Heat Pipe Cooled Micro-reactor

Department of Nuclear Engineering, Seoul National Univ. Hyoung Kyu Cho

Micro Nuclear Reactors

<Source : https://www.energy.gov/>

MICROREACTORS: Small reactors **BIG** potential

Plug-and-play reactors able to produce 1-20 megawatts of thermal energy used directly as heat or converted to electric power

eVinci[™] Micro Reactor

Ultimate Energy Solution for the Off-grid Customer

Micro Nuclear Reactors

Heat pipe configuration and applications

<Source: Zohuri, B., Heat pipe design and technology : a practical approach>

<Source : https://celsiainc.com/heat-pipe-and-vaporchamber-technology-overview/>

eat from AP is dispersed throug e heat pipe to cool your phone.

Wide gap between AP and LCD Driver

IC spreads out heat.

DESIGNED TO REMAIN COOL

<Source :http://

www.lg.com>

<Source:https://www.lanl.gov/science/ NSS/issue1_2011/story6full.shtml>

History

- 1839 : Perkins tube
- 1960s : Erickson at LANL, wick heat pipe, to cook turkey

tp://blog.lenovc.com/>

- 1963 : Grover at LANL, first modern heat pipe test, for space reactor
- 1980s : lithium heat pipe
- 1996 : space test

Heat pipe wick structure and operational limits

<Source : Heat Pipes: Theory, Design and Applications, Reay, Kew and McGlen>

<Source : A. Bejan and A.D. Kraus, "Heat Transfer Hand Book", Published by John Wiley & Sons, Inc. 2003.>

Performance limits

- Failure limit/non-failure limit
- Viscous
- Sonic
- Entrainment
- Capillary
- Boiling
- Condenser limit

Operating Temperature

Fast heat transfer

Fluids of heat pipe

Heat Pipe Working Fluids

Medium	Melting Point (°C)	Boiling Point at Atmospheric Pressure (°C)	Useful Range (°C)
Helium	-271	-261	-271 to -269
Nitrogen	-210	-196	-203 to -160
Ammonia	-78	-33	-60 to 100
Pentane	-130	28	-20 to 120
Acetone	-95	57	0 to 120
Methanol	-98	64	10 to 130
Flutec PP2 ¹	-50	76	10 to 160
Ethanol	-112	78	0 to 130
Heptane	-90	98	0 to 150
Water	0	100	30 to 200
Toluene	-95	110	50 to 200
Flutec PP9 ¹	-70	160	0 to 225
Thermex ²	12	257	150 to 350
Mercury	-39	361	250 to 650
Caesium	29	670	450 to 900
Potassium	62	774	500 to 1000
Sodium	98	892	600 to 1200
Lithium	179	1340	1000 to 1800
Silver	960	2212	1800 to 2300

Motivation

NASA

- \checkmark A return to the Moon for long-term exploration
- \checkmark Crewed missions to MARS
- ✓ Kilopower reactor (heat pipe cooled nuclear reactor)

<Source: htps://www.nasa.gov/sites/default/files/atoms/files/kilopower_media_event_charts_16x9_final.pdf>

Motivation

CANADA: remote areas

- ✓ Seasonal fuel delivery challenges
- ✓ Remote communities, oilsands producers, remote mines
- ✓ U-BATTERY, NUSCALE (heat pipe reactor), GFP, etc.

H

Oil sands

- Steam for SAGD and electricity for upgrading at 96 facilities
- 210 MWe average size for both heat and power demands
- 5% replacement by SMRs between 2030 and 2040 could provide \$350-450M in value annually

High-temperature steam for heavy industry

- 85 heavy industry locations (e.g. chemicals, petroleum Refining)
- 25-50 MWe average size
- 5% replacement by SMRS between 2030 and 2040 could provide \$46M in value annually

Remote communities and mines

- 79 remote communities in Canada with energy needs > 1 MWe
- SMRs replacing costly diesel and heating oil could reduce energy costs to the territorial government
- The high cost of energy from diesel is a barrier. SMRs could facilitate and enable new mining developments
- 24 current and potential off-grid mines

