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Introduction

• Kinematics of rigid bodies: relations between 
time and the positions, velocities, and 
accelerations of the particles forming a rigid 
body.

• Classification of rigid body motions:

- general 3D motion

- motion about a fixed point

- general plane motion

- rotation about a fixed axis

• curvilinear translation
• rectilinear translation

- translation:
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Pure Translation
• Consider rigid body in translation:

- direction of any straight line 𝑟஻/஺ inside 
the body is constant,

- all particles forming the body move in 
parallel lines.

• For any two particles A and B in the body,

ABAB rrr
 

• Differentiating with respect to time,
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All particles have the same velocity.
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• Differentiating with respect to time again,

All particles have the same acceleration.
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Rotation about a Fixed Axis: Velocity
• Consider rotation of rigid body about a 

fixed axis AA’

• Velocity vector of the particle P is 
tangent to the path with magnitude
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• The same result is obtained from

• Angular velocity is a vector, whose direction 
is along the instantaneous rotation axis. 
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Rotation about a Fixed Axis: Acceleration

• Differentiating to determine the acceleration,
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• Acceleration of P is combination of two 
vectors,

𝑣 = 𝑤 × 𝑟
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Rotation about a Fixed Axis:  in Plane
• Consider the motion of a representative slab in 

a plane perpendicular to the axis of rotation.

• Velocity of any point P of the slab,



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rkrv
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 

• Acceleration of any point P of the slab,
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• Resolving the acceleration into tangential and 
normal components,
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• Motion of a rigid body rotating around a fixed axis is 
often specified by the type of angular acceleration.



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or• Recall

• Uniform Rotation,  = 0:

t  0

• Uniformly Accelerated Rotation,  = constant:
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Rotation about a Fixed Axis w/ Constant 𝜶
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Sample Problem 15.1

Cable C has a constant acceleration of 
225 mm/s2 and an initial velocity of 300 
mm/s, both directed to the right.

Determine (a) the number of revolutions 
of the pulley in 2 s,  (b) the velocity and 
change in position of the load B after 2 s, 
and (c) the acceleration of the point D on 
the rim of the inner pulley at t = 0.

SOLUTION:

• Due to the action of the cable, the 
tangential velocity and acceleration of 
D are equal to the velocity and 
acceleration of C.  Calculate the initial 
angular velocity and acceleration.

• Apply the relations for uniformly 
accelerated rotation to determine the 
velocity and angular position of the 
pulley after 2 s.

• Evaluate the initial tangential and 
normal acceleration components of D.
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Sample Problem 5.1
SOLUTION:
• The tangential velocity and acceleration of D are equal to the 

velocity and acceleration of C.  
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• Apply the relations for uniformly accelerated rotation to 
determine velocity and angular position of pulley after 2 s.
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Sample Problem 5.1

• Evaluate the initial tangential and normal acceleration 
components of D.

   2smm225CtD aa


     222
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Magnitude and direction of the total acceleration,
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 
 
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General Plane Motion

• General plane motion is neither a translation nor 
a rotation.

• General plane motion can be considered as the 
sum of translation (2-DOF) and rotation (1-DOF).

• Displacement of particles A and B to A2 and B2

can be divided into two parts:  
- translation to A2 and
- rotation of       about A2 to B2

1B
1B
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Absolute and Relative Velocity in Plane Motion

• Any plane motion (or rigid-body motion) can be replaced by a 
translation of an arbitrary point A and a simultaneous (relative) 
rotation about that point A.

ABAB vvv
   rvrkv ABABAB 



ABAB rkvv
  

• Angular velocity of any point of a rigid body is the same: for 
the point B, with 𝑣⃗஺/஻ = −𝑣⃗஻/஺ and 𝑟஺/஻ = −𝑟஻/஺,

BAABABBA rkrkvv ///


 BABA vvv /



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Absolute/Relative Velocity with Constraints

• Assuming that the velocity vA of end A is known, wish to determine the 
velocity vB of end B and the angular velocity  in terms of vA, l, and .

• The directions of vB and vB/A are known.  Complete the velocity diagram (cf. 
ICR).
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
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why?

ABAB rkvv
  
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Absolute/Relative Velocity with Constraints

• Selecting the point B and solving for the velocity vA of end A as a combination 
of 𝑣஻ and the relative velocity due to  leads to an equivalent velocity triangle.

• vA/B has the same magnitude but opposite sense of vB/A.  The sign of the 
relative velocity is dependent on the choice of reference point.

• Angular velocity  of the rod in its rotation about B is the same as its rotation 
about A.  Angular velocity is not dependent on the choice of reference point.

BABA rkvv /


 
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Sample Problem 15.7 1

The crank AB has a constant clockwise 
angular velocity of 2000 rpm.

