Engineering Mathematics 2

Lecture 2

Yong Sung Park

Previously, we discussed

- Vector vs. scalar
- position vector
- vector addition and scalar multiplication
- vector functions, scalar functions and their fields
- vector calculus, in particular, continuity, derivative and partial derivatives

9.5 Curves, arc length, curvature, torsion

- Parametric representation of a curve C,

$$
\vec{r}(t)=[x(t), y(t), z(t)]
$$

where x, y, z are coordinates of the position vector \vec{r}, which depends on the parameter t.

- Parametric representation is useful, since
(i) coordinates play an equal role, and
(ii) the parameter induces orientation of C (positive and negative senses).
(1) $x=2 \cos t, y=\sin t$

$$
\left(\frac{x}{2}\right)^{2}+(y)^{2}=1
$$

- Examples
(2)

Sketch the curves represented by, respectively,
(1) $\vec{r}(t)=[2 \cos t, \sin t, 0]$
(an ellipse)
(2) $\vec{r}(t)=(3,2)+t(1,1)$
(a straight line)
(3) $\vec{r}(t)=[\cos t, \sin t, t]$
(a circular helix)
(4) $\vec{r}(t)=[\sin 2 t, \cos t, 0]$
(a curve with a multiple point)

- Arc is a portion of a curve

$$
\overrightarrow{P_{Q}}=\vec{F}(\tau+\Delta r)-\vec{r}(\tau)
$$

- Tangent to a simple curve C at a point P is obtained by taking the derivative of the position vector $\vec{r}(t)$ at the point, i.e. $\vec{r}^{\prime}(t)$.
- The unit tangent vector
- The tangent to C at P

$$
\vec{u}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}
$$

$$
\vec{q}(w)=\vec{r}+w \vec{r}^{\prime}
$$

- Length of a curve C represented by $\vec{r}(t), a \leq t \leq b$:

$$
\overrightarrow{P Q} \approx \frac{d \vec{r}}{d r} \Delta t+\theta\left(\Delta t^{2}\right)
$$

where $\Delta \vec{r}=\vec{r}\left(t_{k}\right)-\vec{r}\left(t_{k-1}\right)$ and $\Delta t=\frac{b-a}{n}$.

- Arc length s of a curve $\left.s=\int_{a}^{t} \sqrt{\vec{r}^{\prime} \cdot \vec{r}^{\prime}} d \tilde{t}\right) \quad \vec{r}^{\prime}=\frac{d \vec{r}}{d \vec{\tau}} \quad \begin{array}{ll}\frac{d \vec{r}_{(s)}}{d s} & =\vec{r}_{s}^{\prime} \\ & =\vec{u}^{\prime}(s)\end{array}$

$$
S=s(t) \quad 1=\frac{d s^{\ell}}{d()_{s}}=\sqrt{\vec{F}^{\prime} \cdot \vec{r}^{\prime}}=\left|\frac{d \vec{r}}{d Q_{s}}\right|
$$

- Linear element $d s$:

$$
\begin{aligned}
& \frac{d s}{d t}=\sqrt{\vec{r}^{\prime} \cdot \vec{r}^{\prime}}=\left|\frac{d \vec{r}}{d t}\right| \\
& \left(\frac{d s}{d t}\right)^{2}=\left|\frac{d \vec{r}}{d t}\right|^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}
\end{aligned}
$$

- denoting $\mathrm{d} \vec{r}=[d x, d y, d z]$,

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}
$$

- Arc length is a natural parameter, which makes calculations simpler
e.g. the unit tangent vector $\vec{u}(s)=\frac{\vec{r} \prime(s)}{|\vec{r} \prime(s)|}=\vec{r}^{\prime}(s)$.

Since t is arbitrary, by setting $t=s$, we get

$$
\left|\frac{d \vec{r}}{d s}\right|=\frac{d s}{d s}=1
$$

- Show that a vector of a constant length is perpendicular to its derivative.

$$
\begin{gathered}
|\vec{r}(t)|=C \\
(\vec{r}(t) \cdot \vec{r}(t))^{\prime}=\left(c^{2}\right)^{\prime} \\
\vec{r}^{\prime} \cdot \vec{r}+\vec{r} \cdot \vec{r}^{\prime}=0 \\
2 \vec{r} \cdot \vec{r}^{\prime}=0 \\
\vec{r} \cdot \vec{r}^{\prime}=0
\end{gathered}
$$

- For a curve C representing a path of moving body, $\vec{r}(t)$, find velocity and acceleration vectors.

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \\
& \vec{a}=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}
\end{aligned}
$$

- Example 8 Coriolis acceleration

Calculate the acceleration vector of a projectile with its trajectory

$$
\vec{r}(t)=R \cos \gamma t \vec{b}(t)+R) \sin \gamma t \vec{k},
$$

where

$$
\vec{b}(t)=\cos \omega t \vec{\imath}+\sin \omega t \vec{\jmath}
$$

is a unit vector normal to the axis of earth rotation in the direction \vec{k}.

$$
\begin{aligned}
& \frac{d \vec{r}}{d \tau}=-R \gamma \sin \gamma t \vec{b}(\tau)+R \cos \gamma t \frac{d \vec{b}}{d \tau}+\gamma R \cos \gamma \tau \vec{k} \\
& \frac{d^{2} \vec{r}}{d \tau^{2}}=-R \gamma^{2} \cos \gamma t \vec{b}(\tau)-2 R \gamma \sin \gamma t \frac{d \vec{b}}{d t}+R \cos \gamma t \frac{d^{2} \vec{b}}{d \tau^{2}} \\
&-R \gamma^{2} \sin \gamma t \vec{k} \\
&=-\gamma^{2} \vec{r}+2 R r \sin \gamma t \frac{d \vec{b}}{d \tau}+\frac{R \cos \gamma t}{}\left(\frac{d^{2} \vec{b}}{d \tau^{2}}\right. \\
& \frac{d \vec{b}}{d \tau}=-\omega \sin \omega t \vec{\tau}+\omega \cos \omega \tau \vec{\jmath} \\
& \frac{d^{2} \vec{b}}{d \tau^{2}}=-\omega^{2}(\cos \omega \tau i+\sin \omega \tau \vec{\jmath})=-\omega^{2} \vec{b}
\end{aligned}
$$

- curvature: measure of the rate of change of unit tangent vector

$$
\kappa(s)=\left|\vec{u}^{\prime}(s)\right|=\left|\vec{r}^{\prime \prime}(s)\right|
$$

- tortion: measure of the rate of change of the osculating plane (spanned by \vec{u} and \vec{u}^{\prime})

$$
\tau(s)=-\vec{p} \cdot \vec{b}^{\prime}
$$

$$
\vec{u} \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}=\vec{p}
$$

$$
\begin{align*}
|v| & =\left|\overrightarrow{b^{\prime}}\right| \\
\vec{u} \cdot \vec{b} & =0 .
\end{align*}
$$

9.6 Calculus review

- Chain rule:

Given $w=f(x, y, z)$
(1) For $x=x(u, v), y=y(u, v), z=z(u, v)$, find partial derivatives of w with respect to u and v.

$$
\begin{aligned}
& f=f(u, v) \\
& \frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial u}
\end{aligned}
$$

(2) For $z=g(x, y)$, find partial derivatives of w w. r.t. x and y.

$$
\begin{gathered}
f(x, y, z)=f(x, y, g(x, y)) \\
\frac{\partial w}{\partial x}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial x}
\end{gathered}
$$

