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11.1 Background

+** Initial value problem vs. boundary value problem

® A first-order ODE can be solved if one constraint, the value of the dependent variable (initial
value) at one point is known.

® To solve an nth-order equation, n constraints must be known.

= The constraints can be the value of the dependent variable (solution) and its derivative(s) at certain
values of the independent variable.

® |Initial value problem

= When all the constraints are specified at one value of the independent variable

® Boundary value problem

= To solve differential equations of second and higher order that have constraints specified at
different values of the independent variable

® Boundary conditions

= Because the constraints are often specified at the endpoints or boundaries of the domain of the
solution.



11.1 Background

“* Example of BVP

® Modeling of temperature distribution in a pin fin used as a heat sink for cooling an object
dzT 4 4
'_z_al(T_TS)_az(T -Ts) =0
dx
= T :temperature of the surrounding air

" a4 and a,: coefficients
= Boundary conditions: T4 and Ty

*** Problem statement of a second-order boundary value problem
d’y _
dx’

if (x y ‘EJZ) Possible to have nonlinear boundary conditions !
b b dx

® Domainta<x<bh y(@) =Y, and y(b) =17,

® Diri ditions
irichlet boundary con dy _p. and dy _p,
® Neumann boundary conditions x|, _, Xle=b
® Mixed boundary conditions
aZ| +ey@=c, 2| +ayo) =c,
x=a x=b




11.1 Background

*** BVP of higher order ODEs

® Require additional boundary conditions
= Typically the values of higher derivatives of y

® For example,

= The differential equation that relates the deflection of a beam, y, due to the application of a
distributed load, p(x), is:

d 4y 1 E: elastic modulus of the beam's material
dx* EI p(x) I: area moment of inertia of the beam's
cross-sectional area

= Four boundary conditions are necessary.

y
»(0) = 0; Yl =0 PL) -
T,
y(L) = 0; 2l =0
x|, -




11.1 Background

** Overview of numerical methods used for solving boundary value problems

® Shooting methods

= Reduce the second-order (or higher order) ODE to an initial value problem.
— By transforming the equation into a system of 1t order ODEs.

The boundary value at the first point of the domain
— Used as an initial value for the system

The additional initial values needed for the solving the system
— Guessed!

The solution at the end of the interval is compared with the specified boundary conditions.

Iteration!

® Finite difference methods
= The derivative in the differential equation are approximated with FD formula.
= ODE = a system of linear (or non-linear) algebraic equations

= Advantages and disadvantages
— No need to solve the differential equations several times
— The solution of non-linear ODEs = need to solve a system of non-linear equations iteratively
— Shooting methods have advantages that the solution of non-linear ODEs is fairly straightforwad.



11.2 The Shooting Method

** Shooting method

® Boundary value problem = initial value problem
= For example, a BVP involving an ODE of second-order
= A system of two first-order ODEs

® Solution procedure
= BCs given at the first point: initial conditions for the system
= Additional initial conditions ? Guessed !
= The system can be solved!
= Solution can be obtained at the end point of the domain.
= Compare them with the BCs at the end point of the domain.
= Check the error
= The guessed initial values are changed then the system is solved again.
= Repeated until the numerical solution agrees with the BCs.



11.2 The Shooting Method

*** Shooting method for a two-point BVP
® BVP with a Second-order ODE

dzy B dy - _ _
— = f|x,, for a<x<b with y(a) = Y, and y(b) = Y,
dx- dx
® Step 1
g,l’ = w  with the initial condition: y(a) = Y, % = f(xy,w) No initial condition
X

® Step 2: first guess for the initial value

Vi |
4
w(a) = % = W, /? b2
At ¥(x) ' Y
® Step 3: Second guess /?ybl
w(a) = % - w, .
xX=a b



11.2 The Shooting Method

*** Shooting method for a two-point BVP
® Step 4: New estimate

| _y
wia) dx 3

X=a

= Using the results of the previous two solutions
= For example,

Y1 <Yy <Vp2

— Interpolation between W, and W,

® Repeat
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11.2 The Shooting Method

**» Estimating the slopeatx = a
® Starts by guessing two values for the slope of y(x) at the first point of the domain
® Two solutions with two guesses
® Estimate new value

® Linear interpolation

W,—W
Wy = WL+(Yb_yb,L)#
Yo, H = Vb, L

® Bisection method

® Secant method




11.2 The Shooting Method

*** Example 11-1: Temperature distribution in a pin fin. Solving a second-order ODE (BVP)
using the shooting method.

A pin fin is a slender extension attached to a surface in order to
increase the surface area and enable greater heat transfer. When con-
vection and radiation are included in the analysis, the steady-state

temperature distribution, 7'(x), along a pin fin can be calculated from
the solution of the equation:
T hP ec gz P
T-T,)-
(T=Ts) %4

with the boundary conditions: 7(0) = 7, and T(L) = Ty .