For the crank position indicated, 
determine (a) the angular velocity of 
the connecting rod BD, and (b) the 
velocity of the piston P.

Strategy:

• Will determine the absolute velocity of 
point D with

BDBD vvv
 

• The velocity       is obtained from the 
given crank rotation data. 

Bv


• The directions of the absolute velocity 
and the relative velocity            are 
determined from the problem geometry.

Dv


BDv


• The unknowns in the vector expression 
are the velocity magnitudes
which may be determined from the 
corresponding vector triangle.

BDD vv  and 

• The angular velocity of the connecting 
rod is calculated from .BDv

© 2019 McGraw-Hill Education.

Sample Problem 15.7 2

Modeling and Analysis:

• Will determine the absolute velocity of point D with,

D B D Bv v v 
  

• The velocity
Bv
 is obtained from the crank rotation 

data. 

     

rev min 2 rad
2000 209.4 rad s

min 60s rev

75mm 209.4 rad s 15,705 mm/s

AB

B ABv AB






             

  

The velocity direction is as shown.

• The direction of the absolute velocity Dv


is 
horizontal. The direction of the relative velocity /D Bv



is perpendicular to BD.   Compute the angle between 
the horizontal and the connecting rod from the law of 
sines,

sin 40 sin
13.95

200mm 75mm





  
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Sample Problem 15.7 3

• Determine the velocity magnitudes 
from the vector triangle.

BDD vv  and 

BDBD vvv
 

15,705mm s

sin 53.95 sin50 sin76.05
= =
같 ?

D BD
vv

13,083mm s 13.08m s

12,400mm s 12.4m s

= =

= =

D

D B

v

v

13.08m s= =P Dv v

 kBD


srad 0.62

© 2019 McGraw-Hill Education.

Sample Problem 15.7 4

Reflect and Think:
Note that as the crank continues to move
clockwise below the center line, the piston 
changes direction and starts to move to the 
left. 

Can you see what happens to the motion of 
the connecting rod at that point? 
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Sample Problem 15.2

The double gear rolls on the 
stationary lower rack:  the velocity of 
its center is 1.2 m/s.

Determine (a) the angular velocity of 
the gear, and (b) the velocities of the 
upper rack R and point D of the gear.

SOLUTION:

• The displacement of the gear center in 
one revolution is equal to the outer 
circumference.  Relate the translational 
and angular displacements.  Differentiate 
to relate the translational and angular 
velocities.

• The velocity for any point P on the gear 
may be written as

Evaluate the velocities of points B and D.

APAAPAP rkvvvv
  

ABAB rkvv
  
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Sample Problem 15.2

x

y

SOLUTION:

• The displacement of the gear center in one revolution is 
equal to the outer circumference.  

For xA > 0 (moves to right),  < 0 (rotates clockwise).





 122

rx
r

x
A

A 

Differentiate to relate the translational and angular 
velocities.

m0.150
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1

1





r

v
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A

A





 kk


srad8 

2𝜋𝑟ଵ

𝑣஺
= −

2𝜋

𝑤
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Sample Problem 15.2

• For any point P on the gear, APAAPAP rkvvvv
  

Velocity of the upper rack is equal to 
velocity of point B:

     
   ii

jki

rkvvv ABABR






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m 10.0srad8sm2.1





 

 ivR


sm2

Velocity of the point D:

     iki

rkvv ADAD




m 150.0srad8sm2.1 

 

   
sm697.1

sm2.1sm2.1




D

D

v

jiv


• analysis using the point 𝐶 (i.e., instantaneous rotation center) is also possible
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Instantaneous Center of Rotation in Plane Motion

• Plane motion of a slab can always be represented by the 
translation velocity 𝑣஺ of an arbitrary point A and 
angular velocity 𝑤 about A.

• The translational and rotational velocities (𝑣஺, 𝑤) at A
can also be obtained by allowing the slab to rotate with 
the same angular velocity 𝑤 about a point C on the line 
perpendicular to the velocity 𝑣஺ at A.

• The velocity of all other particles in the slab rotating 
about this C will also be the same as originally given.

• As far as the velocities are concerned, the slab seems to 
rotate about the instantaneous center of rotation C.

Chasles Theorem: Any rigid body motion can be realized by 
a rotation about an axis combined with a translation parallel 
to that axis  general plane motion = pure rotation about 𝐶
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Instantaneous Center of Rotation in Plane Motion

• If the velocity at two points A and B are known, the 
instantaneous center of rotation lies at the intersection 
of the perpendiculars to the velocity vectors through A
and B (e.g., car steering).

• If the velocity vectors at A and B are perpendicular to 
the line AB, the instantaneous center of rotation lies at 
the intersection of the line AB with the line joining the 
extremities of the velocity vectors at A and B.

