Lecture 12 : Operational Amplifier (OP Amp)
: Integrated Circuit that consists of TRs with feedback circuits Symbol:

IC '411'

Rules for OP Amp

1. $Z_{\text {in }}=\infty$ (or $\mathrm{i}^{-} \fallingdotseq \mathrm{i}^{+} \fallingdotseq 0$) and $\mathrm{Z}_{\text {out }}$ is very small $(\fallingdotseq 0)$
2. In open loop (or no feedback)

If $\mathrm{V}^{+}>\mathrm{V}^{-}$then $\mathrm{V}_{\text {out }}=+\mathrm{Vcc}$
If $\mathrm{V}^{+}<\mathrm{V}^{-}$then $\mathrm{V}_{\text {out }}=-\mathrm{Vcc}$
3. In closed loop (or negative feedback or feedback to V^{-})

Then $\mathrm{V}^{-} \fallingdotseq \mathrm{V}^{+}$is always attempted
4. $\left|\mathrm{V}_{\text {out }}\right| \leq+\mathrm{Vcc}$. Equality indicates OP Amp saturation (to be avoided)

Application

1. Analog Comparator

IF $\mathrm{V}_{\mathrm{s}}>\mathrm{V}_{\text {ref }}$ THEN $\mathrm{V}_{\text {out }}=\mathrm{Vcc}$
IF $\mathrm{V}_{\mathrm{s}}<\mathrm{V}_{\text {ref }}$ THEN $\mathrm{V}_{\text {out }}=-\mathrm{Vcc}$

This OP Amp can be used as an Analog Comparator that can make comparison between the two analogue voltages (Q: What happen if $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\text {ref }}$ in open loop? A: Never Happen!!) EX) Logic Circuit, A/D Converter, etc

2. Voltage Follower

:To follow the input voltage with Impedance "Refined"
For better performance in driving or being driven to/from the neighbouring circuit

$\mathrm{V}_{\text {in }}=\mathrm{V}^{+}=\mathrm{V}^{-}=\mathrm{V}_{\text {out }}(\because$ closed loop with negative feedback $)$
$\therefore \mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }} \quad \therefore \mathrm{V}_{\text {out }}$ follows $\mathrm{V}_{\text {in }}$ and Gain $=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=1$
(Q: Why do we need this circuit ?)
Let's consider the input impedance, Zin , and output impedance, $Z_{\text {out }}$
$Z_{\text {in }}=\infty=\operatorname{Impedance}$ when viewing from $\operatorname{Input}\left(\mathrm{V}_{\text {in }}\right)$
$\mathrm{Z}_{\text {out }} \fallingdotseq 0$ = Impedance when viewing from output ($\mathrm{V}_{\text {out }}$)
As $Z_{\text {in }}=\infty$, this circuit can be driven from any upstream circuit.
As $Z_{\text {out }}=0$, this circuit can drive any following circuit.
($Z_{\text {out }} \ll Z_{\text {in }}$ for ideal condition for driving or being driven!!)

Therefore the voltage follower can be a good device to drive or to be driven in practical circuit design application, as Slave and Master!

Ex) For a circuit design to drive A

If there exists $Z_{\text {UPSTREAM }}$ of zero(0) Ω, A can be driven nicely.
But when there exists unknown $Z_{\text {upstream }}$ as in the fig, the condition of driving may not be satisfied if the $Z_{\text {upstream }}$ is big.
$Z_{\text {UPSTREAM }} \ll R_{A}$ should be satisfied for 10X rule. Thus the voltage follower is better to be located just before the A device, to refine the impedance.

Therefore the design can be modified as follows;
$Z_{\text {upstream, }} \mathrm{V}_{\text {in }}$

At $\mathrm{V}_{\text {in }}: Z_{\text {UPSTREAM }} \ll Z_{\text {in }}(=\infty)$
At $m ; Z_{\text {out }}$ from Op amp $\fallingdotseq 0 \ll R_{A}$
\therefore A can be driven nicely with the OP Amp voltage follower,
even under the uncertain ZuPSTREAM

3. Current Source or Current Supply

: To provide constant current supply or current source

At the Junction, $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0$ from the Kirchhoff's law.
$\mathrm{i}_{1}=\left(0-\mathrm{V}^{-}\right) / \mathrm{R}=-\mathrm{V}_{\text {in }} / \mathrm{R}\left(\because \mathrm{V}^{-}=\mathrm{V}^{+}=\mathrm{Vin}\right.$ from closed loop $)$
$\mathrm{i}_{2}=\mathrm{i}_{\mathrm{L}}=$ current flow from R_{L}
$\mathrm{i}_{3}=-\mathrm{i}^{-} \fallingdotseq 0$
Thus $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=\left(-\mathrm{V}_{\text {in }} / \mathrm{R}\right)+\mathrm{i}_{\mathrm{L}}+0=0$
$\therefore \mathrm{i}_{\mathrm{L}}=\mathrm{V}_{\mathrm{in}} / \mathrm{R}$ indicates Constant Current to/from R_{L}, regardless of R_{L}
\therefore Current Source or Current Supply
This current supply can give wider range of voltage when compared to the TR's version, where $I_{E}=\left(V_{\text {in }}-0.6\right) / R_{E}$ and $V_{\text {in }} \geq 0.6$ are assumed.
4. Inverting Amplifier
: To amplify the inverted voltage