Replacing conventional coalfired power:

- 29 units in Canada at 17 facilities
- 343 MWe average size
- 10% replacement by SMRs between 2030 and 2040 could provide \$469M in value annually

Diavik diamond mine

Steam assisted gravity drainage

<Source: 'A Canadian Roadmap for Small Modular Reactors' (NRCan, November 2018).>

<Source: www.megenergy.com>

Motivation

US: Vulnerability in military force

- ✓ Supply of liquid fuel and water
 - Majority of the mass transported to deployed military forces
- ✓ Casualties during land transport missions
 - Mainly associated with resupplying fuel and water
 - 18,700 causalities (52% of total US casualties over a nine-year period)
 - Iraqi Freedom and Enduring Freedom

U.S. Department of Defense

Growing energy demand

- ✓ The Army of the future will require far more power even than today's Army.
 - Directed-energy weapons, electromagnetic rail guns, electric vehicles, drones
 - Soldiers connected into a secure communications network
 - Ground attack jets
 - Army's tanks battery-electric powered

Energy and technology = "force multipliers"

<Source :https://www.defensenews.com>

<Source : https://defense-update.com/>

<Source : US ARMY DARPA>

U.S. Department of Defense

vSMR (very Small Modular nuclear Reactor)

- ✓ 1~10 MWe, several years with out refueling
- ✓ Transportable by the existing defense infrastructure (trucks and planes)
- ✓ Fully autonomous, load-following, cooled passively by the environment and meltdown-proof
- ✓ Useful for Humanitarian Assistance Disaster Relief (HADR) missions

<Source : DOD, Task Force on Energy Systems for Forward/Remote Operating Bases>

Key required characteristics of vSMR (1)

Outputs

- ✓ Modular and scalable units capable of producing 2–10 MWe
- ✓ Potentially useful heat (which could facilitate water or fuel production)

Size and transportability

- ✓ 25–40 tons; transportable by truck or C-17 aircraft
- Ultimate heat sink
 - ✓ Ambient air; capable of passive cooling

Refueling

- $\checkmark\,$ Refueling should not be required more than annually
- \checkmark fresh and used fuel should be transportable by air, sea, and ground

Operation

- ✓ Autonomous/ semiautonomous operations with minimal manning
- Time to install: 12–72 hours
- Time for planned shutdown, cool down, disconnect, and removal: 6 hours to 7 days

Key required characteristics of vSMR (2)

Response to emergency

✓ Capable of immediate shutdown and passive cooling

Health and safety risks

- ✓ No net increase in risk to public, military personnel, environment
- ✓ No net increase in consequences of adversary attack

Proliferation risk

✓ No net significant increase in proliferation risk

Roadmap for the Deployment of Micro-Reactors for DOD

- ✓ General Atomics, NuScale, Oklo, Westinghouse, X-energy
- ✓ HolosGen, LeadCold Nuclear, NuGen,

Starcore Nuclear, Urenco, and Ultra Safe Nuclear

<Source : Roadmap for the Deployment of Micro-Reactors for U.S. Department of Defense Domestic Installations>

Roadmap for the Deployment of Micro-Reactors for
D.S. Department of Defense Domestic installations Prepared by the Nuclear Energy Institute
October 4, 2018
© NEI 2018. All rights reserved. nei.org

NEI TECHNICAL REPORT

KRUSTY (Kilopower Reactor Using Stirling Technology)

✓ Testbed for Kilopower reactor

KRUSTY (Kilopower Reactor Using Stirling Technology)