• If the velocity vectors are parallel, the instantaneous 
center of rotation is at infinity and the angular velocity 
is zero.

• If the velocity magnitudes are equal, the instantaneous 
center of rotation is at infinity and the angular velocity 
is zero.

Dongjun Lee

Instantaneous Center of Rotation
• The instantaneous center of rotation lies at the intersection of 

the perpendiculars to the velocity vectors through A and B .




cosl

v

AC

v AA      


 tan
cos

sin A
A

B v
l

v
lBCv 

• The velocities of all particles on the rod are as if they are 
rotating about the ICR C.

• The particle (or fictitious lab) at the ICR has zero 
(instantaneous) velocity.

• The ICR on the slab changes with time (i.e., instantaneous 
CR) with the acceleration at ICR is non-zero  the 
acceleration of the particles in the slab cannot be 
determined as if the slab were simply rotating about ICR C.

• The trace of the locus of the center of rotation on the body 
is the body centrode and in space is the space centrode.
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Sample Problem 15.4

The double gear rolls on the 
stationary lower rack:  the velocity 
of its center is 1.2 m/s.

Determine (a) the angular velocity 
of the gear, and (b) the velocities of 
the upper rack R and point D of the 
gear.

SOLUTION:

• The point C is in contact with the stationary 
lower rack and, instantaneously, has zero 
velocity.  It must be the location of the 
instantaneous center of rotation.

• Determine the angular velocity about C 
based on the given velocity at A.

• Evaluate the velocities at B and D based on 
their rotation about C.

Dongjun Lee

Sample Problem 15.4
SOLUTION:
• The point C is in contact with the stationary lower rack 

and, instantaneously, has zero velocity.  It must be the 
location of the instantaneous center of rotation.

• Determine the angular velocity about C based on the 
given velocity at A.

srad8
m 0.15

sm2.1


A

A
AA r

v
rv 

• Evaluate the velocities at B and D based on their rotation 
about C.

  srad8m 25.0 BBR rvv

 ivR


sm2

 
  srad8m 2121.0

m 2121.02m 15.0




DD

D

rv

r

  sm2.12.1

sm697.1

jiv

v

D

D
 



𝑣஼ = 0, 𝑦𝑒𝑡, 𝑎஼ ≠ 0
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Sample Problem 15.10 1

The crank AB has a constant clockwise 
angular velocity of 2000 rpm.

For the crank position indicated, 
determine (a) the angular velocity of 
the connecting rod BD, and (b) the 
velocity of the piston P.

Use method of instantaneous center of 
rotation

Strategy:

• Determine the velocity at B from the 
given crank rotation data.

• The direction of the velocity vectors at B 
and D are known.  The instantaneous 
center of rotation is at the intersection of 
the perpendiculars to the velocities 
through B and D.

• Determine the angular velocity about the 
center of rotation based on the velocity 
at B.

• Calculate the velocity at D based on its 
rotation about the instantaneous center 
of rotation.

© 2019 McGraw-Hill Education.

Sample Problem 15.10 2

Modeling and Analysis:
• From Sample Problem 15.3,

• The instantaneous center of rotation is at the intersection 
of the perpendiculars to the velocities through B and D.




05.7690

95.5340




D

B

200 mm

sin 76.05 sin53.95 sin50

BC CD
= =
같 ?

253.4 mm 211.1 mmBC CD= =

• Determine the angular velocity about the center of 
rotation based on the velocity at B.

• Calculate the velocity at D based on its rotation about 
the instantaneous center of rotation.

13,080mm s 13.08m sP Dv v= = =

srad0.62BD
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Instantaneous Center of Zero Velocity

What happens to the location of the instantaneous center of 
velocity if the crankshaft angular velocity increases from 
2000 rpm in the previous problem to 3000 rpm?

What happens to the location of the instantaneous center of 
velocity if the angle  is 0?

Reflect and Think:

Dongjun Lee

Application of ICR: Ackermann Steering

differential
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• This can be thought similarly as:

Absolute and Relative Acceleration in 2D

• Absolute acceleration of a particle of the slab: ABAB aaa
 

• Relative acceleration          associated with rotation about A includes 
tangential and normal components,

ABa


 
  ABnAB

ABtAB

ra

rka





2





  
  2



ra

ra

nAB

tAB





     errerra r




22 

ABAB rkvv
  • Can also be derived from: 

rtA

ABABAB

erera

rrkaa




2

2








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Absolute and Relative Acceleration in 2D
• Given 𝑎⃗஺ and 𝑣⃗஺,

determine 𝑎⃗஻ and 𝛼⃗

   
tABnABA

ABAB

aaa

aaa








• Angular velocity 𝑤 (and (𝑎஻/஺)_𝑛) is specified by 𝑣⃗஺ (cf. ICR)

• Vector diagram result depends on sign of         and 
the relative magnitudes of  

nABA aa  and 
Aa



rtA

ABABAB

erera

rrkaa




2

2








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Absolute and Relative Acceleration in 2D


 x components:  cossin0 2 llaA 

 y components:  sincos2 llaB 

• Solve for aB and .

