Lecture 15 Micro Processors

:Packaged Chips for Logical and Arithmetic Calculation

Micro Processor vs Logical/Arithmetic Gates
Firm-ware(or softwired) Hardwired configuration
based on Packaged Chip

Modification by rewriting Modification by rewiring new firm-ware

Software based on
In-house design
8086/8088/80X86 (e.g.) using Logic/Arithmetic Gates
(Few 1000 gates typically)

LSI: Large Scale Integration $\fallingdotseq 1000$ gates
VLSI: Very Large Scale Integration \fallingdotseq Few thousands gate that most CPU belong to.

8086 Micro Processor

$\left.\begin{array}{llllll} & & & \text { MAX } & \text { MIN } \\ \text { GND } \\ \text { ADPD }\end{array}\right)$

The 8086 pin assignments in min and max mode a

(source:en.wikipedia.org/wiki/Intel_8086)

Overview of Micro Processor System

[^0]
CPU (Central Processing Unit)

-To control the whole processes like brain
-To decode instructions such that 03C3 (=0000 00111101 0011) indicates ADD (or +), etc
-To execute the instructions such as arithmetic/logic computation, by connecting/calling gates to/from internal registers, memory, I/O devices Timing Circuit (or CLK)

To generate trains of time pulses, and
To synchronize the activity within the system
Memory
To store both the data and instructions, RAM (Random Access memory) and ROM (Read Only Memory)

I/O (Input/output) Device
-To communicate with the external world, and
-To store large quantity of information, and
-To make input/output such as Keyboard, Mouse, USB, ADC, DAC, Hard Disc, Monitor

System Bus
-To connect CPU to memory and I/O (memory mapped I/O)
(1)Address Bus (A0-A19 for 8086)

To transfer address (20 bits for 8086) to and from Memory, I/O
2^{20} Locations $=10^{6}$ Locations $=1$ Mega Byte Memory locations accessible (2) Data Bus (D0-D15 for 8086)
:To transfer data (16 bits for 8086) to and from memory, I/O
Number of data lines= data width=16 for $8086 \therefore 16$ bit processor And two bus cycle is needed to process 32 bits data
(3) Control Bus

To issue a control command such as Read, Write, Acknowledge, and Interrupt Request

Interface

Circuit to connect the Bus to a device, such as memory and I/O Memory or I/O Interface
=Address Decoding + Data Buffering + Read/Write

8086 Micro Processor Structure

(source:en.wikipedia.org/wiki/Intel_8086)

ALU (Arithmetic Logic Unit)
-Arithmetic and Logic Computation
-I/O control + I/O handling
IR (Instruction Register)
-To hold the current instruction from the instruction queue
IP (Instruction Pointer)
-To hold the address of the next instruction

Working Registers: AX, BX, CX, DX
-To store temporary information for computing and addressing process
-To store arithmetic/logic operands, results
Each working register of 16 bits consists of higher 8bit and lower 8bit
such as $A X=A H+A L, B X=B H+B L, C X=C H+C L, D X=D H+D L$, thus 16bit processing and 8 bits processing are both possible.

Also for special functions such as;
AX: I/O data handling as accumulator
DX: I/O address handling
BX: Base register for address calculation
CX: Implied counter

Segment Registers: CS, DS, ES, SS
Register to hold the address of each segments within the memory map
CS $=$ Code Segment register to hold the address of code (or instruction) segment

DS=Data Segment register to hold the address of data segment
ES=Extra Segment register to hold the address of extra data segment SS=Stack Segment register to hold the address of the stack segment

Memory Map within a Microprocessor system (8086)
1 Byte

Physical Address=(Segment Register)X10 ${ }_{16}+$ Effective Address
where Effective Address (EA) is the relative distance within the segment

Index registers: Registers for index/base/stack pointing
SI(Source Index), DI(Destination Index), BP(Base Pointer), SP(Stack Pointer)

SP (Stack Pointer)

-To store the address of stack location, where stack is the memory space of temporary contents of working registers during the subroutine calling
(source:en.wikipedia.org/wiki/Intel_8086)

PSW (Process Status Word)

-To store the current status of the processor such as zero, parity, sign, overflow, carry, interrupt, etc. It is called as 'Flags'

Flags [edit]

The 8086 has a 16 -bit flags register. Nine of these condition code flags are active, and indicate the current state of the processor: Carry flag (CF), Parity flag (PF), Auxiliary carry flag (AF), Zero flag (ZF), Sign flag (SF), Trap flag (TF), Interrupt flag (IF), Direction flag (DF), and Overflow flag (OF). Also referred to as the status word, the layout of the flags register is as follows: ${ }^{[9]: 3-5}$

Bit	$15-12$	11	10	9	8	7	6	5	4	3	2	1	0
Flag		OF	DF	IF	TF	SF	ZF		AF		PF		CF

$\mathrm{CF}=1$ if previous computation results in 'Carry'
$\mathrm{PF}=1$ if previous computation results in 'Parity'
(or Even number of ' 1 ' in lower 8bits after computation)
$\mathrm{ZF}=1$ if previous computation results in zero
$\mathrm{SF}=1$ if previous computation results in negative sign

Operation Sequence of Micro processor

1. Fetch the next instruction from the address indicated by IP
2. Put it into the IR and decode it, while IP is incremented to point to the next instruction
3. Execute the instruction
4. Repeat 1 through 3

