Lecture 11; Transistor2
6. Common-Emitter Follower
: Current is amplified, and Voltage is also amplified.

$V_{\text {out }}=\mathrm{Vcc}_{\mathrm{C}}-\mathrm{R}_{\mathrm{C}} \mathrm{I}_{\mathrm{C}}$ and $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}} / R_{\mathrm{E}}=\left(\mathrm{V}_{\text {in }}-0.6\right) / \mathrm{R}_{\mathrm{E}}$
Thus $\mathrm{V}_{\text {out }}=\mathrm{V}_{c c}-\mathrm{R}_{\mathrm{C}}\left(\mathrm{V}_{\text {in }}-0.6\right) / \mathrm{R}_{\mathrm{E}} \therefore \Delta \mathrm{V}_{\text {out }}=-\Delta \mathrm{V}_{\text {in }} \mathrm{R}_{\mathrm{C}} / \mathrm{R}_{\mathrm{E}}$
Therefore $\Delta \mathrm{V}_{\text {out }}$ is amplified from $\Delta \mathrm{V}_{\text {in }}$ with Gain $=-\mathrm{R}_{\mathrm{C}} / \mathrm{R}_{\mathrm{E}}$
Current $\left(I_{C}\right)$ is also amplified by β times ($=\beta I_{B}$)
To check the impedance of $Z_{\text {in }}$ and $Z_{\text {out }}$
$\mathrm{Z}_{\text {in }}=\Delta \mathrm{V}_{\mathrm{B}} / \Delta \mathrm{I}_{\mathrm{B}}=\Delta \mathrm{V}_{\mathrm{E}} /\left(\Delta \mathrm{I}_{\mathrm{E}} / \beta\right)=\beta \mathrm{R}_{\mathrm{E}}$
$\Delta \mathrm{V}_{\text {out }}=-\mathrm{R}_{\mathrm{C}} \Delta \mathrm{I}_{\mathrm{C}}$ thus $\mathrm{Z}_{\text {out }}=\mathrm{Z}_{\mathrm{C}}=\left|\Delta \mathrm{V}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{C}}\right|=\left|\Delta \mathrm{V}_{\text {out }} / \Delta \mathrm{I}_{\mathrm{C}}\right|=\mathrm{R}_{\mathrm{C}}$
$\therefore Z_{\text {out }} \ll Z_{\text {in }}$ if R_{E} and R_{C} are appropriately chosen, thus the common emitter amplifier can be a good device to drive or to be driven

Let's introduce the Ebers-Moll model of Transistor for precise design

(1) $I_{C}=I_{S}\left\{\exp \left(V_{B E} / V_{T}\right)-1\right\}$: Ebers-Moll eqn

It indicates current I_{C} is a function of $\mathrm{V}_{\mathrm{BE}}\left(=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}}\right)$ where $\mathrm{V}_{\mathrm{T}}=\mathrm{kT} / \mathrm{q}$ and $\mathrm{k}=$ Boltzmann const. $=1.38 \mathrm{E}-23\left[\mathrm{~J} /{ }^{\circ} \mathrm{K}\right]$ $\mathrm{T}=$ Kelvin Temp. and $\mathrm{q}=$ one electron charge $=1.60 \mathrm{E}-19 \mathrm{C}$ Thus $\mathrm{V}_{\mathrm{T}}=25.3 \mathrm{mV}$ at $20^{\circ} \mathrm{C}$ room temp. $I_{S}=$ Saturation current of TR, or reverse leakage current
(2) Intrinsic Emitter Resistance, r_{e}, between B and E As $\mathrm{V}_{\mathrm{BE}} / \mathrm{V}_{T}=0.6 / 0.0253(\gg 1)$, $\mathrm{E}-\mathrm{M}$ eqn can be simplified as $I_{C}=I_{S}\left\{\exp \left(V_{B E} / V_{T}\right)-1\right\}=I_{S} \exp \left(V_{B E} / V_{T}\right)$ $\partial I_{C} / \partial V_{B E}=I_{S} \exp \left(V_{B E} / N_{T}\right) / V_{T}=I_{C} / V_{T}$ thus $r_{e}=\partial \mathrm{V}_{\mathrm{BE}} / \partial \mathrm{I}_{\mathrm{C}}=1 /\left(\partial \mathrm{I}_{\mathrm{C}} / \partial \mathrm{V}_{\mathrm{BE}}\right)=\mathrm{V}_{\mathrm{T}} \mathrm{I}_{\mathrm{C}}=25.3 / \mathrm{I}_{\mathrm{C}}$ in $[\mathrm{mV} / \mathrm{mA}$] or $[\Omega]$ $1 / r_{\mathrm{e}}=\mathrm{r}_{\mathrm{m}}=$ Trans-conductance
(3) Temperature dependence of $\bigvee_{B E}$