• Write in terms of the two component equations,ABAB aaa
 

rtA

ABABAB

erera

rrkaa




2

2









Dongjun Lee

Analytical Expression of Kinematics

• In some cases, it is advantageous to determine the 
absolute velocity and acceleration of a mechanism 
directly.

sinlxA  coslyB 




cos

cos

l

l

xv AA












sin

sin

l

l

yv BB













cossin

cossin
2

2

ll

ll

xa AA















sincos

sincos
2

2

ll

ll

ya BB













18

Dongjun Lee

Sample Problem 15.6

The center of the double gear has a 
velocity and acceleration to the right of 
1.2 m/s and 3 m/s2, respectively.  The 
lower rack is stationary.

Determine (a) the angular acceleration 
of the gear, and (b) the acceleration of 
points B, C, and D.

SOLUTION:

• The expression of the gear position as a 
function of  is differentiated twice to 
define the relationship between the 
translational and angular accelerations.

• The acceleration of each point on the 
gear is obtained by adding the 
acceleration of the gear center and the 
relative accelerations with respect to the 
center.  The latter includes normal and 
tangential acceleration components.

A moves only horizontally -> constrained
B, C, D move along their circumferences

rtAC ereraa
 2 

Dongjun Lee

Sample Problem 15.6
SOLUTION:
• The expression of the gear position as a function of 

is differentiated twice to define the relationship 
between the translational and angular accelerations.





11

1

rrv

rx

A

A






srad 8
m 0.150

sm2.1

1


r

vA

 11 rraA  

m 150.0

sm3 2

1


r

aA

 kk
 2srad20 
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Sample Problem 15.6

   

         
     jii

jjki

rrka

aaaaaa

ABABA

nABtABAABAB









222

222

2

sm40.6sm2sm3

m100.0srad8m100.0srad20sm3











    222 sm12.8sm40.6m5  BB ajisa


• The acceleration of each point  
is obtained by adding the 
acceleration of the gear center 
and the relative accelerations 
from the center.  

The latter includes normal and 
tangential acceleration 
components.

Dongjun Lee

Sample Problem 15.6

         
     jii

jjki

rrkaaaa ACACAACAC







222

222

2

sm60.9sm3sm3

m150.0srad8m150.0srad20sm3





 

 jac
 2sm60.9

         
     iji

iiki

rrkaaaa ADADAADAD







222

222

2

sm60.9sm3sm3

m150.0srad8m150.0srad20sm3





 

    222 sm95.12sm3m6.12  DD ajisa

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Sample Problem 15.7

Crank AG of the engine system has  a 
constant clockwise angular velocity of 
2000 rpm.  

For the crank position shown, 
determine the angular acceleration of 
the connecting rod BD and the 
acceleration of point D.

Two unknowns: 𝑎஽௫, 𝛼஻஽

SOLUTION:

• The angular acceleration of the 
connecting rod BD and the acceleration 
of point D will be determined from 

   
nBDtBDBBDBD aaaaaa

 

• The acceleration of B is determined from 
the given rotation speed of AB.  

• The directions of the accelerations

are 

determined from constraints

   
nBDtBDD aaa


 and,,

• Component equations for acceleration 
of point D are solved simultaneously for 
acceleration of D and angular 
acceleration of the connecting rod.rtAACAC ereraaaa

 2
/  

𝑤஺஻ 𝛼஻஽ 𝑤஻஽𝑎஽௫, (𝑎஽௬ = 0)

Dongjun Lee

Sample Problem 15.7

• The acceleration of B is determined from the given rotation 
speed of AB.

SOLUTION:

• The angular acceleration of the connecting rod BD and 
the acceleration of point D will be determined from 

   
nBDtBDBBDBD aaaaaa

 

   22

1000
72

AB

sm3289srad4.209m 

0

constantsrad209.4rpm2000






ABB

AB

ra 




  jiaB


 40sin40cossm3289 2

𝑤஺஻ 𝛼஻஽ 𝑤஻஽

𝑣஽

𝑎஽௫, (𝑎஽௬ = 0)
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Sample Problem 15.7

• The directions of the accelerations are 

determined from the geometry. 
   

nBDtBDD aaa


 and,,

From Sample Problem 15.3,  BD = 62.0 rad/s,  = 13.95o.

