Lecture 13: OP Amp2
9. Integrator

At Junction: $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0$
$\mathrm{i}_{1}=\left(\mathrm{V}_{\text {in }}-\mathrm{V}^{-}\right) / R=\mathrm{V}_{\text {in }} / R, \mathrm{i}_{2}=0, \mathrm{i}_{3}=C d\left(\mathrm{~V}_{\text {out }}-\mathrm{V}^{-}\right) / \mathrm{dt}=C \mathrm{C} \mathrm{V}_{\text {out }} / \mathrm{dt}$
$\therefore \mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=\mathrm{V}_{\text {in }} / \mathrm{R}+\mathrm{CdV}_{\text {out }} / \mathrm{dt}=0$
$\therefore \mathrm{V}_{\text {out }}=-\int \mathrm{V}_{\text {in }} \mathrm{dt} / \mathrm{RC} \quad \therefore$ Integrator
The OP Amp integrator shows better performance than the integrator using a LPF with low $\omega_{3 \mathrm{~dB}}(=1 / R C)$

Practically, integrator seems to saturate easily, and a large resistor R_{2} parallel to capacitor can help to prevent it.

Large Resistor R_{2} parallel to C can prevent the OP Amp saturation.

At Junction: $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}+\mathrm{i}_{4}=0$
$\mathrm{i}_{1}=\mathrm{V}_{\text {in }} / \mathrm{R}, \mathrm{i}_{2}=0, \mathrm{i}_{3}=\mathrm{CdV}_{\text {out }} / d t, \mathrm{i}_{4}=\mathrm{V}_{\text {out }} / \mathrm{R}_{2}$
$\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}+\mathrm{i}_{4}=\mathrm{V}_{\text {in }} / \mathrm{R}+\mathrm{CdV}_{\text {out }} / \mathrm{dt}+\mathrm{V}_{\text {out }} / \mathrm{R}_{2}=0$
Let $\mathrm{V}=\mathrm{V} \exp (\mathrm{j} \omega \mathrm{t})$, then the above eqn becomes,
$V_{\text {in }} / R+\left(j \omega C+1 / R_{2}\right) V_{\text {out }}=0$
$\therefore \mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{H}=-(1 / \mathrm{R}) /\left(\mathrm{j} \omega \mathrm{C}+1 / \mathrm{R}_{2}\right)=-\left(\mathrm{R}_{2} / \mathrm{R}\right) /\left(1+j \omega \mathrm{R}_{2} \mathrm{C}\right)$: a kind of $\underline{\angle P F}$
$|H|=\left(R_{2} / R\right) / \sqrt{ }\left\{1+\left(\omega R_{2} C\right)^{2}\right\}$ and $\angle H=180^{\circ}-\tan ^{-1}\left(\omega R_{2} C\right)$. Thus
$\omega \geq 1 / R_{2} C$ then $V_{\text {out }}=-\int V_{\text {in }} d t / R C$ (Integrator),
$\omega \leq 1 / R_{2} C$ then $V_{\text {out }} / V_{\text {in }} \fallingdotseq-R_{2} / R($ Amplifier $)$
|H|

Amplifier Integrator

10. Differentiator

At Junction: $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=0$
$i_{1}=C d\left(V_{\text {in }}-V^{-}\right) / d t=C d V_{\text {in }} d t, i_{2}=0, i_{3}=\left(V_{\text {out }}-V^{-}\right) / R=V_{\text {out }} / R$
$\therefore \mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=\mathrm{CdV}_{\text {in }} / \mathrm{dt}+\mathrm{V}_{\text {out }} / \mathrm{R}=0$
Thus $\mathrm{V}_{\text {out }}=-\mathrm{RCd} \mathrm{V}_{\text {in }} / \mathrm{dt}$: OP Amp Differentiator
When $d V_{\text {in }} / d t$ is very high, OP Amp also can be saturated.
Thus Roll-off function circuit can be added as follows;

