Strain relaxation and dislocation annihilation with graded α -(Al_xGa_{1-x})₂O₃ layer for high quality epitaxial α -Ga₂O₃ thin films

Byoungsoo Kim

Oxide Nanostructure & Nanoelectronics Lab Department of Materials Science and Engineering Seoul National University, South Korea

Outline

Introduction

- ✓ Issue of power devices & wide band gap materials
- \checkmark Ga₂O₃ material properties

Experiment & results

- ✓ Hetero-epitaxial growth of α -Ga₂O₃ / α -(Al_xGa_{1-x})₂O₃ on sapphire substrate
- ✓ Structure properties of α -Ga₂O₃/ α -(Al_xGa_{1-x})₂O₃/c-sapphire hetero structure
 - Strain state & dislocation annihilation in α -(Al_xGa_{1-x})₂O₃ / c-sapphire
 - Threading dislocation density in α -Ga₂O₃ layer

Summary

Issue of power device

Expansion of power electronic field ۲

Challenge of silicon-based power devices •

Global long- term vehicle sales market ٠

40kHz Switching Comparison

Candidate materials for power semiconductor

Name of materials	Si	SiC	GaN	β -Ga₂O 3	α -Ga ₂ O ₃
Band gap (eV)	1.1	3.3	3.4	4.8	5.3
Mobility (cm²/VS)	1400	1000	1200 2000 (2DEG)	200~300 1000 (2DEG)	200
Breakdown field (MV/cm)	0.3	2.5	3.3	6.5	9.5
Relative dielectric constant	11.8	9.7	9	10	10
Baliga's FOM	1	340	870	1231	3844

Baliga figure of merit(BFOM): V_{BR}²/R_{on} (V_{BR}²: Break down voltage R_{on} : specific on-resistance)

- ✓ The higher the Baliga figure of merit(BFOM)
 → The higher the voltage the device can block at off state.
 - \rightarrow The higher its conductance per unit area at on state.
 - Ga $_2O_3$ has merit in availability native substrate compare to other materials.

Adv. Electron. Mater. 2018

Gallium oxide

• Comparison between material properties & technological maturity of β , α -phase

	β-phase (stable state)	α-phase (meta-stable state)	
Crystal structure	Monoclinic	Corundum	
E _g (Band gap)	4.8 ev	5.0 ev	
Electron mobility	300 cm ² /Vs	200 cm ² /Vs	
E _{br}	6.5 MV/cm	9.5 MV/cm	
Substrate	β -Ga ₂ O ₃ (melt-grown)	Sapphire	
n-type doping	Si, Ge, Sn	Si, Sn	
p-type doping	No report	No report	
Hetero junction _ (Al _x Ga _{1-x}) ₂ O ₃	x < 18% (phase segregation)	x < 90% (This work)	
Epitaxial growth technique	MOCVD, PLD,MBE,HVPE (Homo-epi) (Hetero-epi)	Mist-CVD, HVPE (Hetero-epi)	
Application	SBD, FET, Photo detector	FET, SBD	

Hexagonal structure α-Ga₂O₃ (Corundum)

 \checkmark The availability of the bulk substrate is main advantage of β- phase over α- phase.

 \rightarrow Native β -Ga₂O₃ substrate cost is very expansive. (cost limitation)

✓ The advantage of α- Ga2O3 is corundum structure which allows band gap engineering (3.8ev ~ 8.8ev) with α-Al₂O₃ and α- In₂O₃.

Issues on Heteroepitaxial growth α -Ga₂O₃ on sapphire

6

Epitaxial grown α -(Al_xGa_{1-x})₂O₃ buffer layer

 \checkmark α -(Al_xGa_{1-x})₂O₃ lattice constant is intermediate between α -Ga₂O₃ (4.98(Å)) and α -Al₂O₃(4.76(Å)).

✓ Epitaxial α -Ga₂O₃ with reduced TD density could be demonstrated in graded α -(Al_xGa_{1-x})₂O₃ layer on c- sapphire hetero structure.

Mist chemical vapor deposition (Mist-CVD)

 Liquid solution of precursors is ultrasonically atomized to form aerosol particles, and these mist are transferred onto heated substrates.