At the junction, $i_{1}+i_{2}+i_{3}=0$
$\mathrm{i}_{1}=\left(\mathrm{V}_{1}-\mathrm{V}^{-}\right) / \mathrm{R}_{1}=\left(\mathrm{V}_{1}-\mathrm{V}^{+}\right) / \mathrm{R}_{1}=\mathrm{V}_{1} / \mathrm{R}$
$\mathrm{i}_{2}=0$
$\mathrm{i}_{3}=\left(\mathrm{V}_{\text {out }}-\mathrm{V}^{-}\right) / \mathrm{R}_{\mathrm{o}}=\mathrm{V}_{\text {out }} / \mathrm{R}_{\mathrm{o}}$
Thus $V_{1} / R_{1}+V_{\text {out }} / R_{0}=0$
$\therefore \mathrm{V}_{\text {out }}=\left(-\mathrm{R}_{0} / \mathrm{R}_{1}\right) \mathrm{V}_{1}$
\therefore This is inverting amplifier, and Gain $=-R_{0} / R_{1}$
If $R_{0}>R_{1}$ then \mid Gain $\mid>1$ (Amplification)
If $R_{o}<R_{1}$ then \mid Gain $\mid<1$ (Attenuation)
If $\mathrm{R}_{\mathrm{o}}=\mathrm{R}_{1}$ then Gain=-1 (Inverter or only Sign-change)
5. Summing amplifier
: To sum of voltages amplified

At the junction, $i_{1}+i_{2}+i_{3}+i_{4}=0$
$\mathrm{i}_{1}=\left(\mathrm{V}_{1}-\mathrm{V}^{-}\right) / \mathrm{R}_{1}=\mathrm{V}_{1} / \mathrm{R}_{1} ; \mathrm{i}_{2}=\left(\mathrm{V}_{2}-\mathrm{V}^{-}\right) / \mathrm{R}_{2}=\mathrm{V}_{2} / \mathrm{R}_{2}$
$i_{3}=0 ; i_{4}=\left(V_{\text {out }}-V^{-}\right) / R_{o}=V_{\text {out }} / R_{0}$
$\therefore \mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}+\mathrm{i}_{4}=\mathrm{V}_{1} / \mathrm{R}_{1}+\mathrm{V}_{2} / \mathrm{R}_{2}+\mathrm{V}_{\text {out }} / \mathrm{R}_{\mathrm{o}}=0$
Thus $V_{\text {out }}=-\left(R_{0} / R_{1}\right) V_{1}-\left(R_{0} / R_{2}\right) V_{2}=-\left\{\left(R_{0} / R_{1}\right) V_{1}+\left(R_{0} / R_{2}\right) V_{2}\right\}$
\therefore Sum of Voltages amplified
If $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{0}=\mathrm{R}$ then $\mathrm{V}_{\text {out }}=-\mathrm{V}_{1}-\mathrm{V}_{2}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$: Adder
and $\mathrm{V}_{1}=\mathrm{Vs}, \mathrm{V}_{2}=\mathrm{DC}$ _offset, then $\mathrm{V}_{\text {out }}=-(\mathrm{Vs}+\mathrm{DC}$ _offset) : DC biasing
If $R_{1}=R_{2}=2 R, R_{0}=R$ then $V_{\text {out }}=-\left(V_{1}+V_{2}\right) / 2$: Average
If $R_{1}=3 R, R_{2}=3 R / 2, R_{0}=R$ then $V_{\text {out }}=-\left(V_{1}+2 V_{2}\right) / 3$: Weighing Average
If $R_{1}=R / a, R_{2}=R / b, R_{o}=R$ then $V_{\text {out }}=-\left(a V_{1}+b V_{2}\right)$: Linear combination
If this circuit is extended to n inputs such as V_{n} voltage with R_{n} resistor
Then $V_{\text {out }}=-\sum\left(R_{o} / R_{n}\right) V_{n}$
6. Non-inverting Amplifier
: To amplify non-inverted voltage

At the Junction, $i_{1}+i_{2}+i_{3}=0$
$\mathrm{i}_{1}=\left(0-\mathrm{V}^{-}\right) / \mathrm{R}_{1}=-\mathrm{V}_{\mathrm{in}} / \mathrm{R}_{1}$
$\mathrm{i}_{2}=\left(\mathrm{V}_{\text {out }}-\mathrm{V}^{-}\right) / \mathrm{R}_{2}=\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {in }}\right) / \mathrm{R}_{2}$
$\mathrm{i}_{3}=0$
$\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0=-\mathrm{V}_{\text {in }} / \mathrm{R}_{1}+\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {in }}\right) / \mathrm{R}_{2}$
$\therefore \mathrm{V}_{\text {out }}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{V}_{\text {in }}$
This is Non-inverting amplifier, Gain $=1+R_{2} / R_{1}>1$
Thus the sign is not changed and amplification only