At Junction: $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}+\mathrm{i}_{4}=0$
$i_{1}=V_{\text {in }} /\left(R_{2}+1 / j \omega C\right), i_{2}=0, i_{3}=V_{\text {out }} / R, i_{4}=j \omega C_{2} V_{\text {out }}$
$\therefore \mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}+\mathrm{i}_{4}=\mathrm{V}_{\text {in }} /\left(\mathrm{R}_{2}+1 / \mathrm{j} \omega C\right)+\mathrm{V}_{\text {out }}\left(1 / \mathrm{R}+\mathrm{j} \omega \mathrm{C}_{2}\right)=0$.
Thus $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{H}=-1 /\left\{\left(\mathrm{R}_{2}+1 / \mathrm{j} \omega \mathrm{C}\right)\left(1 / \mathrm{R}+j \omega \mathrm{C}_{2}\right)\right\}$
$=-j \omega R C /\left\{\left(1+j \omega R_{2} C\right)\left(1+j \omega R C_{2}\right)\right\}=-j \omega R C /\left\{\left(1-\omega^{2} R R_{2} C C_{2}\right)+j \omega\left(R_{2} C+R C_{2}\right)\right\}$
$\therefore|\mathrm{H}|=\omega R C / \sqrt{ }\left\{\left(1-\omega^{2} R_{2} R_{2} C_{2}\right)^{2}+\omega^{2}\left(R_{2} C+R C_{2}\right)^{2}\right\}$
$\angle \mathrm{H}=-90^{\circ}-\tan ^{-1}\left(\omega \mathrm{R}_{2} \mathrm{C}\right)-\tan ^{-1}\left(\omega \mathrm{RC}_{2}\right)$
If $\omega=0$ then $|\mathrm{H}|=0$
if $\omega=1 / \sqrt{ } R R_{2} C C_{2}$ then $|H|=R C /\left(R_{2} C+R C_{2}\right)$
If $\omega=\infty$ then $|H|=0$
Ex) $R=100 \mathrm{~K}, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}_{2}=1 \mathrm{~K}, \mathrm{C}_{2}=100 \mathrm{pF}$, then $1 / V R R_{2} C C_{2}=10^{5} ; R C /\left(R_{2} C+R C_{2}\right)=50$

Differentiator
If $\omega \ll 1 / \sqrt{ }\left(R R_{2} C C_{2}\right)$ then $H \doteqdot-j \omega R C=V_{\text {out }} / V_{\text {in }}$
thus $V_{\text {out }}=-j \omega R C V_{\text {in }}=-R C d V_{\text {in }} / d t$: Differentiator
The 'Roll Off' is applied to the high frequency range.

Ex) Design an OP Amp that ramps at $+1 \mathrm{~V} / \mathrm{ms}$ with DC 1 V input. Assume the input impedance, $Z_{\text {in }} \geq 10 \mathrm{M} \Omega$, and the $D C$ gain of 100 is considered for the saturation protection.

1) OP Amp follower is used for high $Z_{\text {in }}(\geq 10 \mathrm{M} \Omega)$, considering uncertain $Z_{\text {upstream }}$
2) Choose R_{2} as $10 \mathrm{M} \Omega$ much less than huge resistance ($\ll 100 \mathrm{M} \Omega$)
3) Choose R as $100 K \Omega$ that gives $D C$ gain of $100\left(=R_{2} / R\right)$ for saturation protection. It gives current $\mathrm{i}=1 \mathrm{~V} / 100 \mathrm{~K} \Omega=0.01 \mathrm{~mA}$
4) Choose C such that $\mathrm{i}=\mathrm{C} \Delta \mathrm{V} / \Delta \mathrm{t}$

Thus $\mathrm{C}=\mathrm{i} /(\Delta \mathrm{V} / \Delta \mathrm{t})=(0.01 \mathrm{E}-3) /(1 \mathrm{~V} / 0.001 \mathrm{~s})=0.01 \mu \mathrm{~F}$
5) Optionally choose the same R for the inverting amplifier
11. Digital to Analog Converter (DAC)
: To convert the Digital signal to Analog signal
(1) Binary weighed resistor method