In Eq. (11.15), A, is the convective heat transfer coefficient, P is the perimeter bounding the cross
section of the fin, ¢ is the radiative emissivity of the surface of the fin, k is the thermal conductivity

of the fin material, 4, is the cross-sectional area of the fin, 7’5 is the temperature of the surrounding
air, and 6, = 5.67x10° W/(m?K*) is the Stefan—Boltzmann constant.

Determine the temperature distribution if L= 0.1m, 7(0) = 473K, 7(0.1) = 293K, and 7'y = 293K.
Use the following values for the parameters in Eq. (11.15): 4, = 40 W/m?/K, P = 0.016m,
e =04 , k=240 Wm/K,and 4, = 1.6x 10 °m>,

(T*-T3) =0, 0<sx<L  (11.15)




11.2 The Shooting Method

*** Example 11-1: Temperature distribution in a pin fin. Solving a second-order ODE (BVP)
using the shooting method.

o
Fe Ty D
( s) T4

c

d—T:W d_\/V:th

dx 5 kd,

=y

® T(0) = 473
® Assume w(0) = —1000
® Assume w(0) = —3000

® Use Sys20DEsRK2



11.2 The Shooting Method

** Example 11-1: Temperature distribution in a pin fin. Solving a second-order ODE (BVP)
using the shooting method.

% Solving Example 11-1
clear all
a=0; b=0.1; TINI=473; wiINI1=-1000; h=0.001; Tend=293;

WINI1=(TINI-Tend)/(a-b);
[x, T1, w] = ...
Sys20DEsRK2 (@odeChapllExmpldTdx,@odeChapllExmpldwdx,a,b,h, TINI,wINI1);
n=length(x) ;
fprintf("The temperature at x=0.1 1s %5.3F, for initial value of dt/dx= %4.1f\n", ...
T1(n) ,wiINI1)

wINI2=0.5*wINI1;
[x, T2, w] = ...
Sys20DEsRK2 (@odeChapllExmpldTdx, @odeChapllExmpldwdx,a,b,h, TINI,wINI2);
fprintf("The temperature at x=0.1 i1s %5.3F, for initial value of dt/dx= %4.1f\n", ...
T2(n) ,wiINI2)
plot (x, T1,x,T2);
hold on;



11.2 The Shooting Method

** Example 11-1: Temperature distribution in a pin fin. Solving a second-order ODE (BVP)
using the shooting method.

Told=T1(n);
Tnew=T2(n);
error=abs(Tend-Tnhew);

while (error>1.0e-5)
WINI3 = wiNI1 + (Tend - Told) * (wINI2 - wiNI1l) /7 (Tnew - Told);
[x, T3, w] =...
Sys20DEsRK2 (@odeChapllExmpldTdx, @odeChapllExmpldwdx,a,b,h, TINI,wINI3);
fprintf("The temperature at x=0.1 i1s %5.3Ff, for initial value ofdt/dx= %4.1f\n",
T3(n) ,wiINI3)
Told=Tnew;
Tnew=T3(n);
WINI1=wINIZ;
WINI2=wiINI3;
error=abs(Tend-Tnew) ;
plot (x, T3);
hold on;
end



11.2 The Shooting Method

*** Example 11-1: Temperature distribution in a pin fin. Solving a second-order ODE (BVP)

using the shooting method.
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11.2 The Shooting Method

** Shooting method using the bisection method
® WithWy  ypg>Y,
® WithW, y,. <Y,
® At new iteration

1
Wy = E(WH+WL)

E 1
E=0
B
H;/L oo LY
o Wy Wy




11.2 The Shooting Method

** Shooting method using the bisection method

% Solving Example 11-1
clear all
a=0; b=0.1; TINI=473; wH=-1000; h=0.001; Tend=293;

[x, T1, w] = ...
Sys20DEsRK2(@odeChapllExmpldTdx, @odeChapllExmpldwdx,a,b,h, TINI ,wH);
n=length(x) ;
fprintf("The temperature at x=0.1 i1s %5.3F, for initial value of dt/dx= %4.1f\n", ...
T1(n) ,wH)

wL=-3500;
[xX, T2, w] = ...
Sys20DEsRK2 (@odeChapllExmpldTdx, @odeChapllExmpldwdx,a,b,h, TINI ,wL);
fprintf("The temperature at x=0.1 1s %5.3Ff, for initial value of dt/dx= %4.1f\n", ...
T2(n) ,wL)
plot (x, T1,x,T2);
hold on;