7. Current to Voltage Converter (C/V converter)

: To convert current to voltage with the refined $Z_{\text {in }}$ and $Z_{\text {out }}$

At the junction, $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0$
$\mathrm{i}_{1}=\mathrm{I}_{\text {in }}, \mathrm{i}_{2}=\left(\mathrm{V}_{\text {out }}-0\right) / \mathrm{R}=\mathrm{V}_{\text {out }} / R, \quad \mathrm{i}_{3}=0$
Thus $\mathrm{I}_{\text {in }}+\mathrm{V}_{\text {out }} / \mathrm{R}=0$
$\therefore \mathrm{V}_{\text {out }}=-\mathrm{l}_{\text {in }} \mathrm{R}$ and this is the current to voltage converter
It is of interest to know the input impedance $\left(Z_{\text {in }}\right)$, and output impedance ($Z_{\text {out }}$).

Input Impedance, $Z_{\text {in }} \doteqdot \infty\left(\because Z_{\text {in }} \doteqdot Z^{-} \doteqdot \infty\right)$
Output Impedance, $Z_{\text {out }} \div 0$
$\therefore Z_{\text {out }} \ll Z_{\text {in }}$ can be achieved and thus it is a good device!

For comparison, a simple C/V (current to voltage) converter is $Z_{\text {UP-STREAM, }} I_{\text {in }} \circ \quad \bullet V_{\text {out }}=I_{\text {in }} R$
$Z_{\text {in }}=R, Z_{\text {out }}=Z_{\text {up-stream }} \| R$
Q) $Z_{\text {out }} \ll Z_{\text {in }}$ can be achieved? Yes or No

Comparison is as follows;
\Rightarrow Simple C/V can be nicely driven only when $Z_{U P-S T R E A M} \ll Z_{\text {in }}(=R)$ while OP Amp CN can be driven by any up-stream circuit ($\because Z_{\text {in }} \doteqdot \infty$)
\Rightarrow Simple C/V can nicely drive only when $\mathrm{Z}_{\text {out }} \ll \mathrm{Z}_{\text {LOAD }}$ while OP Amp C/V can drive any down-stream circuit ($\because Z_{\text {out }} \doteqdot 0$)
\therefore OP Amp C/V shows better performance with the "refined" impedance

8. Differential Amplifier

At Lower Junction: $\mathrm{i}_{4}+\mathrm{i}_{5}+\mathrm{i}_{6}=0$
$\mathrm{i}_{4}=\left(\mathrm{V}_{2}-\mathrm{V}^{+}\right) / \mathrm{R}_{1} ; \mathrm{i}_{5}=0 ; \mathrm{i}_{6}=\left(0-\mathrm{V}^{+}\right) / \mathrm{R}_{2}=-\mathrm{V}^{+} / \mathrm{R}_{2}$
$\mathrm{i}_{4}+\mathrm{i}_{5}+\mathrm{i}_{6}=\left(\mathrm{V}_{2}-\mathrm{V}^{+}\right) / \mathrm{R}_{1}-\mathrm{V}^{+} / \mathrm{R}_{2}=0 \therefore \mathrm{~V}^{+}=\mathrm{R}_{2} \mathrm{~V}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

At Upper Junction: $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0$
$\mathrm{i}_{1}=\left(\mathrm{V}_{1}-\mathrm{V}^{-}\right) / \mathrm{R}_{1} ; \mathrm{i}_{2}=0 ; \mathrm{i}_{3}=\left(\mathrm{V}_{\text {out }}-\mathrm{V}^{-}\right) / \mathrm{R}_{2}$
$\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=\left(\mathrm{V}_{1}-\mathrm{V}^{-}\right) / \mathrm{R}_{1}+\left(\mathrm{V}_{\text {out }}-\mathrm{V}^{-}\right) / \mathrm{R}_{2}=0$ and $\mathrm{V}^{-}=\mathrm{V}^{+}$
$\therefore \mathrm{V}_{\text {out }}=-\mathrm{R}_{2} \mathrm{~V}_{1} / \mathrm{R}_{1}+\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \mathrm{V}-=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \mathrm{R}_{2} / \mathrm{R}_{1}$
\therefore Differential Amplifier with Gain $=\mathrm{R}_{2} / \mathrm{R}_{1}$
This is to amplify the voltage difference $\mathrm{V}_{2}-\mathrm{V}_{1}$
Ex) $\mathrm{V}_{2}=$ Signal + DC_offset, $\mathrm{V}_{1}=$ DC_offset
Then $\mathrm{V}_{2}-\mathrm{V}_{1}=$ Signal, and it can be amplified with $\mathrm{R}_{2} / \mathrm{R}_{1}$ gain.