       22
1000
2002 sm8.768srad0.62m  BDnBD BDa 

    jia
nBD


 95.13sin95.13cossm8.768 2

      BDBDBDtBD BDa  2.0m1000
200 

The direction of (aD/B)t is known but the sense is not known,

    jia BDtBD


 05.76cos05.76sin2.0 

iaa DD



 

Dongjun Lee

Sample Problem 15.7

15 - 42

   
nBDtBDBBDBD aaaaaa

 

• Component equations for acceleration of point D are solved 
simultaneously.

x components:

 95.13sin2.095.13cos8.76840cos3289 BDDa 

 95.13cos2.095.13sin8.76840sin32890 BD
y components:

 
  ia

k

D

BD




2

2

sm2790

srad9940




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Sample Problem 15.8

15 - 43

In the position shown, crank AB has a 
constant angular velocity 1 = 20 rad/s 
counterclockwise.

Determine the angular velocities and 
angular accelerations of the connecting 
rod BD and crank DE.

Four unknowns.

SOLUTION:

• The angular velocities are determined by 
simultaneously solving the component 
equations for (or via ICR)

BDBD vvv
 

• The angular accelerations are determined 
by simultaneously solving the component 
equations for

BDBD aaa
 

𝑤஽ா

(w/ dir)
𝑤஻஽

𝑤஽ா, 𝛼஽ா 𝑤஻஽, 𝛼஻஽

𝑤஻஽

Dongjun Lee

Sample Problem 15.8
SOLUTION:

• The angular velocities are determined by simultaneously 
solving the component equations for

BDBD vvv
 

 
ji

jikrv

DEDE

DEDDED








1717

340340





 
ji

jikrv BABB




160280

28016020



 

 
ji

jikrv

BDBD

BDBDBDBD








123

60240





BDDE  328017 x components:

BDDE  1216017 y components:

   kk DEBD


srad29.11srad33.29  
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Sample Problem 15.8
• The angular accelerations are determined by 

simultaneously solving the component equations for

BDBD aaa
 

     
jiji

jijik

rra

DEDE

DE

DDEDDED







33.4333.4334.034.0

34.034.029.1134.034.0 2

2













   
ji

jirra BABBABB




11264

28.016200 22



 

     
jiji

jijik

rra

DBDB

DB

DBBDDBBDBD







61.514.20624.006.0

06.024.033.2906.024 2

2













x components: 7.31306.034.0  BDDE 

y components: 28.12024.034.0  BDDE 

   kk DEBD

 22 srad809srad645  
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• Frame OXYZ is fixed {O}.

• Frame Oxyz F = {𝚤, 𝚥, 𝑘}
rotates about a fixed axis 
OA with angular velocity 



• A vector 𝑄(𝑡) can be 
expressed in Oxyz (or {F})

• Rate of change (differentiation) of 𝑄(𝑡) in {O}:

• Rate of change of 𝑄(𝑡) as observed in rotating 
frame {F} (or differentiation w.r.t. {F}):

• If expressed by the rotating frame Oxyz {𝚤, 𝚥, 𝑘}:

• Combining these: 

rate of change 
due to rigid-
motion with {F}

rate of change 
as observed (or 
relative) in {F} 

recall   𝑣⃗ = 𝑟̇𝑒௥ + 𝑟𝜃̇𝑒ఏ

Rate of Change with Rotating Frame

• If 𝑄(𝑡) is constant in {F}, then,                  and

since                    is the velocity of a point 𝑄(𝑡)

rigidly attached to {F} rotating with Ω, 

0






Oxyz
Q


0






Oxyz
Q


rate of change
in inertial 
frame {O}
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Plane Rotation with Rotating Frame
• Frame OXY is fixed {O} and frame Oxy {F} rotates with 

angular velocity Ω

• Position vector      for the particle P is the same in both 
frames but the rate of change depends on the choice of 
frame.

Pr


• The absolute velocity of the particle P is

   OxyOXYP rrrv 


 

• Imagine a rotating rigid slab, to which a frame Oxy or F
for short is rigidly-attached.  Let P’ be a point of the 
slab, which corresponds to P instantaneously.   

   OxyP rv 
F velocity of P as observed in (or relative 

to) the slab

'Pv


velocity of P’ rigidly-attached on the slab

• Absolute velocity for the particle P is given by:

FPPP vvv
  

rigid-motion with {F} as observed in (relative to) {F}

Dongjun Lee

Sample Problem 15.9

Disk D of the Geneva mechanism rotates 
with constant counterclockwise angular 
velocity D = 10 rad/s.

At the instant when  = 150o, determine 
(a) the angular velocity 𝑤ௌ of disk S, and 
(b) the velocity of pin P relative to disk S.

