First Law of Thermodynamics and Energy Equation (1)
 (Lecture 3)

2021년 1학기 열역학 (M2794.001100.002) 송한호

(*) Some texts and figures are borrowed from Sonntag \& Borgnakke unless noted otherwise.

First Law of Thermodynamics and Energy Equation

3.1 The Energy Equation

\rightarrow Energy of a substance consists of two main categories:
$E=$ Microscopic Energy + Macroscopic Energy
(by molecular dynamics in CM) (by mean position or motion of CM)
$E=$ Internal Energy + Kinetic Energy + Potential Energy
$E=U+K E+P E \longleftarrow K E=\frac{1}{2} m V^{2}, P E=m g h$
$=m\left(u+\frac{1}{2} V^{2}+g h\right)$

Examples of internal (microscopic) energy (left: rotational modes, right: vibrational modes)

Examples of external (macroscopic) energy
(potential energy vs kinetic energy)

First Law of Thermodynamics and Energy Equation

\rightarrow Then, energy equation for a control mass can be easily expressed as:

$$
\Delta \text { Energy }=+(\text { In })-(\text { Out }) \quad \rightarrow \text { Energy Conservation }
$$

$$
\frac{d E_{c v}}{d t}=\dot{E}_{c v}=\dot{Q}-\dot{W}=+i n-o u t
$$

\rightarrow rate basis (per time)

$$
d E_{c v}=d U+d(K E)+d(P E)=\delta Q-\delta W \quad \rightarrow \text { infinitesimal change }
$$

$$
\int_{1}^{2} d E_{c v}=\int_{1}^{2}[d U+d(K E)+d(P E)]=\int_{1}^{2} \delta Q-\int_{1}^{2} \delta W \quad \rightarrow \text { finite change }
$$

$$
E_{c v, 2}-E_{c v, 1}=U_{2}-U_{1}+\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right)+m g\left(Z_{2}-Z_{1}\right)={ }_{1} Q_{2}-{ }_{1} W_{2}
$$ from state 1 to state 2

First Law of Thermodynamics and Energy Equation

3.2 The First Law of Thermodynamics

\rightarrow The first law of thermodynamics states:
"During any cycle a system undergoes, the cyclic integral of the heat is proportional (or equal) to the cyclic integral of the work."

$$
\oint \delta Q=\oint \delta W
$$

For a thermodynamic cycle, initial gas state should be equal to final gas state.

First Law of Thermodynamics and Energy Equation

\rightarrow Now consider a control mass that undergoes a change of state.
From the first law of thermodynamics,

$$
\oint \delta Q=\oint \delta W
$$

Case 1: $\quad 1 \xrightarrow{A} 2 \xrightarrow{B} 1$

$$
\int_{1}^{2} \delta Q_{A}+\int_{2}^{1} \delta Q_{B}=\int_{1}^{2} \delta W_{A}+\int_{2}^{1} \delta W_{B}
$$

Case 2: $\quad 1 \xrightarrow{A} 2 \xrightarrow{C} 1$

$$
\int_{1}^{2} \delta Q_{A}+\int_{2}^{1} \delta Q_{C}=\int_{1}^{2} \delta W_{A}+\int_{2}^{1} \delta W_{C}
$$

First Law of Thermodynamics and Energy Equation

\Rightarrow Here,

$$
\begin{aligned}
\int_{1}^{2} \delta Q_{A}+\int_{2}^{1} \delta Q_{B} & =\int_{1}^{2} \delta W_{A}+\int_{2}^{1} \delta W_{B} \\
\int_{1}^{2} \delta Q_{A}+\int_{2}^{1} \delta Q_{C} & =\int_{1}^{2} \delta W_{A}+\int_{2}^{1} \delta W_{C} \\
\int_{2}^{1} \delta Q_{B}-\int_{2}^{1} \delta Q_{C} & =\int_{2}^{1} \delta W_{B}-\int_{2}^{1} \delta W_{C} \\
\int_{2}^{1}\left(\delta Q_{B}-\delta W_{B}\right) & =\int_{2}^{1}\left(\delta Q_{C}-\delta W_{C}\right)
\end{aligned}
$$

Then, the value $\delta Q-\delta W$ doesn't depend on the path, but only on the initial and final state of the process. \rightarrow Point function!
\rightarrow Define a thermodynamic property of a substance, Energy (E), as:

$$
\begin{aligned}
& \delta Q-\delta W=d E \\
& { }_{1} Q_{2}-{ }_{1} W_{2}=E_{2}-E_{1}
\end{aligned}
$$

Δ Energy $=+($ In $)-($ Out $)$
\rightarrow Same with energy equation

First Law of Thermodynamics and Energy Equation

3.3 Definition of Work

\rightarrow Work is an important way of energy transfer in thermodynamics!
\rightarrow In general physics, work is defined as a force F acting through a displacement x, where the displacement is in the direction of the force:

$$
\delta W=F \cdot d x \rightarrow W=\int_{1}^{2} F \cdot d x
$$

\rightarrow In thermodynamics, the direction of work transfer across the system boundary is important.
outward : work done by a system (output) inward : work done on a system (input)