$$
\Delta \mathrm{V}_{\mathrm{BE}} / \Delta \mathrm{T}=-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

(4) Early effect
V_{BE} slightly varies with V_{CE}
Thus $\Delta \mathrm{V}_{\mathrm{BE}}=-\alpha \Delta \mathrm{V}_{\text {CE }}$ and $\alpha=0.01 \%$

Emitter-Follower (revisited)

In previous model, $\Delta \mathrm{V}_{\mathrm{E}}=\Delta \mathrm{V}_{\mathrm{B}}$ and Gain $=1$

$$
Z_{\text {in }}=\beta R_{E} \quad \text { and } Z_{\text {out }}=R_{E}
$$

In E-M model, $\Delta \mathrm{V}_{\mathrm{E}}=\Delta \mathrm{V}_{\mathrm{B}} R_{\mathrm{E}} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right)$ and Gain $=\mathrm{R}_{\mathrm{E}} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right)<1$

$$
\mathrm{Zin}=\beta\left(r_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right) \text { and } \mathrm{Z}_{\text {out }}=R_{\mathrm{E}}
$$

Common Emitter Follower (revisited)

In previous model
$\Delta V_{\text {out }}=-\Delta V_{\text {in }} R_{C} / R_{E}$ and Gain $=-R_{C} / R_{E}=-\infty$ if $R_{E}=0$
$Z_{\text {in }}=\beta R_{E}$ and $Z_{\text {out }}=\left|-R_{C}\right|=R_{C}$
In E-M model
$\Delta V_{\text {out }}=-\Delta V_{\text {in }} R_{C} /\left(r_{e}+R_{E}\right)$ and Gain $=-R_{C} /\left(r_{e}+R_{E}\right)$
$Z_{\text {in }}=\beta\left(r_{e}+R_{E}\right)$ and $Z_{\text {out }}=\left|-R_{C}\right|=R_{C}$

Note that the Gain $=-R_{C} /\left(r_{e}+R_{E}\right)=-R_{C} / r_{e}$ when $R_{E}=0$, and it is called 'Grounded Common Emitter Follower'

Ex) Design a AC coupled common emitter follower
$V c c=20 \mathrm{~V}, \mathrm{f}_{3 \mathrm{~dB}}=100 \mathrm{~Hz}$, Gain $=-100$ for $\mathrm{ac}, \mathrm{I}_{\text {quiescence }}=0.5 \mathrm{~mA}$
(Source: Student Manual for The Art of Electronics, Thomas C. Hayes, Paul Horowitz, Cambridge University Press, 1989)

(1) For DC component

Centering $\mathrm{V}_{\text {out }}$ in quiescence, and $\mathrm{V}_{\text {out }}=10 \mathrm{~V}=\mathrm{Vcc}_{\mathrm{C}} \mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}$ and $\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$
Thus $\mathrm{Rc}=\left(\mathrm{Vcc}-\mathrm{V}_{\text {out }}\right) / \mathrm{I}_{\mathrm{c}}=(20-10) \mathrm{V} / 0.5 \mathrm{~mA}=20 \mathrm{~K} \Omega$
Choosing R_{E}, so as to give V_{E} as $1 V$ (for temperature stability),
$\mathrm{R}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}} / \mathrm{I}_{\mathrm{E}}=1 \mathrm{~V} / 0.5 \mathrm{~mA}=2 \mathrm{~K} \Omega$
$r_{\mathrm{e}}=25.3 \mathrm{mV} / 0.5 \mathrm{~mA} \doteqdot 50 \Omega$
$V_{B} / V c c=R_{2} /\left(R_{1}+R_{2}\right)=(1+0.6) / 20 \quad$ eq (1)
$R_{1} \| R_{2}$ drives Z_{B}; and $Z_{B}=\beta\left(r_{e}+R_{E}\right) \doteqdot \beta R_{E}=200(K \Omega)$
Thus $R_{1} \| R_{2}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)=Z_{B} / 10=20(K \Omega) \quad$ eq(2)

