Lecture 4 - Design Rule or 10X rule

Design Rule or 10X Rule

When Device A is to drive Device B, this case can be that A is the 'Slave', B is the 'Master', because the ultimate target is to drive B, Master.

Thus Device B must have MAJOR allocation of voltage, while device A has MINOR allocation of voltage for the given voltage signal, Vs.

It can be generally accepted that 90% of Vs is allocated to $V_B,$ while 10% of Vs is allocated to $V_A.$

This situation can be implemented as $R_A:R_B=1:10$, where R_A and R_B are resistors of device A and device B, respectively.

When $R_A/R_B=1/10$, from Ohm's law

 $V_B = V_s R_B / (R_A + R_B) = V_s / (1 + R_A / R_B) = 0.909 V_s$, $V_A = V_s - V_B = 0.091 V_s$

 \therefore 90.9% of V_s is allocated to V_B , while 9.1% of V_s is allocated to V_A

Thus $R_A:R_B=1:10$ or $R_A=R_B/10$ is a practical guideline for the situation "A drives B"

This is called as '10X rule', and very useful for practical circuit design

Sometimes R_A and R_B are expressed as $R_{\text{out},A}$ and $R_{\text{in},B}$

where $R_{out,A}$ is the resistor out of A that viewed at midpoint, m

 $R_{in,B}$ is the resistor into B that viewed at the mid-point, m Thus $R_{out,A} \leq R_{in,B}$ /10 is the '10X rule' in more general form. In more general expression

 $Z_{out,A} \leq Z_{in,B}/10$ for more general AC environment where impedance Z is used instead of R

Two Exceptions for the 10X rule

- 1. $Z_{out} = Z_{in}$ for "Impedance matching" in radio frequency application
- 2. $Z_{out}/10 \ge Z_{in}$ for current signal rather than voltage signal

("reverse situation"), and $Z_{out} = \infty$ for current source

Voltage Divider Design

Design a voltage divider: V_{in}=12V, V_{out}=5V

Thus, from design point of view, we need 'For what application?' Answer can be 'To drive a A/D converter from the Vout signal' Now we need to know the load resistor, R_L , of the A/D converter, and we can obtain the R_L data from;

-Input impedance of A/D (Analog to Digital) converter

from specification sheet, or

-Direct measurement of resistor the A/D converter with multi-meter

Typical A/D's loading resistor, R_L , is 100K Ω , and it can be connected to the Vout signal as follows.

Thevenin's equivalent circuit gives

 $Rth = R_1 \parallel R_2 = R_1 R_2 / (R_1 + R_2)$, and

Vth=open voltage = $VinR_2/(R_1+R_2)$

Rth is to drive R_{L} , thus from 10X rule

 $Rth = R_1R_2/(R_1 + R_2) = R_L/10 = 10K\Omega$ eq(2)

Thus two unknowns, R_1 , R_2 can be solved from two eqs(1) and (2)

 $5R_1/12=10K\Omega$ Thus $R_1=24K\Omega$, and $R_2=5R_1/7=17.1K\Omega$

Therefore $R_1 = 24K\Omega$, $R_2 = 17.1K\Omega$ are uniquely determined.

Now $V_{out}=VthR_L/(Rth+R_L)=Vth(100)/(10+100)=4.5V$, while the design target is 5V.

Is it acceptable? Ans) Yes or No.

It can be generally accepted as an <u>approximate solution</u>, when R_L is sufficiently large.

What happen?

This time V_{out} is connected to R_L (=100K Ω) instead of open voltage (noconnection, and R_L = ∞). The current flow, i_L into R_L , gives voltage drop at Vout by the amount of i_L Rth from Vth.

The smaller R_L gives the bigger voltage drop at Vout.

Here is an exact solution that keeps Vout as the design target, 5V.

Eq(1) should be modified as

 $V_{out}=VthR_L/(Rth+R_L)=5V$ eq(1'), where

 $Vth=VinR_2/(R_1+R_2) \qquad eq(3)$

Three unknowns, R_1 , R_2 , Vth; with eq(2), eq(1'), eq(3)

From eq(1'), eq(2); Vout=VthR_L/1.1R_L=Vth/1.1=5V, \therefore Vth=5.5V

From eq(3), $R_2/(R_1+R_2)=Vth/Vin=5.5/12$

Applying to eq(2); Rth= $5.5R_1/12=10K\Omega$ \therefore R₁= $21.8K\Omega$

From eq(3), $5.5(R_1+R_2)=12R_2$ $\therefore R_2=5.5R_1/6.5=18.4K\Omega$

Thus we observe R_1 , R_2 are adjusted to accommodate R_L

Q) What happen if AC voltage is used instead of DC voltage?Ans) Same? or Different? It is same.

Note: Ohm's law is not influenced by whether it is DC or AC.

Local ground vs Global ground (or Earth)

Local ground or signal ground: common points in the circuit arbitrary chosen as zero volts

Power Supply

-Better to be connected to the Earth line