First Law of Thermodynamics and Energy Equation

\rightarrow Work is the product of force and distance and the unit for work in SI units is joule (J):

$$
1 J=1 N \cdot m
$$

\rightarrow Power is the time rate of doing work and the unit for power in SI units is watt (W):

$$
\dot{W} \equiv \frac{\delta W}{d t} \rightarrow 1 W=1 \mathrm{~J} / \mathrm{s}
$$

\rightarrow Specific work is the work per unit mass of the system:

$$
w \equiv \frac{W}{m}(\mathrm{~J} / \mathrm{kg})
$$

First Law of Thermodynamics and Energy Equation

3.4 Work done at the moving boundary of a simple compressible system
\rightarrow Let's consider the moving piston in a cylinder where the volume of a simple compressible substance changes in a quasi-equilibrium process.

$$
\begin{aligned}
\delta W & =F d L \\
\delta W & =P A d L \\
\delta W & =P d V \\
W_{2} & =\int_{1}^{2} F d L=\int_{1}^{2} P d V \\
d V:+ & \Rightarrow W: \text { outward } \\
d V:- & \Rightarrow W: \text { inward }
\end{aligned}
$$

First Law of Thermodynamics and Energy Equation

(Ref.) General Systems that Involve Work

Simple compressible system

$$
\begin{aligned}
& { }_{1} W_{2}=\int_{1}^{2} P d V \\
& { }_{1} W_{2}=-\int_{1}^{2} \mathscr{T} d L \\
& { }_{1} W_{2}=-\int_{1}^{2} \mathscr{S} d A
\end{aligned}
$$

Stretched wire

Surface film

System in which the work is completely electrical

$$
{ }_{1} W_{2}=-\int_{1}^{2} \mathscr{E} d Z
$$

$$
\delta W=P d V-(\Im) d L-(\mathscr{d A}-(\mathscr{d}) d Z+\cdots
$$

$$
\bigcirc \text { Intensive property }
$$

$$
\square \text { Extensive property }
$$

$$
\dot{W}=\frac{d W}{d t}=P \dot{V}-\mathscr{T} \mathbf{v}-\mathscr{S} \dot{A}-\mathscr{E} \dot{Z}+\cdots
$$

First Law of Thermodynamics and Energy Equation

\rightarrow Pressure-Volume (P-V) diagram is widely used to represent the states and processes of a simple compressible substance.

$$
W=\int_{1}^{2} \delta W=\int_{1}^{2} P d V
$$

=area under curve 1-2

$$
\begin{aligned}
& d V:+\Rightarrow W: \text { outward }(2 \rightarrow 1) \\
& d V:-\Rightarrow W: \operatorname{inward}(1 \rightarrow 2)
\end{aligned}
$$

\rightarrow Work is path function or, in a mathematical term, inexact differential(e.g. δW).
\rightarrow Thermodynamic properties are point functions, or exact differential(e.g. $d V$).

$$
\Delta V=\int_{1}^{2} d V=V_{2}-V_{1}
$$

First Law of Thermodynamics and Energy Equation

\rightarrow To evaluate the following integral, the relationship between P and V should be given:

$$
W=\int_{1}^{2} \delta W=\int_{1}^{2} P d V
$$

\rightarrow One common example is a polytropic process, where

$$
\begin{aligned}
& P V^{n}=\text { Const } .=C \quad \text { or } \quad P=\frac{C}{V^{n}} \quad \mathrm{n} \text { : polytropic coefficient }(-\infty \sim+\infty) \\
& n \neq 1 \quad{ }_{1} W_{2}=\int_{1}^{2} \delta W=\int_{1}^{2} P d V=\int_{1}^{2} \frac{C}{V^{n}} d V=\int_{1}^{2} C V^{-n} d V \\
& =C \cdot\left[\frac{V^{1-n}}{1-n}\right]_{1}^{2}=\frac{C}{1-n}\left(V_{2}^{1-n}-V_{1}^{1-n}\right)=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n} \\
& n=1 \quad W_{2}=\int_{1}^{2} \delta W=\int_{1}^{2} P d V=\int_{1}^{2} \frac{C}{V} d V=C \ln \frac{V_{2}}{V_{1}}=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}
\end{aligned}
$$

First Law of Thermodynamics and Energy Equation

\rightarrow For non-equilibrium process in a system, consider external force and volume changes by surroundings.

$$
\begin{aligned}
& P_{e x t}=F_{e x t} / A=P_{0}+m_{p} g / A \\
& { }_{1} W_{2}=\int_{1}^{2} P_{e x t} d V=P_{e x t}\left(V_{2}-V_{1}\right)
\end{aligned}
$$

