# Applications of the First Law (Lecture 4)

## 1<sup>st</sup> semester, 2021 Advanced Thermodynamics (M2794.007900) Song, Han Ho

(\*) Some materials in this lecture note are borrowed from the textbook of Ashley H. Carter.



## **Heat Capacity**

 Definition: the limiting ratio of the heat absorbed divided by the temperature increase

$$C = \lim_{\Delta T \to 0} \left( \frac{Q}{\Delta T} \right) = \frac{\delta Q}{dT} \to \text{not truly derivative}$$

Specific heat capacity (or specific heat)

$$c = \frac{1}{m} \left( \frac{\delta Q}{dT} \right) = \frac{\delta q}{dT} \quad (J/kg \cdot K)$$
$$\bar{c} = \frac{1}{n} \left( \frac{\delta Q}{dT} \right) = \frac{\delta \bar{q}}{dT} \quad (J/kmol \cdot K)$$

→ Specific heat at constant volume and at constant pressure

$$c_v = \left(\frac{\delta q}{dT}\right)_v \text{ and } c_P = \left(\frac{\delta q}{dT}\right)_P (J/kg \cdot K)$$



## **Heat Capacity**

Some examples



- 1. At high temperatures,  $c_v$  is almost constant. (Law of Dulong and Petit ~  $3\bar{R}$  from 6 d.o.f.)
- 2. At low temperatures,  $c_P$  is almost same with  $c_v$ . At high temperatures, they deviate due to thermal expansion.
- 3. Specific heats tend toward zero as T→0K.(→ Einstein's or Debye's theory)



- 1. Various ideal gases show different limit behaviors.
- 2. Argon has constant specific heats.
- 3. There is almost constant difference between  $c_P$  and  $c_v$ .
  - (→ Mayer's equation)



## Mayer's Equation

 $\rightarrow$  Let's find the relationship between  $c_v$  and  $c_P$  for an ideal gas.

For a simple compressible substance, the first law is

$$du = \delta q - \delta w = \delta q - Pdv$$

In general, 
$$u = u(v,T) \rightarrow du = \left(\frac{\partial u}{\partial v}\right)_T dv + \left(\frac{\partial u}{\partial T}\right)_v dT$$

Then, 
$$\delta q = du + Pdv = \left(\frac{\partial u}{\partial T}\right)_v dT + \left\{\left(\frac{\partial u}{\partial v}\right)_T + P\right\} dv$$

$$\rightarrow \delta q = c_v dT + \left\{\left(\frac{\partial u}{\partial v}\right)_T + P\right\} dv \qquad \left(\because c_v = \left(\frac{\delta q}{\partial T}\right)_v = \left(\frac{\partial u}{\partial T}\right)_v\right\}$$

But for an ideal gas, 
$$u = u(T)$$
 only  $\rightarrow \left(\frac{\partial u}{\partial v}\right)_T = 0$  (Gay-Lussac-Joule exp.)

Then, 
$$c_v = \left(\frac{\partial u}{\partial T}\right)_v = \frac{du}{dT}$$
 or  $du = c_v dT$  or  $u - u_0 = \int_{T_0}^T c_v dT$ 



## Mayer's Equation

> Continue on.

Using ideal gas EOS,  $Pv = RT \rightarrow Pdv + vdP = RdT$ 

Substituting this equation,

$$\delta q = c_v dT + P dv \rightarrow \delta q = (c_v + R) dT - v dP$$

Then,

$$c_P \equiv \left(\frac{\delta q}{\partial T}\right)_P = c_v + R$$

#### Mayer's equation

"Over the range of variables for which the ideal gas law holds, the two specific heat capacities differ by the constant *R*."