✓ Testbed for Kilopower reactor

- KRUSTY (Kilopower Reactor Using Stirling Technology)
 - ✓ Specification

Sodium	Heat pipe material
UMo	Fuel Material
Haynes-230	Heat Pipe and Core Structure
BeO	Neutron Reflector Material
B4C	Internal Neutron Poison Rod
B4C/SS316	Neutron/Gamma Shielding
5	KRUSTY "Rated" Power (kWt)
3	Nominal Test Power (kWt)
28	Proposed Full-Power Test Hours (hr)
1073	Core Ave Fuel Temperature (K)
~1023	Heat Pipe Condenser Temperature (K)
1.6	Ave Test Fuel Power density (W/cc)
~1.77	Peak Test Fuel Power density (W/cc)
93.10%	U235 Enrichment %

KRUSTY (Kilopower Reactor Using Stirling Technology)

✓ Nuclear test

- KRUSTY (Kilopower Reactor Using Stirling Technology)
 - ✓ Nuclear test (March 20, 2018)

<Source : The Kilopower Reactor Using Stirling TechnologY (KRUSTY) Nuclear Ground Test Results and Lessons Learned, LA-UR-19-23192>

KRUSTY (Kilopower Reactor Using Stirling Technology)

- ✓ Achieved a Technology Readiness Level (TRL) of 5
- ✓ The first space reactor test completed in over 50 years
- ✓ Took 3-1/2 years to complete from concept to test
 - Affordable project (~\$15 M)

KRUSTY: We Have Fission! Kilopower part III <Source : Dionne Hernandez-Lugo, Special Topic for Nuclear CLT: Kilopower Project 1, 2018>

Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations

MegaPower (TRL : 6 or better)

Power Level in Kilo-Watts Electric

LA-UR-15-28840, DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS

MegaPower (Megawatt Power Mobile Reactor, TRL : 6 or better)

 $\checkmark\,$ Developed by Los Alamos National Lab. with funding from NASA

✓ Specification

- UO2 fuel, 19.5 % enriched
- Fuel \rightarrow solid steel monolith \rightarrow heat pipe \rightarrow open-air Brayton or supercritical CO2 Stirling engines
- 2 MW of electricity + 2 MW of process heat for 12 years
- 35 tons \rightarrow transportable by air and highway
- 72 hours for operation upon arrival
- 7 days for shut down, cooled, disconnected and "wheeled out"
- Special armor for beyond the design basis attack

MegaPower (Megawatt Power Mobile Reactor, TRL : 6 or better)

LANL MegaPower Reactor

LA-UR-15-28840, DESIGN OF MEGAWATT POWER LEVEL HEAT PIPE REACTORS

- Proven UO2 fuel (19% enriched)
- Solid steel monolith core
- Passive heat pipe coupling with no moving parts in the core
- Housed in armored and shielded cask during operation and transport

Proven materials and nuclear design

eVinci

- ✓ Transportable energy generator
- ✓ Fully factory built, fueled and assembled
- \checkmark Combined heat and power 200 kWe to 5 MWe
- ✓ Up to 600°C process heat
- \checkmark 5- to 10-year life with walkaway inherent safety
- ✓ Target less than 30 days onsite installation
- ✓ Autonomous load management capability
- ✓ Unparalleled proliferation resistance
- ✓ High reliability and minimal moving parts
- $\checkmark\,$ Green field decommissioning and remediation
- DeVinci
 - ✓ eVinci for defense

<Source: http://www.westinghousenuclear.com/newplants/evinci-micro-reactor>

<Source: http://www.westinghousenuclear.com/newplants/evinci-micro-reactor>

Passive shutdown

system

<Source: ENS webinar Micro reactor technology applications Westinghouse Electric Company>

Air is typically the ultimate heat sink for decay heat removal in micro reactors

<Source : Nuclear Energy Institute, Cost Competitiveness of Micro-Reactors for Remote Markets, 2019>

Development timeline

- ✓ The eVinci[™] Micro Reactor Nuclear Demonstration Unit Readiness Project
 - By 2022, Operational electrical demo unit
 - To prepare for construction of the Nuclear Demonstration Unit (NDU)
 - Design, analysis, testing and licensing to fabricate, assemble and install it
 - Testing outcomes
 - Accelerated qualification of materials and manufacturing processes
 - Data for V&V of detailed microreactor TH models under startup, shutdown, steady-state, offnormal transient behavior
- ✓ 2023 : Nuclear Demonstration Unit
 ✓ 2025 : First Commercial Deployment

