Lecture 15 Micro Processors

:Packaged Chips for Logical and Arithmetic Calculation

Micro Processor	VS	Logical/Arithmetic Gates
Firm-ware(or softwired	d) hip	Hardwired configuration
Modification by rewrit new firm-ware	ing	Modification by rewiring
Software based on		In-house design
8086/8088/80X86 (e.g	ı.)	using Logic/Arithmetic Gates
(Few 1000 gates typic	ally)	

LSI: Large Scale Integration = 1000 gates VLSI: Very Large Scale Integration = Few thousands gate that most CPU belong to.

8086 Micro Processor

(source:en.wikipedia.org/wiki/Intel_8086)

Overview of Micro Processor System

CPU (Central Processing Unit)

-To control the whole processes like brain

-To decode instructions such that 03C3 (=0000 0011 1101 0011) indicates ADD (or +), etc

-To execute the instructions such as arithmetic/logic computation, by

connecting/calling gates to/from internal registers, memory, I/O devices

Timing Circuit (or CLK)

To generate trains of time pulses, and

To synchronize the activity within the system

Memory

To store both the data and instructions, RAM (Random Access memory) and ROM (Read Only Memory)

I/O (Input/output) Device

- -To communicate with the external world, and
- -To store large quantity of information, and
- -To make input/output such as Keyboard, Mouse, USB, ADC, DAC,

Hard Disc, Monitor

System Bus

-To connect CPU to memory and I/O (memory mapped I/O)

(1) Address Bus (A0-A19 for 8086)

To transfer address (20 bits for 8086) to and from Memory, I/O

2²⁰ Locations=10⁶ Locations= 1 Mega Byte Memory locations accessible

(2) Data Bus (D0-D15 for 8086)

:To transfer data (16 bits for 8086) to and from memory, I/O

Number of data lines= data width=16 for 8086 ∴16 bit processor

And two bus cycle is needed to process 32 bits data

(3) Control Bus

To issue a control command such as Read, Write, Acknowledge, and Interrupt Request

Interface

Circuit to connect the Bus to a device, such as memory and I/O Memory or I/O Interface

=Address Decoding + Data Buffering + Read/Write

8086 Micro Processor Structure

(source:en.wikipedia.org/wiki/Intel_8086)

ALU (Arithmetic Logic Unit)

-Arithmetic and Logic Computation

-I/O control + I/O handling

IR (Instruction Register)

-To hold the current instruction from the instruction queue

- IP (Instruction Pointer)
- -To hold the address of the next instruction

Working Registers: AX, BX, CX, DX

-To store temporary information for computing and addressing process

-To store arithmetic/logic operands, results

Each working register of 16 bits consists of higher 8bit and lower 8bit

such as AX=AH+AL, BX=BH+BL, CX=CH+CL, DX=DH+DL, thus 16bit processing and 8bits processing are both possible.

Also for special functions such as;

AX: I/O data handling as accumulator

DX: I/O address handling

BX: Base register for address calculation

CX: Implied counter

Segment Registers: CS, DS, ES, SS

Register to hold the address of each segments within the memory map CS=Code Segment register to hold the address of code (or instruction) segment

DS=Data Segment register to hold the address of data segment

ES=Extra Segment register to hold the address of extra data segment

SS=Stack Segment register to hold the address of the stack segment

Memory Map within a Microprocessor system (8086)

Physical Address=(Segment Register) $X10_{16}$ + Effective Address where Effective Address (EA) is the relative distance within the segment

Index registers: Registers for index/base/stack pointing

SI(Source Index), DI(Destination Index), BP(Base Pointer), SP(Stack Pointer)

SP (Stack Pointer)

-To store the address of stack location, where stack is the memory space of temporary contents of working registers during the subroutine calling

Intel 8086 re	gisters							
¹ 9 ¹ 8 ¹ 7 ¹ 6	¹ 5 ¹ 4 ¹ 3 ¹ 2 ¹ 1 ¹ 0 ⁰ 9 ⁰ 8	0 ₇ 0 ₆ 0 ₅ 0 ₄ 0 ₃	0 ₂ 0 ₁ 0 ₀	(bit position)				
Main registe	rs							
	AH	AL		AX (primary accumulator)				
	вн	BL		BX (base, accumulator)				
	СН	CL		CX (counter, accumulator)				
	DH	DL		DX (accumulator, extended acc.)				
Index regist	ers							
0000	S	il		Source Index				
0000	0	01		Destination Index				
0000	В	P		lase Pointer				
0000	S	P		Stack Pointer				
Program co	unter							
0000	1	P		Instruction Pointer				
Segment reg	gisters							
	CS	C	0000	Code Segment				
	DS	C	0000	Data Segment				
	ES	C	0000	Extra Segment				
	SS	C	0000	Stack Segment				
Status regist	ter							
	O D I T	S Z - A -	P - C	Flags				

(source:en.wikipedia.org/wiki/Intel_8086)

PSW (Process Status Word)

-To store the current status of the processor such as zero, parity, sign, overflow, carry, interrupt, etc. It is called as 'Flags'

Flags [edit]

The 8086 has a 16-bit flags register. Nine of these condition code flags are active, and indicate the current state of the processor: Carry flag (CF), Parity flag (PF), Auxiliary carry flag (AF), Zero flag (ZF), Sign flag (SF), Trap flag (TF), Interrupt flag (IF), Direction flag (DF), and Overflow flag (OF). Also referred to as the status word, the layout of the flags register is as follows:^{[9]:3-5}

Bit	15-12	11	10	9	8	7	6	5	4	3	2	1	0
Flag		OF	DF	IF	TF	SF	ZF		AF		PF		CF

(source:en.wikipedia.org/wiki/Intel_8086)