At Junction: $i_{1}+i_{2}+i_{3}+i_{4}+i_{5}+i_{6}=0$, and $V^{-}=0$
$i_{1}=D_{1} / R, i_{2}=D_{2} / 2 R, i_{3}=D_{3} / 4 R, i_{4}=D_{4} / 8 R, i_{5}=V_{\text {out }} / R_{0}, i_{6}=0$
Thus $V_{\text {out }}=\left(-R_{0} / R\right)\left(D_{1}+D_{2} / 2+D_{3} / 4+D_{4} / 8\right)$
$=\left(-R_{0} / 8 R\right)\left(8 D_{1}+4 D_{2}+2 D_{3}+D_{4}\right)$,
where $D_{i}=0$ or $1 ; 0 \mathrm{~V}$ or 5 V
$D_{1}=$ MSB(Most Significant Bit), $D_{4}=\operatorname{LSB}$ (Least Significant Bit)
This is the Digital to Analog conversion.
Q: Can this method be extended to the DAC of 5 or more bits?
Answer is No.
The above binary weighed resistors is practically limited to the DACs of maximum 4 bits.

Issue1: Availability and Range of Resistors
If we extend to 5 or more bits DAC, we need $16 R, 32 R, 64 R$, etc.
But the binary weighed resistors may not be easily obtained from the commercial choice such as 128 R for the $8^{\text {th }}$ bit of DAC.

The range of OP Amp's resistor may be limited, such as $10 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$ range, typically.

Issue 2: Manufacturing tolerance of commercial resistors
All commercial resistors may have manufacturing tolerance of about 10\% from the nominal resistance. It indicates $10 \mathrm{~K} \Omega$ resistor may have resistance between $9.5 \mathrm{~K} \Omega$ and $10.5 \mathrm{~K} \Omega$ with normal specification.

For n bits of DAC, the critical situation comes when the tolerance of MSB ($=0.1$) is equal to the contribution of the $\operatorname{LSB}\left(=1 / 2^{n-1}\right)$. Thus for reliable DAC performance, $0.1 \leq 1 / 2^{n-1}$ is to be satisfied. Thus $n \leq 4$ and maximum 4 bits of DAC is practically accepted with the weighed resistor method.
(Q: How can we handle higher bits DAC? We may need more than 16 bits DAC in practical application. Is there any alternative method?)
(2) Ladder method or $\mathrm{R}-2 \mathrm{R}$ resistors method
: To DAC using R-2R resistors

Let $V_{1,}, V_{2}, V_{3}, V_{4}$ are the voltages at the J1, J2, J3, J4 junctions, respectively.

At J4 junction: $\mathrm{i}_{11}+\mathrm{i}_{12}+\mathrm{i}_{13}=0$
$\left(V_{3}-V_{4}\right) / R+\left(D_{4}-V_{4}\right) / 2 R+\left(0-V_{4}\right) / 2 R=0$
$\therefore 2\left(\mathrm{~V}_{3}-\mathrm{V}_{4}\right)+\left(\mathrm{D}_{4}-\mathrm{V}_{4}\right)-\mathrm{V}_{4}=0 \therefore 2 \mathrm{~V}_{3}-4 \mathrm{~V}_{4}=-\mathrm{D}_{4}$
At J3 junction: $i_{8}+i_{9}+i_{10}=0$
$\left(V_{2}-V_{3}\right) / R+\left(V_{4}-V_{3}\right) / R+\left(D_{3}-V_{3}\right) / 2 R=0$
$\therefore 2\left(\mathrm{~V}_{2}-\mathrm{V}_{3}\right)+2\left(\mathrm{~V}_{4}-\mathrm{V}_{3}\right)+\left(\mathrm{D}_{3}-\mathrm{V}_{3}\right)=0 \therefore 2 \mathrm{~V}_{2}-5 \mathrm{~V}_{3}+2 \mathrm{~V}_{4}=-\mathrm{D}_{3} \quad$ eq (2)

