

we be	<u>Impact</u>
V ₈ trav	• <i>Impact:</i> Collision between two bodies which occurs during a small time interval and during which the bodies exert large forces on each other.
Central Direct Impact	• <i>Line of Impact:</i> Common normal to the surfaces in contact during impact.
B VB	• <i>Central Impact:</i> Impact for which the mass centers of the two bodies lie on the line of impact; otherwise, it is an <i>eccentric impact</i> .
Central Oblique Impact	• <i>Direct Impact:</i> Impact for which the velocities of the two bodies are along the line of impact.
Rotational acceleration	• <i>Oblique Impact:</i> Impact for which one or both of the bodies move along a line other than the line of impact (with no friction).
CM CP bipute reflect bipute reflec	 Central impact with no friction ⇒ rigid body with impact can be modeled by a particle with impact IMALINEERED

Group Problem Solving ¹³

Strategy:

- This is a multiple step problem. Formulate your overall approach.
- A 2-kg block A is pushed up against a spring compressing it a distance x=0.1 m. The block is then released from rest and slides down the 20° incline until it strikes a 1-kg sphere B, which is suspended from a 1 m inextensible rope. The spring constant is k=800 N/m, the coefficient of friction between A and the ground is 0.2, the distance A slides from the unstretched length of the spring d = 1.5 m, and the coefficient of restitution between A and B is 0.8. When $\alpha = 40^\circ$, find (a) the speed of B (b) the tension in the rope.
- Use work-energy to find the velocity of the block just before impact.
- Use conservation of momentum to determine the speed of ball B after the impact.
- Use work energy to find the velocity at *α*.
- Use Newton's 2nd Law to find tension in the rope.

Concept Question 2 Compare the following statement to the problem you just solved.		
If the coefficient of restitution is smaller than the 0.8 in the problem, the tension T will be	k Position 1	
Smaller Bigger	20° A Position 3	
If the rope length is smaller than	x d Position 2	
the 1 m in the problem, the tension T will be	If the mass of A is smaller than the 2 kg given in the	
Smaller Bigger	problem, the tension T will	
If the coefficient of friction is smaller than 0.2 given in the	be Smaller Bigger	
problem, the tension T will be Smaller Bigger	$\vec{a} = \frac{dv}{dt}\vec{e}_t + \frac{v^2}{\rho}\vec{e}_n$	