SOLUTION:

• The absolute velocity of the point P
may be written as

sPPP vvv
  

• Magnitude and direction of velocity
of pin P are calculated from the 

radius and angular velocity of disk D.
Pv


• Direction of velocity       of point P’ on 
S coinciding with P is perpendicular to 
radius OP.

Pv 


• Direction of velocity          of  P with 
respect to S is parallel to the slot.

sPv


• Solve the vector triangle for the 
angular velocity  of S and relative 
velocity of P.

w.r.t. {D}, w.r.t. {S} SPPP vvv /


 
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Sample Problem 15.9

15 - 49

SOLUTION:

• The absolute velocity of the point P may be written as

sPPP vvv
  

• Magnitude and direction of absolute velocity of pin P are 
calculated from radius and angular velocity of disk D.

   smm500srad 10mm 50  DP Rv 

• Direction of velocity of P with respect to S is parallel to slot.
From the law of cosines,

mm 1.37551.030cos2 2222  rRRllRr

From the law of cosines,







 4.42
742.0

30sin
sin

30sin

R

sin 
r

 6.17304.4290
The interior angle of the vector triangle is

Dongjun Lee

Sample Problem 15.9

• Direction of velocity of point P’ on S coinciding with P is 
perpendicular to radius OP.  From the velocity triangle,

 

mm 1.37

smm2.151

smm2.1516.17sinsmm500sin





ss

PP

r

vv





 ks


srad08.4

   6.17cossm500cosPsP vv

  jiv sP
  4.42sin4.42cossm477

smm 500Pv
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  FPPOxyP vvrrv





 

• Absolute acceleration for the particle P is

    OxyOXYP r
dt
d

rra 
 

     OxyOxyP rrrra 
  2

        OxyOxyOxyOxy rrr
dt

d
rrr

dt

d 





Plane Rotation with Rotating  Frame: Acceleration

 
 

 OxyC

OxyP

P

ra

ra

rra














2

F

• Absolute acceleration for the particle P becomes

=>    𝑎⃗௖ 𝑏𝑒𝑡𝑡𝑒𝑟 𝑠𝑒𝑒𝑛 𝑤ℎ𝑒𝑛 𝑟̈ ை௫௬ = Ω̇ = 0
     errerra r




22 

CFPPP aaaa


 /'

acceleration due 
to rigid-motion 
rotating with {F}

acceleration of within 
motion relative
(as observed) in {F}

something else!
Coriolis acceleration
(linear+angular velocities or 
linear motion in rotating frame)

Dongjun Lee

• Absolute acceleration of the collar is:

Coriolis Acceleration 
• Consider a collar P which is sliding at constant relative 

velocity u along rod OB as observed in OB.  The rod is 
rotating at a constant angular velocity .  The point A of 
the rod corresponds to the position of P instantaneously.

cPAP aaaa
  F

  0 OxyP ra 
F

uava cPc 22  F


• Absolute acceleration consists of radial (𝑟𝑤ଶ) and tangential (2𝑤𝑢) components

  2rarra AA  

     OxyOxyP rrrra 
  2

- centripetal: need to intentionally slow down to maintain constant speed u

- tangential:  will experience being pushed to the left on the rod 
(if no rod (i.e., no force acting on it), the collar will drift to the right) 

- no acceleration as observed in the rotating rod since u is constant
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Coriolis Acceleration 

15 - 53

uvvtt

uvvt

A

A









,at 

,at 

• Change in velocity over t is represented by the 
sum of three vectors

TTTTRRv 

  2rarra AA  
recall, 

• is due to change in direction of the velocity of 
point A on the rod,

AA
tt

arr
t

v
t

TT





2

00
limlim 




 

TT 

• result from combined effects of 
relative motion of P and rotation of the rod

TTRR   and 

uuu

t

r

t
u

t

TT

t

RR

tt








 

2

limlim
00









 







 





uava cPc 22  F


recall, 

© 2019 McGraw-Hill Education.

Concept Question 5

You are walking with a constant 
velocity with respect to the platform, 
which rotates with a constant angular 
velocity w. At the instant shown, in 
which direction(s) will you experience 
an acceleration (choose all that 
apply)? 

a) +x

b) −x

c) +y

d) −y

e) Acceleration = 0
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Concept Question 6

You are walking with a constant 
velocity with respect to the platform, 
which rotates with a constant angular 
velocity w. At the instant shown, in 
which direction(s) will you experience 
an acceleration (choose all that 
apply)? 

a) +x

b) −x

c) +y

d) −y

e) Acceleration = 0

Dongjun Lee

As Observed in a Rotating Frame

If you’re sitting at the center of the rotating frame {F} (with constant w) and see the ball 
moving straight in the inertial frame {O} (with constant v), you will experience the relative 
motion (as observed in {F}) of the ball from you as follows:
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Sample Problem 15.10

In the Geneva mechanism, disk D
rotates with a constant counter-
clockwise angular velocity of  10 
rad/s.  At the instant when j = 150o, 
determine angular acceleration of 
disk S.