11.2 The Shooting Method

** Shooting method using the bisection method

tol=0.0001; imax = 100;

for

end

1 =1 mmax + 1
wi = (wH+wL)/2;
[X,T,w]=Sys20DEsRK2(@odeChapllExmpldTdx,@odeChapllExmpldwdx,a,b,h, TINI,wi);
E=T (n)-Tend;
if abs(E) < tol

break
end
iITE>D0

WH = wi;
else

wL = wi;
end

iIf 1 > Imax

fprintf("Solution was not obtained In %I i1terations.”,Imax)

else

end

plot(x,T);

hold on;

xlabel ("Distance (m)"); ylabel("Temperature (K)")

fprintf("The calculated temperature at x = 0.1 i1s %5.3F K.\n" ,T(n))
fprintf("The solution was obtained in %2.0f iterations.\n" ,i)
plot(0.1,293, "Marker™, 0", "MarkerSize",7)



11.2 The Shooting Method

** Shooting method using the bisection method

The temperature at x=0.1 is 536.502, for initial value of dt/dx=-1000.0
The temperature at x=0.1 is 198.431, for initial value of dt/dx=-3500.0
The calculated temperature at x = 0.1 is 293.000 K.

The solution was obtained in 21 iterations.
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» Shooting method using the secant method

(Wi = W)
E_,—E i

I 1

Wi =W,—

I

® Ei1=Ypi-1—Yp

® Ei=ypi— Y

® FE'sfrom the previous two iterations can
be both positive, negative, or
they can have opposite signs

**» Additional comments
® BVPs with derivative, or mixed, boundary conditions
® When derivative boundary conditions are prescribed
at the endpoint, the calculated value of the derivative
must be evaluated numerically.

11.2 The Shooting Method




11.3 Finite Difference Method

*** Finite difference method for ODE with BCs
® The derivatives in the differential equation = replaced with finite difference approximations

® The domain of the solution [a, b] = divided into N subintervals of equal length h
= Defined by ( N + 1) points
= Grid points
= |n general, subintervals can have unequal length.

® The length of each subinterval (step size)

h = (b — a)/NPoints

= End points and interior points Y .;
. . . . Yier ||
® The differential equation is then written vy Vi ® L
1- | } !
at each of the interior points of the domain. N A A I
— a system of linear algebraic equations | li.JJ . .
when the differential equation is linear e o o =b|
X1=a  Xip X X Xy
—> a system of nonlinear algebraic equations T T T T T
when the differential equation is nonlinear. ‘ —
Interior points

Endpoint Endpoint



11.3 Finite Difference Method

** FD method with central difference

dy _ Yi+1=Vi1 and d_zz _ Yic1=2Yit Vi
dx 2h An? B

® Finite difference solution of a linear two-point BVP

d’y, f(x)% +g(x)y = h(x)

dx’
® Discretization Y ®
y'—l_zy""y' 1 Yi+1—YVi-1 e
- i: — + f(x;)= — +g(x,)y; = h(x;) Yit1 | i
h 2h yi & |
® i1 ® I | i
® BCs i cs? ! i i i
= y; and Yy, are known. i h k| i |
e o o o o o »
Xj=a X X Xy Xya=b

® Unknowns

© Y2 v ‘ L1 T L1

= N — 1 linear algebraic equations . Interior points .
8 q Endpoint Endpoint
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11.3 Finite Difference Method

Example 11-3: Temperature distribution in a pin fin. Solving a second-order linear ODE
(BVP) using the finite difference method.

When only convection is included in the analysis, the steady state tem-

perature distribution, 7'(x), along a pin fin can be obtained from the
solution of the equation:

(T-Tg) =0, 0<x<L (11.26)

with the boundary conditions: 7(0) = 7, and T(L) = Tj.

In Eq. (11.26), h. 1s the convective heat transfer coefficient, P is the
perimeter bounding the cross section of the fin, £ 1s the thermal con-
ductivity of the fin material, 4, 1s the cross-sectional area of the fin,
and 7' 1s the temperature of the surrounding air.

Determine the temperature distribution if L= 0.1m, 7(0) = 473K, 7(0.1) = 293K, and T, = 293K.
Use the following values for the parameters in Eq. (11.26): A, = 40 W/m%K, P = 0.016m,

k=240 Wm/K,and 4, = 1.6x10° m?.

