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Previously, we discussed

* curves
e parametric representations of curves

* arc length

* arc length as a parameter

° curvature

* torsion

e chain rule for functions of several variables



9.7 Gradient of a scalar field
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 Gradient of a scalar function is a vector function.

* If a vector function is obtained as the gradient of a scalar function,
the scalar function is called the potential of the vector field.




* Directional derivative:

Find the derivative of a function f(x,y, z) in the direction of a vector
b

(hint: set 7#(s) = x(s)7 + y(s)7* z(s)k = P + sb

— and calculate
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 Surface normal vector

: : ¢
Find a vector that is normal to a level surface f(x,y,z) = ¢

(note that tangent vector of a point with its position vector 7 is 7').
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* Gravitational field

Show that the force of attraction= — r%? between around a fixed

C

point (x,, Vg, Z9) has the potentiaIV(x, j/, Z) = —]
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9.8 Divergence of a vector field

* For a vector v = [v4, V,, V3], the divergence of the vector is
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* The divergence of a vector function is a scalar function.

* If U is fluid velocity, its divergence roughly corresponds to
‘net outflow’.



* For a scalar function p = p(x,y, z), show that
V-(pv) =v-Vp+pV-v
(hint: ¥ = [vq, v,, V3])
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* Incompressible fluid does NOT mean constant density.

For a fluid with the density field and the velocity field represented by

p=plxyzt)and v = [v,(x,y,2,t),v,(x,vy,2,t),v3(x,y,2,t)],
the mass conservation equation is
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Find the condition for V - v = 0. 5
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9.9 Curl of a vector field
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o If U is fluid velocity, curl v is called the vorticity with its magnitude
twice the rotational speed.

e Irrotational flow: V X v = 0



Some important identities

ccurl (grad f) =V xVf)=0
L 77 4
3

e div (curlv) =V -(Vxv)=0



10.1 Line integrals

- A line integral of a vector function F (#) over a curve C: 7#(¢)

dr(t)
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« With dr = [dx, dy, dz],

[. F(® -d? = [, (Fidx + Fydy + Fadz) ¢

Jd— é-g J-C

b
= f (le’ + Fzy, + F3Z’)dt
a

* If the curve Cis closed, the line integral is denoted as
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* Example 4

Suppose F(#) is a force with the parameter t now representing time.
Then the first and second derivative or 7(t) are velocity and
acceleration vector, respectively.

Show that work done fora < t < b is the same as the gain in kinetic
energy during that period.

(Notice that F = m#", in which m is the mass of the moving particle)



)

\I




10.2 Path independence of line integrals

* For SOME vector functions, the line integral in a simply connected
domain depends only on the end points (say, A and B),
NOT the path of integration.

* This is the case ifiF = grad f, since In 257
f ﬁ(?)-d?=f ﬂdx+afdy+—fdz—f df 2w 3D
c - 0x dy 0z e
= £(B) - f(4)




* Example 1
Calculate [. (2x dx + 2y dy + 4z dz) from A: (0, 0, 0) to B: (2, 2, 2).
Fewx, 2g,42] = vf |, f= Crgraes
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* Path independence implies that the line integral along a closed curve
is zero (show it).

* If the line integral of the vector Fis path-independent, then the
vector field is called conservative.
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* If not, it is called non-conservative or dissipative.
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o If

. of ~,of . of
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then (Fydx + F,dy + F3dz) is called exact.

* This is the case iff F = grad f.
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* From curl (grad f) = 0, we have test for exactness:
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