Experiments & structure properties

• Schematic α -Ga₂O₃/ α -(Al_xGa_{1-x})₂O₃/c- sapphire hetero structure

Growth conditions of α-Ga₂O₃/α-(Al_xGa_{1-x})₂O₃

	α-(Al _x Ga _{1-x}) ₂ O ₃	α -Ga ₂ O ₃
AI composition (%)	11~ 82	0
Thickness (um)	0.35	2
Growth temp. (°C)	525	500
Carrier gas	N ₂	N ₂

Structure properties_ XRD analysis

Buffer layer (0.35 μm)

α-Ga₂O₃ layer (2 µm)

 ω - rocking curve FWHM

	Buffer Al composition In-plane misfit configuration (%) (%)	AI composition	In-plane misfit	(arcsec)		
		(%)	Symmetric plane (0006)	Asymmetric plane $(10\overline{1}4)$		
REF	-	-	~ 4.6	48.06	2286.43	
Sample A	1-layer	52	~ 2.4	89.31	1913.57	
Sample B	3-layer	64,41,20	~ 0.92	67.72	1499.97 Reduced	
Sample C	Graded layer	82→60→52→24→11	~ 0.5	62.97	1174.28 by 42%	

Structure properties_ TEM & EDS analysis

Strain relaxation in α -Ga₂O₃/ α -(Al_xGa_{1-x})₂O₃ hetero structure

Evolution of dislocation evolution in α -(Al_xGa_{1-x})₂O₃ layer

SAED **Cross-section TEM HR-TEM** Threading dislocation propagation Zone axis: [1120]Ga208 Ga2O3 {1100} α -Ga₂O₃ Fully-relaxed state [0001]Gazon a-(Als4Ga46)2O3 [1100] Zone axis: [1120] Sapphire Ga2O3 {1100} $\alpha - (AI_xGa_{1-x})$ α-(Al₅₄Ga₄₆)₂O₃ Sapphire substrati 00017 Sapphire substrate 28 - [1100 ► [1100]]_{\$apphire} 0.05 µm 1 nm Threading dislocation bending & fusion Zone axis: [1120]Ga203 Ga2O3 (1100) α-Ga₂O₃ a-Ga2O3 **Gradually strain state** a-(Al₁₇Ga₈₃)₂O₃ [0001] Ga203 - [1100] α (Al_xGa_{1-x})₂O₃ Zone axis: [1120] Sapphire Ga₂O₃ {1100} α-(Al₈₃Ga₁₇)₂O₃ Sapphire substrati [0001] 1 nm <u>1 nm</u>

► [1]00

0.05 µm

- [1100]]sapphi

Treading dislocation density in α -Ga₂O₃ layer

✓ The threading dislocation density of α -Ga₂O₃ grown on graded α -(Al_xGa_{1-x})₂O₃ was reduced by 1 order magnitude compared to that on singe α -(Al_xGa_{1-x})₂O₃ layer

Electrical properties of α -Ga₂O₃/ α -(Al_xGa_{1-x})₂O₃ hetero structure

Baliga figure of merit(BFOM): V_{BR}²/R_{on} (V_{BR}²: Break down voltage R_{on} : specific on-resistance)

	TDD (cm ⁻²)	R _{on} (Ω cm²)	V _{BR} (V)	Figure of merit V _{BR} ²/ R _{on} (mw/cm²)
Sample A	1.13 x10 ¹⁰	0.148799	123	733.709
Sample C	7.29 x10 ⁹	0.019017	95	4274.577

✓ The figure of merit for the α -Ga₂O₃ Schottky diode on graded α -(Al_xGa_{1-x})₂O₃ is almost six times large than that on singe α -(Al_xGa_{1-x})₂O₃ layer

- ✓ Epitaxial α -Ga₂O₃ / α -(Al_xGa_{1-x})₂O₃ hetero structure were successfully grown on c-sapphire substrate by mist–CVD.
- ✓ Compressive strained α -(Al_xGa_{1-x})₂O₃ layer suppressed the propagation of treading dislocation from lattice mismatch.
- ✓ Threading dislocation density were calculated based on mosaic structure with tilt and twist angle.
- ✓ Epitaxial α -Ga₂O₃ with reduced TD density could be demonstrated in graded α -(Al_xGa_{1-x})₂O₃ layer on c-sapphire hetero structure.
- ✓ The figure of merit for the α -Ga₂O₃ Schottky diode on graded α -(Al_xGa_{1-x})₂O₃ is almost six times larger than that on singe α -(Al_xGa_{1-x})₂O₃ layer

THANK YOU FOR LITENING