→ The ratio of specific heat capacities (or specific heat ratio)

$$\gamma \equiv \frac{c_P}{c_v}$$



## Enthalpy and Heats of Transformation

- → The heat of transformation
  - Heat transfer accompanying a phase change
  - Phase change is an isothermal and isobaric process with changing volume.
  - Applying the first law for a phase change, from phase 1 to phase 2,

$$du = \delta q - Pdv$$
  

$$u_2 - u_1 = l - P(v_2 - v_1) \rightarrow l = (u_2 + Pv_2) - (u_1 + Pv_1)$$

where *l*: latent heat of phase change

(i.e. vaporization, fusion, sublimation)

Here, we define *enthalpy(h)*, a state variable.

$$h \equiv u + Pv$$

Then,

$$l = h_2 - h_1$$



P-v-T Surface for Water

| Latent Heat of Vaporization at Steam Point, 1 atm |             | Latent Heat of Fusion at Melting Point, 1 atm |            |
|---------------------------------------------------|-------------|-----------------------------------------------|------------|
| Water                                             | 538 kcal/kg | Water                                         | 80 kcal/kg |
| Mercury                                           | 63          | Mercury                                       | 3          |
| Alcohol                                           | 207         | Lead                                          | 5          |
| Gasoline                                          | . 95        | Aluminum                                      | 77         |

**Latent Heat of Phase Change** 



## Relationships involving Enthalpy

Let's find some useful relationship using enthalpy for an ideal gas.

For S.C.S., the first law is 
$$du = \delta q - Pdv \rightarrow du + Pdv = \delta q$$

From the definition of enthalpy,

$$dh = d(u + Pv) = du + Pdv + vdP \rightarrow du + Pdv = dh - vdP$$

Then,

$$\delta q = dh - vdP$$

In general, 
$$h = h(P,T) \rightarrow dh = \left(\frac{\partial h}{\partial P}\right)_T dP + \left(\frac{\partial h}{\partial T}\right)_P dT$$
  $c_P = \left(\frac{\delta q}{\partial T}\right)_P = \left(\frac{\partial h}{\partial T}\right)_P$ 

$$c_P = \left(\frac{\delta q}{\partial T}\right)_P = \left(\frac{\partial h}{\partial T}\right)_P$$

$$\delta q = \left(\frac{\partial h}{\partial T}\right)_P dT + \left\{\left(\frac{\partial h}{\partial P}\right)_T - v\right\} dP \rightarrow \delta q = c_P dT + \left\{\left(\frac{\partial h}{\partial P}\right)_T - v\right\} dP$$

But for an ideal gas, h = h(T) only  $\rightarrow \left(\frac{\partial h}{\partial P}\right) = 0$  (Joule-Thomson exp.)

Then, 
$$c_P = \left(\frac{\partial h}{\partial T}\right)_P = \frac{dh}{dT}$$
 or  $dh = c_P dT$  or  $h - h_0 = \int_{T_0}^T c_P dT$ 



## Work done in an Adiabatic Process

Let's calculate work done in an adiabatic process for an ideal gas.

For a simple compressible substance of an ideal gas, the first law is

$$\frac{\delta q = c_v dT + P dv \rightarrow P dv = -c_v dT}{\delta q = c_P dT - v dP \rightarrow v dP = c_P dT} \rightarrow \frac{v dP}{P dv} = -\frac{c_P}{c_v} = -\gamma$$

Then,

$$\frac{dP}{P} = -\gamma \frac{dv}{v} \quad \text{or} \quad Pv^{\gamma} = const = K \text{ (when } \gamma \text{ constant)}$$

Work is given by the following expression for a constant specific heats,

$$w = \int P dv = K \int_{v_1}^{v_2} v^{-\gamma} dv = \frac{1}{1 - \gamma} \left( K v^{1 - \gamma} \right)_{v_1}^{v_2} = \frac{1}{1 - \gamma} \left[ K v_2^{1 - \gamma} - K v_1^{1 - \gamma} \right] = \frac{1}{1 - \gamma} \left[ P_2 v_2 - P_1 v_1 \right]$$

$$K = P_1 v_1^{\gamma} = P_2 v_2^{\gamma}$$