From eq(1) (2); $\mathrm{R}_{1}=220 \mathrm{~K} \Omega$ and $\mathrm{R}_{2}=20 \mathrm{~K} \Omega$
(2) For AC component

Gain $=-R_{C} /\left\{r_{e}+R_{E} \| R_{3}\right\}=-100$
Thus $r_{e}+R_{E} \| R_{3}=200 \Omega$ and $R_{E} \| R_{3}=150=(2000) R_{3} /\left(2000+R_{3}\right)$
$\therefore \mathrm{R}_{3}=162 \Omega \doteqdot 150 \Omega$ from commercial choice
C_{2} is the DC blocking capacitor, and its location does not matter in general (in frequency domain), although it is better to locate close to the receiver or driver (in time domain), where the AC current flows back and forth.

The relevant $R_{\text {eq }}$ for C_{2} is $R_{3}+r_{e} \| R_{E} \doteqdot R_{3}+r_{e}=150+50=200(\Omega)$
This is also a cascaded HPF, thus excessive attenuation can be avoided by choosing $\omega 2_{3 \mathrm{~d} \mathrm{~B}}=\omega_{3 \mathrm{~d} \mathrm{~B}} / 2=(2 \pi)(100) / 2=314(\mathrm{rad} / \mathrm{s})=1 /\left(\mathrm{R}_{3}+\mathrm{r}_{\mathrm{e}}\right) \mathrm{C}_{2}$

Thus $\mathrm{C}_{2}=1 /\{(314)(200)\}=16 \mu \mathrm{~F}$
For C_{1} of the biasing circuit; the relevant $R_{\text {eq }}$ for back and forth, $R_{\text {eq }}=\left(R_{1} \| R_{2}\right) \| \beta\left(r_{e}+R_{E} \| R_{3}\right)+R_{\text {in }}$ (if any), and $R_{1} \| R_{2}=20 K \Omega$,
$r_{e}+R_{E} \| R_{3} \doteqdot r_{e}+R_{3}=200 \Omega$; Thus $R_{\text {eq }}=20 \mathrm{~K} \| 20 \mathrm{~K}=10 \mathrm{~K}$ and
$\omega 1_{3 d B}=\omega_{3 d B} / 2=314(\mathrm{rad} / \mathrm{s})=1 / \mathrm{Req}_{\text {eq }} C_{1}$, and thus $\mathrm{C}_{1} \doteqdot 0.33 \mu \mathrm{~F}$

HW8) Design a AC coupled common emitter follower
Vcc $=24 \mathrm{~V}, \mathrm{f}_{3 \mathrm{~dB}}=100 \mathrm{~Hz}$, Gain $=-100$ for $\mathrm{ac}, \mathrm{I}_{\text {quiescence }}=0.5 \mathrm{~mA}$.
(Hint: Use an alternative method for cascaded DC blocking capacitors)
7. Emitter Follower with split supply, or "DC Coupled Emitter Follower" with split supply

This TR circuit can accept the negative swing of the Vin, thus can be used for current amplification with voltage replica

8. Unity-Gain Phase Splitter

: For given input signal, $\mathrm{V}_{\text {in }}$; two output signals, $\mathrm{V}_{1}, \mathrm{~V}_{2}$ of 180° phase difference

Ex) Design a unity-gain phase splitter such as;

$$
V c c=20 \mathrm{~V} \text {, and } I_{\text {quiescence }}=1 \mathrm{~mA}, \mathrm{~V}_{1}=15 \mathrm{~V}, \mathrm{~V}_{2}=5 \mathrm{~V}
$$

9. Push-Pull Amplifier

10.Transistor Switch

11.Darlington Connection

\therefore Very High Gain of current amplification
