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Previously, we discussed

• curves 

• parametric representations of curves

• arc length 

• arc length as a parameter

• curvature

• torsion

• chain rule for functions of several variables



9.7 Gradient of a scalar field

• 𝑔𝑟𝑎𝑑 𝑓 = 𝛻𝑓 =
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,
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𝜕𝑧

• differential operator 𝛻 =
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𝜕𝑥
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𝜕

𝜕𝑦
Ԧ𝑗+

𝜕

𝜕𝑧
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• Gradient of a scalar function is a vector function.

• If a vector function is obtained as the gradient of a scalar function, 
the scalar function is called the potential of the vector field. 



• Directional derivative:

Find the derivative of a function 𝑓(𝑥, 𝑦, 𝑧) in the direction of a vector 
𝑏

(hint: set Ԧ𝑟 𝑠 = 𝑥 𝑠 Ԧ𝑖 + 𝑦 𝑠 Ԧ𝑗+ 𝑧 𝑠 𝑘 = 𝑝0 + 𝑠𝑏 and calculate 
𝑑𝑓/𝑑𝑠).



• Surface normal vector

Find a vector that is normal to a level surface 𝑓 𝑥, 𝑦, 𝑧 = 𝑐
(note that tangent vector of a point with its position vector Ԧ𝑟 is Ԧ𝑟′). 



• Gravitational field

Show that the force of attraction Ԧ𝑝 = −
𝑐

𝑟3
Ԧ𝑟 between around a fixed 

point 𝑥0, 𝑦0, 𝑧0 has the potential 𝑓 𝑥, 𝑦, 𝑧 =
𝑐

𝑟

in which 𝑟 = 𝑥 − 𝑥0
2 + 𝑦 − 𝑦0

2 + 𝑧 − 𝑧0
2.



9.8 Divergence of a vector field

• For a vector Ԧ𝑣 = 𝑣1, 𝑣2, 𝑣3 , the divergence of the vector is 

𝑑𝑖𝑣 Ԧ𝑣 = 𝛻 ∙ Ԧ𝑣 =
𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
+

𝜕𝑣3

𝜕𝑧

• The divergence of a vector function is a scalar function. 

• If Ԧ𝑣 is fluid velocity, its divergence roughly corresponds to 
‘net outflow’.



• For a scalar function 𝜌 = 𝜌 𝑥, 𝑦, 𝑧 , show that 

𝛻 ∙ 𝜌 Ԧ𝑣 = Ԧ𝑣 ∙ 𝛻𝜌 + 𝜌𝛻 ∙ Ԧ𝑣

(hint: Ԧ𝑣 = 𝑣1, 𝑣2, 𝑣3 )



• Incompressible fluid does NOT mean constant density. 

For a fluid with the density field and the velocity field represented by 
𝜌 = 𝜌 𝑥, 𝑦, 𝑧, 𝑡 and Ԧ𝑣 = 𝑣1 𝑥, 𝑦, 𝑧, 𝑡 , 𝑣2 𝑥, 𝑦, 𝑧, 𝑡 , 𝑣3 𝑥, 𝑦, 𝑧, 𝑡 , 
the mass conservation equation is 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ 𝜌 Ԧ𝑣 = 0.

Find the condition for 𝛻 ∙ Ԧ𝑣 = 0. 



9.9 Curl of a vector field

• 𝑐𝑢𝑟𝑙 Ԧ𝑣 = 𝛻 × Ԧ𝑣 =

Ԧ𝑖 Ԧ𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑣1 𝑣2 𝑣3

• If Ԧ𝑣 is fluid velocity, 𝑐𝑢𝑟𝑙 Ԧ𝑣 is called the vorticity with its magnitude 
twice the rotational speed. 

• Irrotational flow: 𝛻 × Ԧ𝑣 = 0



Some important identities

• 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝑓 = 𝛻 × 𝛻𝑓 = 0

• 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 Ԧ𝑣 = 𝛻 ∙ 𝛻 × Ԧ𝑣 = 0



10.1 Line integrals

• A line integral of a vector function Ԧ𝐹 Ԧ𝑟 over a curve C: Ԧ𝑟 𝑡

න
𝐶

Ԧ𝐹 Ԧ𝑟 𝑡 ∙ 𝑑 Ԧ𝑟 = න
𝑎

𝑏

Ԧ𝐹 Ԧ𝑟 𝑡 ∙
𝑑 Ԧ𝑟 𝑡

𝑑𝑡
𝑑𝑡



• With 𝑑 Ԧ𝑟 = 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 , 

𝐶
Ԧ𝐹 Ԧ𝑟 ∙ 𝑑 Ԧ𝑟 = 𝐶 𝐹1𝑑𝑥 + 𝐹2𝑑𝑦 + 𝐹3𝑑𝑧

= න
𝑎

𝑏

𝐹1𝑥′ + 𝐹2𝑦′ + 𝐹3𝑧′ 𝑑𝑡

• If the curve C is closed, the line integral is denoted as

ර
𝐶

Ԧ𝐹 Ԧ𝑟 ∙ 𝑑 Ԧ𝑟



• Example 4

Suppose Ԧ𝐹 Ԧ𝑟 is a force with the parameter 𝑡 now representing time. 
Then the first and second derivative or Ԧ𝑟(𝑡) are velocity and 
acceleration vector, respectively. 

Show that work done for 𝑎 ≤ 𝑡 ≤ 𝑏 is the same as the gain in kinetic 
energy during that period. 

(Notice that Ԧ𝐹 = 𝑚Ԧ𝑟′′, in which 𝑚 is the mass of the moving particle)





10.2 Path independence of line integrals

• For SOME vector functions, the line integral in a simply connected 
domain depends only on the end points (say, A and B), 
NOT the path of integration. 

• This is the case if Ԧ𝐹 = 𝑔𝑟𝑎𝑑 𝑓, since

න
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Ԧ𝐹 Ԧ𝑟 ∙ 𝑑 Ԧ𝑟 = න
𝐶

𝜕𝑓

𝜕𝑥
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𝜕𝑦
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𝜕𝑧
𝑑𝑧 = න

𝐶

𝑑𝑓

= 𝑓 𝐵 − 𝑓 𝐴



• Example 1

Calculate 𝐶 2𝑥 𝑑𝑥 + 2𝑦 𝑑𝑦 + 4𝑧 𝑑𝑧 from A: (0, 0, 0) to B: (2, 2, 2).



• Path independence implies that the line integral along a closed curve 
is zero (show it). 

• If the line integral of the vector Ԧ𝐹 is path-independent, then the 
vector field is called conservative.

• If not, it is called non-conservative or dissipative. 



• If 

Ԧ𝐹 ∙ 𝑑 Ԧ𝑟 = 𝐹1𝑑𝑥 + 𝐹2𝑑𝑦 + 𝐹3𝑑𝑧 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 +

𝜕𝑓

𝜕𝑧
𝑑𝑧 = 𝑑𝑓

then 𝐹1𝑑𝑥 + 𝐹2𝑑𝑦 + 𝐹3𝑑𝑧 is called exact. 

• This is the case iff Ԧ𝐹 = 𝑔𝑟𝑎𝑑 𝑓.



• From 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝑓 = 0, we have test for exactness:

𝜕𝐹3

𝜕𝑦
=

𝜕𝐹2

𝜕𝑧

𝜕𝐹1
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𝜕𝐹2

𝜕𝑥
=

𝜕𝐹1

𝜕𝑦