Solve the ODE using the finite difference method. Divide the domain of the solution into five
equally spaced subintervals.

d. T P geogpP
B, T =
dx2 kAC( )" %4

(T°~Tg) =0, 0<x<01  Why not ?

c



11.3 Finite Difference Method

**» Example 11-3: Temperature distribution in a pin fin. Solving a second-order linear ODE
(BVP) using the finite difference method.

® With the central difference formula

T =T, h,P
i =BT =T) =0 h = —
SO BTy = 0 where B = 7
T, 1=Q+WB)T,+ T,y = —hBTg
® Discretized equations
2 LT = R Ty
T'y—2+hB)T, 3 = —h BTy I 47K
Q
T,—(2+h B)T3+T, = —h" BT v oa
| | o & ;1;6:2931<
I',—(2+ hzﬁ)T4 +7T5 = —hzﬁTS St x2:0.02 x3:0.04 %2006 x;2008 ¥e0l
Z 2 ‘
T 4 (2 =F h B )T 5 i T 6 S h BT S Endpoint T Ir[terior points T EndLoint



11.3 Finite Difference Method

**» Example 11-3: Temperature distribution in a pin fin. Solving a second-order linear ODE
(BVP) using the finite difference method.

® Rearranged discretized equations

~Q+IB)Ty+ Ty = —(W*BTs+T) 7
3 ) lTl =473K
I,-(Q2+hB)T3+T, = -hPTs ¢
T~ (2+ K B)T,+Ts = —K BT | [ F ¢ g
_ -+ -— = o l o o @ JE
3 ( h2 B) 4 3 5 B S xl-‘=0 x,=0.02 x3:0.04 x4=0.06 x5=0.08 x,=0.1
Ty~ (2+hB)Ts = —(h"BTs+|Tg) ottt r
Endpoint Interior points Endpoint

® In matrix form, [a][T] = [c]

) D — .
—2+rp) 1 0 0 T, |(FBTs+T))
1 —@+AB) 1 0 el =
0 1 —Q+KrB) 1 T, — KW BTy
o 0 1 e+ US| (PprseTy)




11.3 Finite Difference Method

**» Example 11-3: Temperature distribution in a pin fin. Solving a second-order linear ODE

(BVP) using the finite difference method.

clear
hc = 40; P = 0.016; k = 240; Ac=1.6e-5;
0.02; Ts = 293;

h =
X = 0:0.02:0.1;

beta=hc*P/(k*Ac) ;aDi1a=-(2+h"2*beta) ;
cele=-h"2*beta*Ts;

T(1)=473; T(6)=293;

a = eye(4,4) *aDia;
for 1 = 1:3
a(i,i+l) = 1;
a(i+l,1) = 1;
end

c = [cele-T(D)

T(2:5) = a\c;
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; cele; cele; cele - T(6) ];

fprintf("The temperatures at the grid points are\n®)

disp(T)

plot(x,T, "-*r%)

xlabel("Distance (m) ") ; ylabel("Temperature (K) *)
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11.3 Finite Difference Method

Additional comments

® Application of the finite difference method to an ODE does not always result in a tridiagonal
system of equations as in the above illustration.

® The numerical solution in Example 11-3 yielded a tridiagonal system because the ODE is
second order and a central difference scheme is used to approximate the second derivative.



11.3 Finite Difference Method

** Finite difference solution of a nonlinear two-point BVP
® The resulting system of simultaneous equations is nonlinear.
® The task is much more challenging than that of solving a system of linear equations.

® The most computationally efficient means of solving a system of nonlinear equations is
applying some type of iterative scheme.

® However, as discussed in Chapter 3, iterative methods run the risk of diverging unless the
starting or initial values for the iterations are close enough to the final answer.

® Application of the finite difference method to a nonlinear ODE results in a system of
nonlinear simultaneous equations.

= One method for solving such nonlinear systems is a variant of the fixed-point iteration.



11.3 Finite Difference Method

¢ Finite difference solution of a nonlinear two-point BVP

® Fixed-point iteration
= One method for solving such nonlinear systems is a variant of the fixed-point iteration.

[al[y] +[®] = [b] [®]: column vector whose elements are
nonlinear functions of the unknowns y

= Linearized equation

[ally]“"! = []-[@]"

® For small number of interior points

17! = [a) (6] - [@]5)

® Usually, use a linear equation solver

k+1



11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear
ODE (BVP) using the finite difference method.

When convection and radiation are included in the analysis, the steady-
state temperature distribution, 7'(x), along a pin fin can be calculated
from the solution of the equation:

47 kP

dx2 kAc

eogpP

— r*-1hH =0, o<x<tL (11.37)

(F=dig)=

(&

with the boundary conditions: 7(0) = T, and T(L) = T;.