- Compact fast reactor, heat pipe cooled reactor, site: INL
 - ✓ Power: 4 MW_{th} (~ 1.5 MW_e), supercritical CO₂ Power Conversion System
 - ✓ Containment Type: underground, reactor contained in several layers, including a robust cask-like module
 - ✓ Metallic uranium-zirconium. High Assay Low Enriched Uranium (HALEU)
 - ✓ FSAR submitted

Aurora (OKLO)

Aurora (OKLO)

- ✓ Fast spectrum (1 keV~1 MeV) (very similar to the SFR)
- ✓ Fuel: metal alloy, U with 10% zirconium (U-10Zr)
- ✓ Operation limit: 720°C of peak fuel temperature
 - Eutectic penetration between fuel and steel
 - Steady-state maximum fuel temperature: 640 $^\circ$ C
- ✓ Net negative power coefficient of reactivity
- ✓ Strong neutron leakage characteristics

	Reactivity
	coefficient
Component	(pcm/K)
Fuel thermal expansion	-0.50
Fuel doppler	-0.15
Reactor cell thermal expansion	-0.07
Baseplate thermal expansion	-1.40
Net	-2.12

Aurora (OKLO)

✓ Decay heat: 153 kW (30 sec. after shutdown) in 29 tons of core

- PWR: 4 times larger in 0.5 tons of core
- Reactor vessel auxiliary cooling system (RVACS) : air natural circulation

✓ Safety criteria

Туре	Goal	Limit
Safety	Control release of radionuclides by maintaining fuel integrity	$T_{fuel} < 1200 \text{ C}$ Melting point
Operational	Maintain reactor cell can integrity by keeping fuel-steel temperatures within time-temperature limits	T _{fuel} < 720* C
*Onset of eute very slow if it o occur		

✓ Safety analysis using

- ANSYS Mechanical + Serpent, in-house Oklo point kinetics solver

Nuclear Reimagined with Microreactors

<Source : https://www.thirdway.org/blog/nuclear-reimagined, 2017>

Catalyst for Clean Growth

Nuclear Reimagined with Microreactors

<Source : https://www.thirdway.org/blog/nuclear-reimagined, 2017>

Design Issues in Heat Pipe Cooled Reactor Core

Defense in depth

<Source: Sterbentz, INL/EXT-16-40741, 2017 >

- \checkmark A tear or fraction in monolith \rightarrow release of fission products
- ✓ Direct pathways between the fuel and environment

Monolith thermal stress

- ✓ Monolith webbing : 1.75 mm
- Single heat pipe failure
 - ✓ Localized steel monolith temperature and thermal stress exceeding the limits
- Machining
- Inspection and qualification
- Monolith structure
 - ✓ Structural integrity following a seismic event

Design Issues in Heat Pipe Cooled Reactor Core

Core criticality

<Source: Sterbentz, INL/EXT-16-40741, 2017 >

- ✓ Very small lattice pitch increase causes the core excess reactivity to drop
- ✓ Web thickness cannot be easily increased
- ✓ Sensitive with geometry of web, cladding, heat pipes

Monolith structure

- \checkmark High operation temperature \rightarrow time dependent property regime
 - Material properties are not sufficient.
- ✓ Thermal gradients, thermal expansion, thermal creep with elevated temp.
- ✓ Creep behavior of heat pipe welds

Heat pipe

- \checkmark Thermal gradients \rightarrow localized loss of a heat pipe
- ✓ Cumulative stress and strain in the monolith
- Radioactivity release via breach \rightarrow release of activated potassium
- ✓ Long-term irradiation

HW-5

<Source: MOBILE HEAT PIPE COOLED FAST REACTOR SYSTEM, US Patent, 2016>