

Work-Energy Principle of System of Particles

• Principle of work and energy can be applied to each particle P_i ,

 $T_{i,1} + U_{i,1\to 2} = T_{i,2}$

where $U_{i,1\rightarrow 2}$ represents the work done by the internal forces \vec{f}_{ij} and the resultant external force \vec{F}_i acting on P_i .

• Principle of work/energy of the entire system by adding the energetics of all the particles with the work done by all external and internal forces.

$$\left(\frac{1}{2}m\vec{v}_{G}^{2}+\frac{1}{2}\sum_{i=1}^{n}m_{i}{v'_{i}}^{2}\right)_{1}+\sum U_{1\to 2}=\left(\frac{1}{2}m\vec{v}_{G}^{2}+\frac{1}{2}\sum_{i=1}^{n}m_{i}{v'_{i}}^{2}\right)_{2}$$

- Although internal forces \vec{f}_{ij} and \vec{f}_{ji} are opposite/equal, thus, equipollent and not affecting linear and angular momentums, their work is not canceled out (e.g., deformation energy; zero work if no relative motion (e.g., constraints)).
- If the forces acting on the particles are conservative, the work is equal to the change in potential energy and

$$T_1 + V_1 = T_2 + V_2$$

which is the conservation of energy for the system of particles.