The definition and values of all the constants in Eq. (11.37) are given in
Example 11-2.

Determine the temperature distribution if L=0.1m, T(0) = 473K,
T(0.1) = 293K, and T = 293K.

Solve the ODE using the finite difference method. Divide the domain of the solution into five equally
spaced subintervals.




11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear

ODE (BVP) using the finite difference method.
® With the central difference formula

I, =27;+7T, 4 .4
= h; +1_BA(TE_TS)_BB(TI_TS):O
h.P ecgpl
- dg. = SB
BA kAC an BB kAC

® General form of a system of equations

2 2 4 2 4
Ti_1"'(2+h BA)Ti"h QBBTi tdleq = —h (BATS+BBTS)



11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear

ODE (BVP) using the finite difference method.
® With the central difference formula

T -—2T-+T£ 4 4
— h; +1_BA(T1‘_TS)_BB(TI_TS):0
h.P €0 pP
- dg. = SB
BA kAC an BB kAC

® General form of a system of equations

2 2 4 I}
Ti—l-(2+hBA)Ti-hqBBTi+Ti+1 T, =473K
[
T,
2 4 ?- 75
= —h" (B4Ts+BsT ) i ’ gT‘* KL Ts =293K
)| ! ! o SR
=0 x,=002 x3=0.04 x,=006 x5=0.08 x,=0.1

Endpoint Endpoint

Interior points



11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear

ODE (BVP) using the finite difference method.
® With the central difference formula

T -—2T-+T£ 4 4
— h; +1_BA(T1‘_TS)_BB(TI_TS):0
h.P €0 pP
- dg. = SB
BA kAC an BB kAC

® General form of a system of equations

2 2 4 I}
Ti—l-(2+hBA)Ti-hqBBTi+Ti+1 T, =473K
[
T,
2 4 ?- 75
= —h" (B4Ts+BsT ) i ’ gT‘* KL Ts =293K
)| ! ! o SR
=0 x,=002 x3=0.04 x,=006 x5=0.08 x,=0.1

Endpoint Endpoint

Interior points



11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear
ODE (BVP) using the finite difference method.

2 2 4 2 4
T, 1—QR+hBHT,—h qBBTi +T;, = -h (ByTg+BpTy)

® Discretized non-linear equations

—@+HB T, - K BAT o+ Ts = — KB Ts+BsTH T,
Ty~ Q2+KB)T3— BT Ty = (B Ts+BsT )

Ty— Q2+ B)T4—h'B, + 15 = —h*(B4Ts+BpT's)
Ty—Q2+hBITs—hBAT s|= — K (B,Ts+BsT 5){Ts

T
T, =473K
T2
i 0T3 T
| | o s T, =293K
| | | i ®
& Py ° o PS >

.x]:O X2=0.02 X3=0.04 X4=0.06 x5=0.08 x6=0.1

oot ot

Endpoint Interior points Endpoint




11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear
ODE (BVP) using the finite difference method.

[a][T]+[®] = [/]

® Discretized non-linear equations

~2+HBy) 1 0 0 [z |#°B4Te |-H(BaTs+BsTs)-T,
1 —+hBy) 1 0 Tyl | |-HBATY| _ | —H*(BuTs+BsTs)
0 1 —Q+KhBy) 1 Tol  |-HBjT} —h*(B4Ts+PBsTs)
0 0 1 ~(2+h°B,) b —H’BATs|  |~h°(B4Ts+BsTs)—Ts
k+1

(717" = [a]'([6] - [@]9)



11.3 Finite Difference Method

“* Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear
ODE (BVP) using the finite difference method.

clear

hc = 40; P = 0.016; k = 240; Ac=1.6e-5; epsiIn = 0.4; seqg = 5.67E-8;
betaA = hc*P/ (k*Ac) ; betaB = epsin*seg*P/ (k*Ac) ; Ts = 293;
N =5; h=0.1/N;

X = 0:h:0.1;

aDia = - (2 + h"2*betapr) ;

bele = -h"2* (betaA*Ts + betaB*Ts™4) ;

h2betaB = h”"2*betaB;

TiI(1) = 473; Ti (N + 1) = 293;

Tnext(1) =T (1) ; Tnext (N + 1) =Tt (N + 1) ;

a=eye (N- 1,N - 1) *aDia;