At J2 junction: $\mathrm{i}_{5}+\mathrm{i}_{6}+\mathrm{i}_{7}=0$
$\left(0-V_{2}\right) / R+\left(V_{3}-V_{2}\right) / R+\left(D_{2}-V_{2}\right) / 2 R=0$
$\therefore 2\left(0-\mathrm{V}_{2}\right)+2\left(\mathrm{~V}_{3}-\mathrm{V}_{2}\right)+\left(\mathrm{D}_{2}-\mathrm{V}_{2}\right)=0 \therefore-5 \mathrm{~V}_{2}+2 \mathrm{~V}_{3}=-\mathrm{D}_{2} \quad$ eq (3)
At J1 junction: $\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}+\mathrm{i}_{4}=0$
$V_{2} / R+0+D_{1} / 2 R+V_{\text {out }} / R_{o}=0 \quad$ eq(4)
From eq(3), $\mathrm{V}_{3}=\left(5 \mathrm{~V}_{2}-\mathrm{D}_{2}\right) / 2$
From eq(2), $\mathrm{V}_{4}=\left(-2 \mathrm{~V}_{2}+5 \mathrm{~V}_{3}-\mathrm{D}_{3}\right) / 2=\left(-2 \mathrm{~V}_{2}+12.5 \mathrm{~V}_{2}-2.5 \mathrm{D}_{2}-\mathrm{D}_{3}\right) / 2$
$=\left(10.5 \mathrm{~V}_{2}-2.5 \mathrm{D}_{2}-\mathrm{D}_{3}\right) / 2$
Now from eq(1), $5 \mathrm{~V}_{2}-\mathrm{D}_{2}-2\left(10.5 \mathrm{~V}_{2}-2.5 \mathrm{D}_{2}-\mathrm{D}_{3}\right)=-\mathrm{D}_{4}$
$-16 \mathrm{~V}_{2}+4 \mathrm{D}_{2}+2 \mathrm{D}_{3}=-\mathrm{D}_{4} \therefore \mathrm{~V}_{2}=\left(4 \mathrm{D}_{2}+2 \mathrm{D}_{3}+\mathrm{D}_{4}\right) / 16$
Finally from eq(4),
$V_{\text {out }}=-\left(R_{0} / R\right)\left(V_{2}+D_{1} / 2\right)=-\left(R_{0} / R\right)\left(D_{1} / 2+D_{2} / 4+D_{3} / 8+D_{4} / 16\right)$
$=-\left(R_{0} / 16 R\right)\left(8 D_{1}+4 D_{2}+2 D_{3}+D_{4}\right) \therefore 4$ bit DAC
This is a very nice DAC circuit, and it can be extended to n bits of DAC, by just adding R-2R resistors, without using the troublesome binary weighed resistors.
(Q: Is this circuit free from the issue of manufacturing tolerance of resistors? A: The tolerance issue is still valid, but we can focus on the getting of $R, 2 R$ resistors of high precision grade, rather than hustle and bustle with broad range of precision resistors that may not be commercially available.)
12. Analog to Digital Converter, or ADC
: To convert from Analog to Digital, using Comparator, DAC, Counter based on Successive Approximation

(1) $V_{\text {in }}$ is compared with $V_{\text {out2 }}$
(2) if $\mathrm{V}_{\text {in }}>\mathrm{V}_{\text {out2 }}$ then $\mathrm{V}_{\text {out } 1}=+\mathrm{V}_{\text {cc }}$ that sends to Counter for count-up otherwise $\mathrm{V}_{\text {out } 1}=-\mathrm{Vcc}$ that sends to Counter for count-stop
(3) Counter is counting-up with CLK signal
(4) DAC converts Digital to Analog, outputting $V_{\text {out2 }}$
(5) Repeat (1) to (4)
\therefore Digital $\left(D_{4}, D_{3}, D_{2}, D_{1}\right)$ is obtained from the Analog $V_{\text {in }}$

Observation:

This is a 4 bit ADC consisting of OP Amp comparator, Counter, DAC, using the Successive Approximation method, and the number of bits of processing can be easily increased with the upgraded DAC and Counter accommodating increased bit numbers.

OP Amp comparator (open loop) is a very nice tool for comparison, and the digital counter is integrated together with internal/external CLK signal that is commercially available.

In order to obtain a Digital value corresponding to Analog V_{in}, it needs multiple looping-procedures until Vout $_{2}$ is equal or very close to $\mathrm{V}_{\text {in }}$ as explained, thus taking more times for processing than the simple DAC procedure.
(But it is not so much troublesome due to very high CLK speed available nowadays)