Data Formats in Micro processor

1. Numerical Data
(1) Unsigned binary
$N=b_{n-1} b_{n-2 \ldots} \ldots b_{1} b_{0}=b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+. .+b_{1} 2^{1}+b_{0} 2^{0}$
To express in Hexadecimal;
00000001001000110100010101100111 -> 01234567
10001001101010111100110111101111 -> 89 A B C D E F
(2) Signed binary
:Negative number as 2's complement
$-N=2^{n}-N \equiv \underline{N}+1$, where \underline{N} is the negate of N in binary format
Ex) $-45=$? for signed binary
$45=32+8+4+1=00101101_{(2)}$ thus $4 \underline{5}=11010010$
$\therefore-45=\underline{N}+1=11010011_{(2)}=D 3_{(16)}$
(3) Packed BCD (Binary Coded Decimal)

Each decimal digit is encoded into 4 bit pattern
3509 in BCD format $=0011010100001001$
3509 in Decimal $=2048+1024+256+128+32+16+4+1$
=0000110110110101
(4) Fixed Point Format
$. F=. b_{-1} b_{-2} \ldots b_{-n}=b_{-1} 2^{-1}+b_{-2} 2^{-2}+. .+b_{-n} 2^{-n}$
$0.59375=$?
$0.59375 \times 2=1.1875=\underline{1}+.1875,0.1875 \times 2=0.3750=\underline{0}+.3750$
$0.3750 \times 2=0.750=\underline{0}+.750,0.750 \times 2=1.5=\underline{1}+.5,0.5 \times 2=1.0=\underline{1}$
Thus $0.59375=0.10011_{(2)}$
(5) Floating point format (Single Precision)

To express a real number as 4 byte expression as,
Real Number $=(-1)^{\mathrm{S}} \times 2^{\mathrm{E}-127} \times 1 . \mathrm{F}$

1	8	23
S	E	F
3231		24

Range of real number : $\pm 1 \times 10^{-38}$ to $\pm 3 \times 10^{38}$
Ex1) $313.125=313+0.125=(256+32+16+8+1)+\left(2^{-3}\right)$
$=100111001.001_{(2)}=1.00111001001 \times 2^{8}$
$S=0, E-127=8 \therefore E=135=128+4+2+1=10000111_{(2)}$
$F=00111001001$
Thus $313.125=01000011100111001001$
$=439$ C9000 $=$ Floating Format (Single Precision)
Ex2) Single Precision C25A8000 ?
11000010010110101000000000000000
=1 1000010010110101000000000000000
$\therefore \mathrm{S}=1, \mathrm{E}=128+4=132$ thus $\mathrm{E}-127=5, \mathrm{~F}=.10110101$
\therefore Real Number $=-1.10110101 \times 2^{5}=-110110.101_{(2)}$
$=-(32+16+4+2) \cdot(0.5+0.125)=-54.625$
2. Non-numerical Data
:To express the non-numerical data as
ASCII code (American Standard Code for Information Interchange)
00~1F : Non printable control characters
20~7F : Printable characters
80~FF: Extended ASCII code for local language customization

Ex) ${ }^{\prime} 1^{\prime}=31 \mathrm{H}=00110001 \mathrm{~B}$
$' A^{\prime}=41 \mathrm{H}=01000001 \mathrm{~B}$
$' a^{\prime}=61 \mathrm{H}=01100001 \mathrm{~B}$

ASCII TABLE

0	0	0	0	[NULL]	48	30	110000			96	60			
1	1	1	1	[START OF HEADWG]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	c
4	4	100	4	[ETID OF TRANSMISSTON]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUTRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZOMTAL TAB]	57	39	111001	71	9	105	69	1101001	151	1
10	A	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6 A	1101010	152	j
11	B	1011	13	[${ }^{\text {a }}$ ERTICAL TAB]	59	3B	111011	73	;	107	6 B	1101011	153	k
12	C	1100	14	[FORM PEED]	60	3 C	111100	74	$<$	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3 D	111101	75	$=$	109	6 D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3 E	111110	76	$>$	110	6 E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3 F	111111	77	?	111	6 F	1101111	157	-
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	p
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	A	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	B	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	5
20	14	10100	24	TDEVICE COITROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYMCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[ENG OF TRANS, BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	H	120	78	1111000	170	x
25	19	11001	31	[END OF MEDMM]	73	49	1001001	111	1	121	79	1111001	171	y
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010	112	J	122	7 A	1111010	172	z
27	1B	11011	33	[ESCAPE]	75	4B	1001011	113	K	123	78	1111011	173	1
28	1 C	11100	34	[FME SEPARATOR]	76	4 C	1001100	114	L	124	7 C	1111100	174	1
29	1 D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7 D	1111101	175	\}
30	1 E	11110	36	[RECORD SEPARATOR]	78	4 E	1001110	116	N	126	7 E	1111110	176	\sim
31	1 F	11111	37	[UNIT SEPARATOR]	79	4 F	1001111	117	0	127	7F	1111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	$!$	81	51	1010001	121	Q					
34	22	100010	42	-	82	52	1010010	122	R					
35	23	100011	43	\#	83	53	1010011	123	5					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	45	\%	85	55	1010101	125	U					
38	26	100110	46	\&	86	56	1010110	126	v					
39	27	100111	47		87	57	1010111	127	w					
40	28	101000	50	1	88	58	1011000	130	X					
41	29	101001	51	1	89	59	1011001	131	Y					
42	2 A	101010	52		90	5A	1011010	132	z					
43	2 B	101011	53	+	91	5B	1011011	133	[
44	2 C	101100	54	,	92	5C	1011100	134	1					
45	2 D	101101	55	-	93	5D	1011101	135	1					
46	2E	101110	56	,	94	5E	1011110		\wedge					
47	2 F	101111	57	7	95	5 F	1011111	137	-					

(source:commons.wikipedia.org/wiki/File:ASCII-Table.svg)

[^0]: T/C=Timing Circuit

