Statistical Thermodynamics
(Lecture 11)

1st semester, 2021
Advanced Thermodynamics (M2794.007900)
Song, Han Ho

(*) Some materials in this lecture note are borrowed from the textbook of Ashley H. Carter.
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Statistical Thermodynamics

Introduction

> Establish the tie between macroscopic and molecular properties
> Stochastic (probabilistic) approach - Focus on equilibrium states
> Fundamental questions
o What are the energy states available to the particles
(atoms/molecules) comprising a macroscopic system?
« How are these particles distributed among these states at
equilibrium to satisfy the macroscopic constraints?
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Statistical Thermodynamics

Coin-Tossing Experiment

> Let's apply some elementary concepts of statistical thermodynamics to
a coin-tossing experiment.

(Assumption) Coins are distinguishable.
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Statistical Thermodynamics

Coin-Tossing Experiment

> Continue on.

First Postulate of Statistical Mechanics
“In equilibrium, each microstate can occur with

an equal probability.”

energy level (or the energy level has degeneracy.)

Macrostate (or configuration) is specified by the number of particles in each of
the energy levels of the system. (= thermodynamic state in the classical theory)

Microstate is specified by the number of particles in each energy state. In
general, there are more than one energy state (i.e. quantum state) for each

Thermo-
Macrostate Macrostate dynamic Tr

Label  Specification Microstat

k Ny N, Coinl Coin2 Coin3 Coind

ue
crostate Prol ili
i 'wi PI
1/16

1 4 0 H H H 1 ‘

(8]

3

[ury
ES

4/16

HIZDEm
fo ol B o=
feofl-Ro Rl o)
===l

w
(]
[ ]
(-}

6/16

HEOHaT=E T
ol el N el
D=E=EmEe
HIEmAaEA

>
[y
w
EN

4/16

EREIEE..
R
e
mo

w
o
IN
-
-3
-3
-
-
-
I~
—
o




Statistical Thermodynamics

Coin-Tossing Experiment

> Continue on.

The average occupation number is

ZNjka ZNjka
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N,

eg. N, = %[(4><1)+(3><4)+(2><6)+(1><4)+(O><1)]= 2

(— average number of heads)

with distinguishable coins?
N!
le!(N_le)!
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Let’'s generalize the coin-tossing experiment with a larger number of coins.
How many ways are there to select from the N candidates N, heads and N-N, tails




Statistical Thermodynamics

Coin-Tossing Experiment

> Continue on.
Calculate the maximum thermodynamic probability for different number of coins.
(use Stirling’s formula, Inn!'~ nlnn—n for large n)

N =4 N=8 N =1000
! ! 1000!
Wmax = i = 6 Wmax — i = 70 Wmax — OOO ~ 10300
212! 414 500!500!
oot rgt_‘"_a“_y el A
ordered region ordered region
N ] L_ L,
! 0 500 1000

The peak always occurs at N/2, but grow rapidly and becomes much sharper as N increases.
In other words, the most probable configuration is that of total randomness.




Statistical Thermodynamics

Coin-Tossing Experiment

> Continue on.
The “ordered regions” almost never occur. (w is extremely small compared tow,,,.)
This leads to the very important conclusion!

Q:ZWk zM}max

I.e. The total number of microstates is very nearly equal to the maximum number.

For thermodynamic problem, the “outcomes” are the occupation numbers of each
of n energy levels for the most probable macrostate, i.e. w, . (N;, N5, ..., N,). This
most probable macrostate is the equilibrium state of the thermodynamic system.

In extending our formula of tossing coins from two levels to n levels,
N! N!
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Statistical Thermodynamics

Assembly of Distinguishable Particles

Find w__ (N,,N,,...,N,) under the constraints:

max

ZN ;=N (conservation of particles)

J=1

ZN ;€, =U (conservation of energy)

J=1

- Method of Langrange multiplier

equilibrium attains its maximum value. (Classical point of view)

probability to states with high probability. (Statistical point of view)

> The fundamental problem of statistical thermodynamics is to determined
the most probable state or the equilibrium state, in given constraints.

As a system proceeds toward a state of equilibrium, the entropy increases, and at

The system tends to change spontaneously from states with low thermodynamic
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Statistical Thermodynamics

Thermodynamic Probability and Entropy

> Boltzmann made the connection between the classical concept of
entropy and the thermodynamic probability.

§=f(w)

The entropy is an extensive property. Therefore, the combined entropy of the

two subsystems is simply the sum of the entropies of each subsystem.

St =S4+ O f(We)=f(W,)+ f(w)
From the characteristic of the thermodynamic probability,
Wtotal = WAWB
Then,
f(wtotal) — f(WAWB)
Flna”y, Sa = f(wa) Sp = f(wg)

Jw )+ f(wg) = f(w,wg)
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Statistical Thermodynamics

Thermodynamic Probability and Entropy

> Continue on.

JW)+ (W)= f(w,wg)

The only function to satisfy the above condition is the logarithm.