NAE N
o
P



11.3 Finite Difference Method

**» Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear
ODE (BVP) using the finite difference method.

b (1) = bele - Ti (1) ; b (N-1) = bele - Ti (N+1) ;
b (2:N - 2) = bele;
Ti (2:N) = 400;

for 1 = 1:4
phi = -h2betaB*T1(2:N)."™M";
Tnext (2:N) = ainv*(b" - phi) ;
Ti = Tnext;
fprintf(" lteration number%d, Temperatures:\n"...
1)

Tprintf("%10.2F" ,Tnext); fprintf("\n")
end

plot (X,Tnext, " -*r")
xlabel ("Distance (m) ") ; ylabel ("Temperature (K)

Iteration numberl, Temperatures:
473.00 423.23 382.83 349.11
Iteration number2, Temperatures:
473.00 423.35 383.32 349.85
Iteration number3, Temperatures:
473.00 423.34 383.31 349.84
Iteration number4, Temperatures:
473.00 423.34 383.31 349.84

")

319.82
320.45
320.45

320.45
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440t

420
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(=]
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460 »\
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0

293.00
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11.3 Finite Difference Method

L)

L)

* Finite difference solution of a linear BVP with mixed boundary conditions
® A constraint that involves the derivative is prescribed at one or both of the endpoints

® The system of algebraic equations cannot be solved since the solution at the endpoints is not
given

® The additional equations needed for solving the problem are obtained by discretizing the
boundary conditions using finite differences, and incorporating the resulting equations into
the algebraic equations for the interior points.

Cy % +ecyy(a) = C, C3 % + ¢y y(b) = Cy

x=a x=b

** Final notes
® Neither the finite difference method nor the shooting method has a clear advantage
® The FDM requires the solution of a nonlinear system of equations

® Shooting method requires information regarding the higher derivatives of the dependent
variable at the leftmost boundary.

® The choice of which method to use is therefore problem-dependent, depending either on
how easily initial guesses can be generated for the derivatives of the dependent variable at a
boundary (shooting method) or on how well a particular fixed-point iteration scheme
converges (finite difference method)



11.3 Finite Difference Method

** Example 11-5: Solving a BVP with mixed boundary conditions.

Use the finite difference method to solve the following mixed boundary condition BVP.

d_zy -0.2x

-2 2+y=e , for 0<x<Il1 (11.46)
dx

with the boundary conditions: y(0) = 1 and % = =7 o -
x=1

Divide the solution domain into eight subintervals, and use the central difference approximation for

all derivatives. Compare the numerical solution with the exact solution:

-0.2x

y = —02108¢~ 4 +0.1238¢ VD 4 %ﬁ (11.47)



11.3 Finite Difference Method

** Example 11-5: Solving a BVP with mixed boundary conditions.

® Central difference

: — el — :
_z(yl—l zh.);l yl+])_|_yi =0 0.2x;

® General form of discretized equation

2 —02x;

2
— 2y, g Sl kT )Yy, -2y, = he

® At each grid point

_ ]+ 4+ D)y, =2y = bl
-2y, +(4+ hz)y3 — 295 = hze_o'zx?’
-2y;+(4+ hz)y4 —2y: = hze—o'zx"

2xe
2y, (4+K)ys—2ys = He

h'e

2
-2ys+(4+h")ys—2y,
2 2 —0.2x
-2yt (4 th)y;—2yg = ’

he
2y, @+ 2] = 1

y1 =y0)=1



11.3 Finite Difference Method

** Example 11-5: Solving a BVP with mixed boundary conditions.

® The other boundary condition

dy _
dxle Y

= One-sided backward formula that uses values at the previous points: first-order accuracy

= Three-point backward difference formula: second-order accuracy

® Discretized boundary condition
-1 4

dy _ Yi2=4yi_ 113y, Y1=4ys+3yy _ S -
T 2h =) Yo B Yo = 35 V1t 357 Vs

® Modified linear equation

2yt (A Ry -2py = He Tt mp

2 _) +(+2_ 8 ) :hz—o.zx8
(3+2h 2|y, +14+h Vs e




11.3 Finite Difference Method

** Example 11-5: Solving a BVP with mixed boundary conditions.

—-0.2x;
2y H (@ EDY Y~ 2y, = e 2 ( 2 _2) +(4+ 2 8 ) _ 2, 02%
B4t ( )y Yi+1 3+ 2h Y7 h 31 2h Vs e

® System of the linear equations

4+h) -2 0 0 0 0 0 o P
2 (@4+rH) =2 0 0 0 0 2 2,702%
V3
0 2 (4+h) =2 0 0 0 2 ~02x,
. Y4 he
0 0 2 (4+h) =2 0 0 ol = | 42,025
2 (4+h) 2 0 Ye 32,702%
e
2
—2 (4 +h%) -2 Y7 B2p 0%
(3+2h 3van/| | Ke