SOLUTION:

• The absolute acceleration of the pin P may 
be expressed as 

csPPP aaaa
  

• The instantaneous angular velocity of Disk 
S is determined as in Sample Problem 15.9.

• unknowns: 𝛼ௌ, 𝑎௉/ௌ (directions known 
though)

• Resolve each acceleration term into the 
component parallel to the slot.  Solve for 
the angular acceleration of Disk S.

w.r.t. D, w.r.t. S
     OxyOxyP rrrra 

  2

CFPPP aaaa


 /'

Dongjun Lee

Sample Problem 15.10

15 - 58

SOLUTION:

• Absolute acceleration of the pin P may be expressed as 

csPPP aaaa
  

• From Sample Problem 15.9.

 
  jiv

k

sP

S








4.42sin4.42cossmm477

srad08.44.42 

• Considering each term in the acceleration equation,

  
  jia

Ra

P

DP
 



30sin30cossmm5000

smm5000srad10mm500
2

222

   
    
    
     jia

jira

jira

aaa

StP

StP

SnP

tPnPP

























4.42cos4.42sinmm1.37

4.42cos4.42sin

4.42sin4.42cos2







note: S may be positive or negative
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Sample Problem 15.10

15 - 59

• The relative acceleration          must be parallel to 
the slot.

sPa


sPv
• The direction of the Coriolis acceleration is obtained 

by rotating the direction of the relative velocity
by 90o in the sense of S.

  
   

  ji

ji

jiva sPSc







4.42cos4.42sinsmm3890

4.42cos4.42sinsmm477srad08.42

4.42cos4.42sin2

2 



 

• Equating components of the acceleration terms 
perpendicular to the slot,

srad233

07.17cos500038901.37




S

S




 kS


srad233
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3D Rigid Rotation about a Fixed Point

• The most general 3D motion of a rigid body with a fixed 
point O is equivalent to a pure rotation of the body about 
an axis through O (due to Chasles’ or Euler’s theorem)

• With instantaneous axis of rotation and angular velocity 𝑤,

r
dt

rd
v




  

𝑟̇
ை௫௬

= 0 

  .
dt

d
rra







     OxyOxyP rrrra 
  2

Chasles’ Theorem: Any rigid body motion can be produced by a 
rotation about an axis combined with a translation along that axis.
 for O to be fixed, 𝑤 should go through 𝑂 with no translation.

Euler’s Theorem: Any displacement of a rigid body such that a 
point on the rigid body, say O, remains fixed, is equivalent to a 
rotation about a fixed axis through the point O.

vector
   OxyOXYP rrrv 


 
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3D Rigid Rotation about a Fixed Point

• Angular velocities are vectors, obeying the law of 
addition.   Rotation motion itself is not though.

• The angular acceleration 𝛼⃗ represents the velocity of 
the tip of         Note that 𝛼⃗ and 𝑤 are not collinear!.

r
dt

rd
v




  

• As the vector        moves within the body and in space, 
it generates a body cone and space cone which are 
tangent along the instantaneous axis of rotation.

.
P

For the same point P, given velocities 𝑣ଵ = 𝑤ଵ × 𝑟 and 
𝑣ଶ = 𝑤ଶ × 𝑟, we can add them s.t., 

𝑣⃗ = 𝑣⃗ଵ + 𝑣⃗ଶ = 𝑤ଵ + 𝑤ଶ × 𝑟 = 𝑤 × 𝑟

i.e., 𝑤 combining  𝑤ଵ and 𝑤ଶ is given by  𝑤 = 𝑤ଵ + 𝑤ଶ

(for more on motions 로봇공학입문)

𝑟̇
ை௫௬

= 0 
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Sample Problem 15.11

The crane rotates with a constant 
angular velocity 1 = 0.30 rad/s and the 
boom is being raised with a constant
angular velocity 2 = 0.50 rad/s.  The 
length of the boom is l = 12 m.

Determine:
• angular velocity of the boom,
• angular acceleration of the boom,
• velocity of the boom tip, and
• acceleration of the boom tip.