CF=1 if previous computation results in 'Carry'

- PF=1 if previous computation results in 'Parity'
 - (or Even number of '1' in lower 8bits after computation)
- ZF=1 if previous computation results in zero
- SF=1 if previous computation results in negative sign

Operation Sequence of Micro processor

- 1. Fetch the next instruction from the address indicated by IP
- 2. Put it into the IR and decode it, while IP is incremented to point to the next instruction
- 3. Execute the instruction
- 4. Repeat 1 through 3

Data Formats in Micro processor

- 1. Numerical Data
- (1) Unsigned binary

 $N = b_{n-1}b_{n-2}....b_1b_0 = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_02^0$

To express in Hexadecimal;

0000 0001 0010 0011 0100 0101 0110 0111 -> 0 1 2 3 4 5 6 7

1000 1001 1010 1011 1100 1101 1110 1111 -> 8 9 A B C D E F

(2) Signed binary

:Negative number as 2's complement

 $-N=2^{n}-N=N=N+1$, where <u>N</u> is the negate of N in binary format

Ex)-45=? for signed binary

 $45=32+8+4+1=00101101_{(2)}$ thus 45=11010010

 \therefore -45=<u>N</u>+1=11010011₍₂₎=D3₍₁₆₎

(3) Packed BCD (Binary Coded Decimal)

Each decimal digit is encoded into 4 bit pattern

3509 in BCD format = 0011010100001001

3509 in Decimal=2048+1024+256+128+32+16+4+1

=0000110110110101

(4) Fixed Point Format

 $.F=.b_{-1} \ b_{-2}...b_{-n}=b_{-1}2^{-1}+b_{-2}2^{-2}+..+b_{-n}2^{-n}$

0.59375=?

0.59375x2=1.1875=1+.1875, 0.1875x2=0.3750=0+.3750

0.3750x2=0.750=0+.750, 0.750x2=1.5=1+.5, 0.5x2=1.0=1

Thus 0.59375=0.10011₍₂₎

(5) Floating point format (Single Precision)

To express a real number as 4 byte expression as,

Real Number= $(-1)^{S} \times 2^{E-127} \times 1.F$

Range of real number : $\pm 1x10^{-38}$ to $\pm 3x10^{38}$

Ex1) 313.125=313+0.125=(256+32+16+8+1)+(2⁻³)

 $=100111001.001_{(2)}=1.00111001001x2^{8}$

F=00111001001

Thus 313.125=0100 0011 1001 1100 1001

=439C9000= Floating Format (Single Precision)

Ex2) Single Precision C25A8000 ?

1100 0010 0101 1010 1000 0000 0000 0000

=1 10000100 10110101000 0000 0000 0000

∴S=1, E=128+4=132 thus E-127=5, F=.10110101

:...Real Number=-1.10110101x2⁵= -110110.101₍₂₎

=-(32+16+4+2).(0.5+0.125)=-54.625

- 2. Non-numerical Data
- :To express the non-numerical data as
- ASCII code (American Standard Code for Information Interchange)
- 00~1F : Non printable control characters
- 20~7F : Printable characters
- 80~FF : Extended ASCII code for local language customization
- Ex) '1'=31H=00110001B
 - 'A'=41H=01000001B
 - 'a'=61H=01100001B

Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	. Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	а
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	с
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	е
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	1
10	Α	1010	12	[LINE FEED]	58	3A	111010	72		106	6A	1101010	152	1
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	1	107	6B	1101011	153	k
12	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	- C.	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	0	112	70	1110000	160	р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	A	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	В	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	c	115	73	1110011	163	s
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	14	1110100	164	τ
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	5	118	76	1110110	166	v
23	1/	10111	27	[ENG OF TRANS. BLOCK]	/1	47	1000111	107	G	119	11	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	H	120	78	1111000	170	×
25	19	11001	31	[END OF MEDIOM]	13	49	1001001	111		121	79	1111001	1/1	У
26	1A 1B	11010	32	(SUBSTITUTE)	74	4A	1001010	112	1	122	7A	1111010	172	z
2/	16	11011	33	(ESCAPE)	75	4B	1001011	113		123	78	1111011	173	1
28	10	11100	34	[FILE SEPARATOR]	/6	40	1001100	114	5	124	70	1111100	1/4	
29	10	11101	30	[GROUP SEPARATOR]	70	40	1001101	115	M	125	70	1111101	175	
30	16	11110	30	[RECORD SEPARATOR]	78	4E	1001110	110	N	120	/E	1111110	1/0	inc.
31	16	100000	37	[UNIT SEPARATOR]	79	41	1001111	117	0	127	71-		1//	IDEL
32	20	100000	40	[SPACE]	80	50	1010000	120		000				
33	21	100001	41		81	51	1010001	121	9					
24	22	100010	42		02	52	1010010	122	6	te es				
33	23	100011	43		03	53	1010011	123	2					
20	24	100100	44	ຈ	04	59	1010100	124	÷					
20	20	100101	45	70	00	50	1010101	125		teres a				
20	20	100110	40	α	00	50	1010110	120						
39	27	101000	47	,	0/	57	1010111	120		0.000				
40	20	101000	51		80	50	1011000	131	0	1000				
42	20	101010	52		90	54	1011010	132	7	100 C				
43	28	101011	53		91	58	1011011	133	7	000				
44	20	101100	54		97	50	1011100	134	1					
45	20	101101	55		92	50	1011101	135	÷ .	1000				
46	26	101110	56		94	SE	10111110	136	1					
40	20	101110	50			36	1011110	150						

(source:commons.wikipedia.org/wiki/File:ASCII-Table.svg)