 𝑒ଷ and  
𝑟஻/஺ is the relative position of B from A (or w.r.t. {A}).

• Differentiating twice,

𝑣⃗஻/஺ = 𝑟̇஻/஺: relative velocity of B
from A (or w.r.t. {A})

ABOAOB vvv


 //

{O}

B

A

𝑎⃗஻/஺ = 𝑟̈஻/஺: relative acceleration of B
from A (or w.r.t. {A})

ABOAOB aaa


 //

ABOAOB rrr


 //

• All the vectors can be expressed in {O} or in {A} 
they are real 
and the same

• Relative motions as observed in {A} (cf. observed on Earth, only along 𝑒ଵ, 𝑒ଶ, 𝑒ଷ):

position as observed in {A}:

velocity as observed in {A}:

acceleration as observed in {A}:

they are not the same,
since basis vectors are 
rotating (cf. Cartesian)
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Key Equations



22 v
a

dt

dv
ae

v
e

dt

dv
a

evv

ntnt

t









• Tangential and normal components given a path

• Radial and transversal of polar coordinates

• Relative motion w.r.t. (as observed in) {B}:


