Lecture 12 : Operational Amplifier (OP Amp)

: Integrated Circuit that consists of TRs with feedback circuits Symbol:

Rules for OP Amp

- 1. $Z_{in} = \infty$ (or $i^- = i^+ = 0$) and Z_{out} is very small (=0)
- 2. In open loop (or no feedback)

If
$$V^+ > V^-$$
 then $V_{out} = +Vcc$

If $V^+ < V^-$ then V_{out} =-Vcc

3. In closed loop (or negative feedback or feedback to V⁻)

Then $V^- = V^+$ is always attempted

4. $|V_{out}| \le +Vcc$. Equality indicates OP Amp saturation (to be avoided)

Application

1. Analog Comparator

IF $V_s > V_{ref}$ THEN $V_{out} = Vcc$ IF $V_s < V_{ref}$ THEN $V_{out} = -Vcc$

This OP Amp can be used as an Analog Comparator that can make comparison between the two analogue voltages (Q: What happen if $V_s = V_{ref}$ in open loop? A: Never Happen!!) EX) Logic Circuit, A/D Converter, etc

2. Voltage Follower

:To follow the input voltage with Impedance "Refined"

For better performance in driving or being driven to/from the neighbouring circuit

 $V_{in} = V^{+} = V^{-} = V_{out}$ (:: closed loop with negative feedback)

$$\therefore V_{out} = V_{in}$$
 $\therefore V_{out}$ follows V_{in} and $Gain = V_{out}/V_{in} = 1$

(Q: Why do we need this circuit ?)

Let's consider the input impedance, Zin, and output impedance, Zout

 $Z_{in} = \infty = Impedance$ when viewing from $Input(V_{in})$

 $Z_{out} = 0$ = Impedance when viewing from output (V_{out})

As $Z_{in} = \infty$, this circuit can be driven from any upstream circuit.

As $Z_{out} = 0$, this circuit can drive any following circuit.

(Z_{out} «Z_{in} for ideal condition for driving or being driven!!)

Therefore the voltage follower can be a good device to drive or to be driven in practical circuit design application, as Slave and Master! Ex) For a circuit design to drive A

If there exists $Z_{UPSTREAM}$ of zero(0) Ω , A can be driven nicely.

But when there exists unknown $Z_{UPSTREAM}$ as in the fig, the condition of driving may not be satisfied if the $Z_{UPSTREAM}$ is big.

 $Z_{\text{UPSTREAM}} \ll R_A$ should be satisfied for 10X rule. Thus the voltage follower is better to be located just before the A device, to refine the impedance.

Therefore the design can be modified as follows;

 $Z_{\text{UPSTREAM}}, \ V_{\text{in}}$

At V_{in} : $Z_{UPSTREAM} \ll Z_{in}$ (= ∞)

At m; Z_{out} from Op amp $= 0 \ll R_A$

: A can be driven nicely with the OP Amp voltage follower,

even under the uncertain ZUPSTREAM

3. Current Source or Current Supply

: To provide constant current supply or current source

At the Junction, $i_1+i_2+i_3=0$ from the Kirchhoff's law.

$$i_1 = (0 - V)/R = -V_{in}/R$$
 (: $V = V^+ = V_{in}$ from closed loop)

 $i_2{=}i_L{=}current$ flow from R_L

Thus $i_1+i_2+i_3=(-V_{in}/R)+i_L+0=0$

 ${\it \therefore}~i_L{=}V_{in}/R$ indicates Constant Current to/from R_L , regardless of R_L

 \therefore Current Source or Current Supply

This current supply can give wider range of voltage when compared to the TR's version, where $I_E = (V_{in}-0.6)/R_E$ and $V_{in} \ge 0.6$ are assumed.

4. Inverting Amplifier

: To amplify the inverted voltage


```
At the junction, i_1+i_2+i_3=0
```

$$i_1 = (V_1 - V_1)/R_1 = (V_1 - V_1)/R_1 = V_1/R_1$$

 $i_2 = 0$

$$i_3 = (V_{out} - V)/R_o = V_{out}/R_o$$

Thus
$$V_1/R_1 + V_{out}/R_o = 0$$

$$\therefore V_{out} = (-R_o/R_1)V_1$$

- \therefore This is inverting amplifier, and Gain = -R_o/R_1
- If $R_o > R_1$ then |Gain| > 1 (Amplification)
- If $R_o < R_1$ then |Gain| < 1 (Attenuation)
- If $R_o = R_1$ then Gain=-1 (Inverter or only Sign-change)

5. Summing amplifier

: To sum of voltages amplified

At the junction, $i_1+i_2+i_3+i_4=0$

$$i_1 = (V_1 - V_1)/R_1 = V_1/R_1$$
; $i_2 = (V_2 - V_1)/R_2 = V_2/R_2$

$$i_3=0; i_4=(V_{out} - V)/R_o=V_{out}/R_o$$

$$\therefore i_1 + i_2 + i_3 + i_4 = V_1/R_1 + V_2/R_2 + V_{out}/R_0 = 0$$

Thus $V_{out} = -(R_o/R_1)V_1 - (R_o/R_2)V_2 = -\{(R_o/R_1)V_1 + (R_o/R_2)V_2\}$

.:. Sum of Voltages amplified

If
$$R_1 = R_2 = R_0 = R$$
 then $V_{out} = -V_1 - V_2 = -(V_1 + V_2)$: Adder

and $V_1=Vs$, $V_2=DC_offset$, then $V_{out}=-(Vs+DC_offset)$: DC biasing

If
$$R_1=R_2=2R$$
, $R_o=R$ then $V_{out}=-(V_1+V_2)/2$: Average

If
$$R_1=3R$$
, $R_2=3R/2$, $R_o=R$ then $V_{out}=-(V_1+2V_2)/3$: Weighing Average

If $R_1=R/a$, $R_2=R/b$, $R_o=R$ then $V_{out}=-(aV_1+bV_2)$: Linear combination

If this circuit is extended to n inputs such as V_n voltage with R_n resistor Then $V_{out}=-\Sigma(R_o/R_n)V_n$

- 6. Non-inverting Amplifier
- : To amplify non-inverted voltage

At the Junction,
$$i_1+i_2+i_3=0$$

 $i_1=(0 - V^-)/R_1=-V_{in}/R_1$
 $i_2=(V_{out} - V^-)/R_2=(V_{out} - V_{in}) / R_2$
 $i_3=0$

$$i_1 + i_2 + i_3 = 0 = -V_{in}/R_1 + (V_{out} - V_{in}) / R_2$$

$$\therefore V_{out} = (1 + R_2/R_1)V_{in}$$

This is Non-inverting amplifier, $Gain=1+R_2/R_1 > 1$

Thus the sign is not changed and amplification only

7. Current to Voltage Converter (C/V converter)

: To convert current to voltage with the refined Z_{in} and Z_{out}


```
At the junction, i_1+i_2+i_3=0
```

$$i_1 = I_{in}$$
, $i_2 = (V_{out}-0)/R = V_{out}/R$, $i_3 = 0$

Thus $I_{in}+V_{out}/R=0$

 \therefore V_{out}= - I_{in}R and this is the current to voltage converter

It is of interest to know the input impedance (Z_{in}), and output impedance (Z_{out}).

Input Impedance, $Z_{in} \equiv \infty$ (:: $Z_{in} \equiv Z^- \equiv \infty$)

Output Impedance, Z_{out}≒0

 \therefore $Z_{out}{\ll}Z_{in}$ can be achieved and thus it is a good device!

For comparison, a simple C/V (current to voltage) converter is

 $Z_{UP-STREAM}$, $I_{in} \bullet V_{out} = I_{in}R$

 $Z_{in}=R, Z_{out}=Z_{up-stream} \parallel R$

Q) $Z_{out} \ll Z_{in}$ can be achieved? Yes or No

Comparison is as follows;

⇒Simple C/V can be nicely driven only when $Z_{UP-STREAM} \ll Z_{in}$ (=R) while OP Amp C/V can be driven by any up-stream circuit ($\therefore Z_{in} = \infty$)

 $\Rightarrow Simple \ C/V \ can \ nicely \ drive \ only \ when \ Z_{out} \ll Z_{LOAD}$ while OP Amp C/V can drive any down-stream circuit (:: Z_{out} = 0)

. OP Amp C/V shows better performance with the "refined" impedance

8. Differential Amplifier

At Lower Junction: $i_4+i_5+i_6=0$ $i_4=(V_2 - V^+)/R_1$; $i_5=0$; $i_6=(0 - V^+)/R_2=-V^+/R_2$ $i_4+i_5+i_6=(V_2 - V^+)/R_1 - V^+/R_2=0$ $\therefore V^+ = R_2V_2/(R_1+R_2)$

At Upper Junction: $i_1+i_2+i_3=0$ $i_1=(V_1 - V^-)/R_1$; $i_2=0$; $i_3=(V_{out} - V^-)/R_2$ $i_1+i_2+i_3=(V_1 - V^-)/R_1+(V_{out} - V^-)/R_2=0$ and $V^-=V^+$ $\therefore V_{out}=-R_2V_1/R_1+(1+R_2/R_1)V_-=(V_2 - V_1)R_2/R_1$ \therefore Differential Amplifier with Gain=R_2/R_1

This is to amplify the voltage difference V_2 - V_1

Ex) V₂=Signal + DC_offset, V₁=DC_offset

Then V_2 - V_1 =Signal, and it can be amplified with R_2/R_1 gain.