S=klnw

where & : Boltzmann constant (1.38x10 JK ™)
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Statistical Thermodynamics

Quantum States and Energy Levels

11

> Schrodinger’s equation: the governing equation for the dynamical
behavior of matter on the atomic scale (just as Newton’s law for
macroscopic particles)

> Time independent Schrodinger’s equation

87°m
Vzl// +( h2 (8 — ¢)1)y =0 Time independent Schrodinger’s Equation

¢ = kinetic energy + potential energy = 1/2(p2 /m)+ ¢ E=&, 186,18,
P=¢.+p,+9.
v = wave function (| |*: probability density of finding a particle) v=vwy.

> The equation has solutions only for specific values of (¢-¢), termed
the eigenvalues of the energy.




Statistical Thermodynamics

12

Quantum States and Energy Levels

> Apply Schrodinger’s equation to the translational kinetic energy states

of a dilute monatomic (¢ =0, ¢ =¢,. only) particle in the absence of
external force fields (“particle in a box” - w =0 on the boundary)

y

v =v,y,Vv,(2)

C g:gtr :gtr(x)+gtr(y)+gtr(z)

z

a

> Substituting into Schrodinger’'s equation and separating variables,

2 2
1 d t//trz(x) _ 87r2m £ (x)
l//tr ('x) dx h

with the boundary conditions: v, (0)=vw,(a)=0




Statistical Thermodynamics

Quantum States and Energy Levels

2 2
> The solution to the equation, L d W”z(x) =—(8”2mJg,,,(x)
w,(x) dx h

2
v, (x)=A4 sin(x\/ 87 n;lf” () + BJ
2
8 me, (x) j 0

> ApplyingB.C. v, (0)=0= B=0, y,(a)=0= ASin[a\/ e

2 2 2
a\/87z- mg[r (X) — nxﬂ :> gtr (x) = [8}1][ nxz ] (nx = 1’ 2’ 3,_“)
a

h’ m

> Similarly for y and z:

mw{@[@] ‘9():(;,7@](}

> Total translational energy: 2\ (12 (n2) (2
g:gtr(x)_i_gtr(y)_'_gtr(z):(S j [ xzj—'_ b% +( ZZ J
m

a
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Statistical Thermodynamics

14

Quantum States and Energy Levels

> The total solution:

=y, (x)l//tr (Y)Wzr (z) = {Ax sin( nxﬂxj:”:Ay sin[ nyﬂyj}|:/lz Sin( nzﬂzj:|
a b ¢

Ifanyof n ,n ,n. =0 = w =0forall x,y,z (no particle in a box)

— there s a finite zero - point translational energy when n,,n ,n, =1

> Let a=b=c=V"
h’ 2 2 2
gtr:[ngmj(nx T, )

> For g, =const, there are numerous combinations of #.,n,,n.

- numerous quantum states with the same energy
- the energy levels are degenerate
-> degeneracy = number of quantum states with the same energy = &,,
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Statistical Thermodynamics

Quantum States and Energy Levels

15

n,n,n =1,2or3 1
1
n’ +ny2 +n.” =14 (or g, = fixed) 2
2

h’ » 2 oy 14K
gtrZSsz/s (n, T, tn, ):8mV2/3 3
3

For zero-point energy,

My, N, =1 = ¢, = m

_n_ |, n__

= N WO - DN
N = =~ W N O




Statistical Thermodynamics

Density of Quantum States

16

> In quantum theory, the energy levels are discrete, but in classical
physics, the energy levels are continuous. Why is the discrepancy?

Let’s consider translational energy mode.
At room temperature, the mean kinetic energy of a helium gas atom is,
= %kT = %x(1.38><10_23)><293 =6.2x107%J

Then, the nominal quantum number »; for one-liter volume of helium gas is,
1/2
h’ ) g, x8mpy*"? 0
Eir :(Sszm j(nj ) — N, :( 52 ~2.7x10

This implies that there are so many energy levels below this small energy value
(6.2x10-21J), and thus the energy levels are very closely spaced and may be
treated as an energy continuum.
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Statistical Thermodynamics

17

Density of Quantum States

> Under the conditions that the quantum numbers are large and the

energy levels are very close together, we can regard the »’s and the ¢'s

as continuous functions.
Let's evaluate the density of states g(¢), or degeneracy.

2/3
2 o) 2 2_8mV _R2
n =n, +ny +n, = hz E, =

The possible combination (n,, n, n.) in a given ¢,,corresponds

to points on a sphere of radius R in (n,, n, n,) space.

Thus,
g(e)de =N(e+des)—N(¢g)

[y 2

de
dN(¢)
de

d5+H.O.T}—N(5)

e + de

de

~
"~y

R = g2




Statistical Thermodynamics

18

Density of Quantum States

> Continue on. ‘b(e)de ~ d’flf) de
Define N(e), as the number of states contained within the octant of the sphere of
radius R. ., .
1 4 T 8m 3/2
N(g)=— =R’ ==V| —
(2) 83 6 (hzj “e
Then,
g(e)de = d]\;(g) de = 4\/3?1/ m*%e de
&

To complete our discussion, we need to consider additional
energy states regarding spin! R o 2

g(e)ds =7, 4€”V e, de

e + de

7, =1 for spin zero bosons

7, = 2 for spin one - half fermions 0 "