11.3 Finite Difference Method

** Example 11-5: Solving a BVP with mixed boundary conditions.

% Solution of Chapter 11 Example 5

clear 1@
a=0; b=1; |
N =28; h= (b - a)/N;
X = a:h:b; 09+
hDenom = 3 + 2%*h; aael
aDia = (4 + h"2);
y(1) = 1; 0.8}
a = eye(N - 2,N - 2)*aDia; |
a(N - 1,N - 1) = aDia - 8/hDenom; 0.7}
for 1=1:N-2 0es |
a(l,1+1)=-2; |
a(i+l,1)=-2; 0.6k
End

0.55

a(N-1,N-2) = 2/hDenom-2;
c(1)=2+h"2*exp(-0.2*x(2));
c(2:N-1)=h"2*exp(-0.2*x(3:N));
y(2:N)=Tridiagonal (a,c);
Y(N+1)=-1*y(N-1)/hDenom+4*y(N)/hDenom;
yExact=-0.2108.*exp(x./sqrt(2))+0.1238.*exp(-x./sqrt(2))+exp(-0.2.*x)./0.92;

0.5

plot(x,y, " -*r",x,yExact, "-ob")



11.4 Use of MATLAB Built-in Functions for Solving BVPs

*¢* Built-in function for ODEs

cﬁ;:

£ (x,y, dl) for a<x<b with y(a) = Y, and y(b) = ¥,
dx” dx

® System of the first-order ODEs

‘-iz=w and dw:f(x,y,w)
dx

dx
[ sol =bvp4c (odefun,bcfun,solinit) ]
® ‘odefun’ J e
= Name of the user-defined function 8’3‘; = w and E = f(xyw)

= String (i.e., 'odefun') or by using a handle (i.e.,@odefun)

[ dydx = odefun (x, yw)




11.4 Use of MATLAB Built-in Functions for Solving BVPs

*¢* Built-in function for ODEs

[ sol = bvp4c (odefun,bcfun, solinit) ]
® ‘befun’
= The name of the user-defined function (function file) that computes the residual in the boundary
condition.

= The residual is the difference between the numerical solution and the prescribed boundary
conditions.

= 'bcfun' or @bcfun

[ res =bcfun(ya,yb)

= ya and yb : column vectors corresponding to the numerical solutionatx = aandatx = b
= ya(1) and yb(1), are the values of yat x = a and x = b.
= ya(2) and yb(2), are the values of dy/dx at x = a and x = b.

a(l)=Y 2)-D
Dirichlet BC ya()=1, Neumann BC ya(2) “
yb(l1)-Y, yb(2)- D,



11.4 Use of MATLAB Built-in Functions for Solving BVPs

*¢* Built-in function for ODEs

® ‘bcfun’
= For mixed BCs

Boundary condition:

y(a) =Y, and J—’ = D,
=b
. |ya(1)-7Y,
vector res 1S:
yb(2) - D,

Boundary condition:

E.IZ
=D d b) =Y
dx a an y( ) b

ya(2)—Dc]
yb(1)-Y,

vector res is: {

Boundary condition (general case):

C % +c¢,y(a) = C, and

2|+ ey = C

d x=5b

vector res is (for ¢, c3 #0):

i C

ya(2)— =&+ - ya(l)
¢, G
(G

yb(2) - =2+ =2 yb(1)

I GGy i




11.4 Use of MATLAB Built-in Functions for Solving BVPs

*¢* Built-in function for ODEs

[ sol = bvp4c (odefun,bcfun, solinit) ]

® ‘solinit’

[ solinit =bvpinit(x,yinit) ]

= A structure containing the initial guess for the solution.
= ‘solinit’ is created by a built-in MATLAB function named ‘bvpinit’.
= The input argument x: a vector that specifies the initial interior points.

— For a BVP with the domain [a, b] , the first element of x is a, and the last element is b.
— Often an initial number of ten points is adequate: x=linspace(a, b, 10)

= The input argument yinit: initial guess for the solution (interior points)

" yinit : vector that has one element for each of the dependent variables
— In the case of two equations,
— The first element is the initial guess for the value of y.
— The second element is the initial guess for the value of w.



11.4 Use of MATLAB Built-in Functions for Solving BVPs

*¢* Built-in function for ODEs

[ sol = bvp4c (odefun,bcfun, solinit) ]

® ‘sol’
= A structure containing the solution.
= sol.x

— The x coordinate of the interior points.

