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Previously, we discussed

* Vector vs. scalar

* position vector

e vector addition and scalar multiplication

e vector functions, scalar functions and their fields

 vector calculus, in particular, continuity, derivative and partial
derivatives



9.5 Curves, arc length, curvature, torsion

* Parametric representation of a curve C,

() = [x(£), y(£), z(t) |

where x, y, z are coordinates of the position vector 7, which depends
on the parameter t.

* Parametric representation is useful, since
(i) coordinates play an equal role, and

(ii) the parameter induces orientation of C (positive and negative
senses).



* Examples

Sketch the curves represented by, respectively,

(1) 7(t) = [2cost,sint,0 ] (an ellipse)
(2) 7(t) = (3,2) + t(1,1) (a straight line)
(3) 7(t) = [cost,sint,t ] (a circular helix) %

(4) 7(t) = [sin2t,cost,0] + (acurve with a multiple point)
g } )
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* Arc is a portion of a curve \/wa '

* Tangent to a simple curve C at a point P is obtained by taking the
derivative of the position vector 7(t) at the point, i.e. 7' (t).
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* The unit tangent vector u(t) = o

|71(t) |

* The tangent to C at P g(w) =@+ V\@
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* Length of a curve C represented by 7(t),a <t < b : é
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e Linear element ds :
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* denoting dr = [dx, dy, dz],
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ds® = dx* + dy* + dz*
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* Arc length is a natural parameter, which makes calculations simpler

e.g. the unit tangent vector u(s) = I;:g; = r'(s).
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Since t is arbitrary, by setting t = s, we get
aF| _ds _ 4

ds ds
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* Show that a vector of a constant length is perpendicular to its
derivative.
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* For a curve C representing a path of moving body, 7(t),

find velocity and acceleration vectors.
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* Example 8 Coriolis acceleration

Calculate the acceleration vector of a projectile with its trajectory
7(t) =@cos yt ELt) +@sin y_tE,

where
b(t) = cos wt I+ sinwt]

is a unit vector normal to the axis of earth rotation in the direction l_c)
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e curvature: measure of the rate of change of unit tangent vector

k(s) = |u (S)I = [7"(s)|

* tortion: measure of the rate of change of the osculating p

(spanned by 1 and u') ﬁLL
- v =
7(s) =@- b’ = p

_%

TR O . M'B*I“'L;D




9.6 Calculus review

* Chain rule:
Givenw = f(x,y,z)

(1) Forx = x(u,v),y = y(u,v), z = z(u, v), find partial derivatives
of w with respecttou and v.
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(2) For z = g(x,y), find partial derivatives of w w.r.t. x and y.

fix,42) = £00Y,806,8))
dw _ 2t 27133
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