— The number of interior points is determined during the solution process by MATLAB.

— ltis, in general, not the same as was entered by the user in bvpinit.

= soly

— The numerical solution, y(x), which is the y value at the interior points.

= sol.yp
— The value of the derivative, dy/dx at the interior points.



11.4 Use of MATLAB Built-in Functions for Solving BVPs

** Example 11-6: Solving a two-point BVP using MATLAB's built-in function bvp4c

Use MATLAB’s built-in function bvp4c to solve the following two-point BVP.

d’y ., dy _

—= +2x=<= +5y—cos(3x) =0, for 0<x<nm (11.65)
dx’ dx

with the boundary conditions: y(0) = 1.5 and y(mw) = 0.

® Rewrite the ODE

d2

dx

b

= _2x% _55+ cos(3x)
dx

2

® Transform into a system of the first-order ODEs

Y= w

GHES —2xw—35y + cos(3x)
dx



11.4 Use of MATLAB Built-in Functions for Solving BVPs

** Example 11-6: Solving a two-point BVP using MATLAB's built-in function bvp4c

[ sol = bvp4c (odefun,bcfun, solinit) ]
® odefun
function dydx = odefunExampleb (x,yw) %}=w
dydx = [yw(2)
-2*x*yw(2) - 5*yw(l) + cos(3*x)]; %=—2xw—5y+cos(3x)
® bcfun

function res = bcfunExampleb (ya,yb)
BCa = 1.5; BCb = 0;

res = [ya(l) - BCa
yb(1) - BCb];

® solinit

solinit=bvpinit(linspace(0,pi,20),[0.2,0.2]);



11.4 Use of MATLAB Built-in Functions for Solving BVPs

** Example 11-6: Solving a two-point BVP using MATLAB's built-in function bvp4c

[ sol = bvp4c (odefun,bcfun, solinit) ]

function Examplell 6 Script
clear all;
solinit=bvpinit(linspace(0, pi, 20),[0.2, 0.2]);
sol=bvp4c(@odefunExample6,@bcfunExample6,solinit);
plot(sol.x, sol.y(1,:),°r")
xlabel ("x"); ylabel ("y")

end

function dydx = odefunExample6(x,yw)
dydx = [yw(2); -2*x*yw(2) - 5*yw(l) + cos(3*x)];
end

function res = bcfunExample6(ya,yb)
BCa 1.5; BCb = 0;
[va(l) - BCa; yb(1) - BCb];

end



11.4 Use of MATLAB Built-in Functions for Solving BVPs

** Example 11-6: Solving a two-point BVP using MATLAB's built-in function bvp4c

| sol =bvpdc (odefun, befun, solinit) ]
£l 1.5
CEl 1x1 struct 574 BE 2§ \
?yt
‘bvpdc’ 1} \
1x24 double \
2x24 double
2x24 double o5l
1x1 struct
>
of \ I
05} \
sol.x(:) \
sol.y(1,:) | \

sol.y(2,:) | oy



11.5 Error and Stability in Numerical Solution of BVPs

**» Numerical error

® For the shooting method
= The numerical error is the same as for the initial value problem and depends on the method used.
= BVP = a series of IVPs with guesses for the leftmost boundary condition

® In the case of the finite difference method
= The error is determined by the order of accuracy of the numerical scheme used.
= The truncation errors of the different approximations used for the derivatives

= The accuracy of the solution by the finite difference method is determined by the larger of the two
truncation errors:
— That of the difference scheme used for the differential equation
— That of the difference scheme used to discretize the boundary conditions

= An effort must therefore be made to ensure that the order of the truncation error is the same for
the boundary conditions and the differential equation.



11.5 Error and Stability in Numerical Solution of BVPs

** Stability

® In an IVP, the instability was associated with error that grew as the integration progressed.

® In contrast, in BVPs, the growth of numerical error as the solution progresses is limited by
the boundary conditions.

® For shooting method

= |n some cases, there may be valid multiple solutions to the BVP so that when it is solved as an IVP,
small changes in the initial constraint (i.e., leftmost boundary condition) can produce one solution
or the other for a small change in the leftmost boundary condition.

= |n some cases, the differential equation itself may be unstable to small perturbations in the
boundary conditions, in which case the problem formulation has to be examined.

= In other cases, multiple, valid solutions to the ODE exist for different rightmost boundary conditions.

® For FDM,

= Stability of solving a BVP by finite differences rests on stability of the scheme used to solve the
resulting set of simultaneous equations.

= For non-linear systems, stability is determined by the type of method used to solve the system as
well as the proximity of the initial guess to the solution.