• Angular acceleration of the boom,

 
21

22221











 Oxyz

• Velocity of boom tip,
rv
  

• Acceleration of boom tip,

  vrrra
  

SOLUTION:

With

• Angular velocity of the boom,

21   

 
ji

jir

kj







639.10

30sin30cos12

50.030.0 21





 

     OxyOxyP rrrra 
  2   OxyOXYP rrrv 


 
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Sample Problem 15.11

15 - 63

jir

kj




639.10

50.030.0 21



 

SOLUTION:

• Angular velocity of the boom,

21   
   kj


srad50.0srad30.0 

• Angular acceleration of the boom,

 
   kj

Oxyz





srad50.0srad30.021

22221









 i 2srad15.0

• Velocity of boom tip,

0639.10

5.03.00

kji

rv



  

     kjiv


sm12.3sm20.5sm54.3 
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Sample Problem 15.11

15 - 64

jir

kj




639.10

50.030.0 21



 

• Acceleration of boom tip,

 

kjiik

kjikji

a

vrrra









90.050.160.294.090.0

12.320.53

50.030.00

0639.10

0015.0






 

     kjia
 222 sm80.1sm50.1sm54.3 
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General 3D Motion of Rigid Body
• For two points A and B of a rigid body,

• Differentiating this, we obtain the velocity of B:

• Similarly, the acceleration of the particle B is

• Most general motion of a rigid body is equivalent to the combination of: 
- a translation in which all the particles are translating together with a 

velocity of a point of the rigid-body; and 
- a rotation in which all the particles are rotating about that point

Dongjun Lee

Sample Problem 15.12

A: ball and socket connection
B: collar with clevis connection
𝑤ଵ = 12𝑟𝑎𝑑/𝑠: constant
determine: (a) 𝑣஻ and (b) 𝑤஺஻

SOLUTION:

• Position of the collar is ({F}={i,j,k}):

• Velocity of the collar is:

since ({F}={i,j,k}) is rotating w/ w୅୆

• 3 equations, four unknowns…

+ one constraint: 
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Sample Problem 15.12

15 - 67

Dongjun Lee

Recall: Particle Motion with Rotating Frame
• With respect to the fixed frame OXYZ and rotating 

frame Oxyz with ,

    QQQ OxyzOXYZ

 

• Consider motion of particle P relative to a rotating 
frame Oxyz or {F} for short.  The absolute velocity 
can be expressed as

 
FPP

OxyzP

vv

rrv










• The absolute acceleration can be expressed as

     

  onaccelerati Coriolis 







F

F

POxyzc

cPp

OxyzOxyzP

vra

aaa

rrrra











22

2

𝑑𝑟

𝑑𝑡
=

rigid-motion with 𝑂𝑥𝑦𝑧 as-observed (relative) in 𝑂𝑥𝑦𝑧 (= 0)

rigidly-motion with 𝑂𝑥𝑦𝑧 as observed (relative) in 𝑂𝑥𝑦𝑧 
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3D Motion with Moving/Rotating Frame

With pure-rotating frame:

• Velocity and acceleration of P can still be 
found as a combination of rigid-motion with
{F} and as observe motion in {F}:

 
FPP

AxyzAPAPAP

vv

rrvv










 
   

cPP

AxyzAPAxyzAP

APAPAP

aaa

rr

rraa














 F

2

rigid-motion with {F}
as observed (relative ) in {F}

• Kinematics equation of P with relative  
motion (as observed) in rotating-frame {F}:

  FPPOxyzP vvrrv


 

     
cPp

OxyzOxyzP

aaa

rrrra









 F

2

{F}

rigid-motion with {F} as observed (relative ) in {F}

Coriolis acceleration
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Sample Problem 15.11

The crane rotates with a constant 
angular velocity 1 = 0.30 rad/s and the 
boom is being raised with a constant 
angular velocity 2 = 0.50 rad/s.  The 
length of the boom is l = 12 m.

Determine:
• angular velocity of the boom,
• angular acceleration of the boom,
• velocity of the boom tip, and
• acceleration of the boom tip.

• Angular acceleration of the boom,

2121 




• Velocity of boom tip,
rv
  

• Acceleration of boom tip,
  dtvdrra p /


 

SOLUTION:

• Angular velocity of the boom,

21   

 using body frame {F} attached on cab?

{F}
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Sample Problem 15.11

{F}

• Angular acceleration of the boom,

2121 




• Velocity of boom tip,
rv
  

• Acceleration of boom tip,
  dtvdrra p /


 

SOLUTION:

• Angular velocity of the boom,

21   

SOLUTION with body-frame {F}:

• Body-frame {F} is rigidly-attached to 
the cabin and rotating with constant 𝑤ଵ  

• Velocity of the boom-tip:

: rotating together with {F}

: motion as observed in {F}

• Acceleration of the boom-tip:

• This is the same as before, which can be 
shown by using the Jacobi identity:

: with {F}

: in {F}

Dongjun Lee

Sample Problem 15.15

For the disk mounted on the arm, the 
indicated angular rotation rates are 
constant.

Determine:
• the velocity of the point P
• the acceleration of P; and
• angular velocity and angular 

acceleration of the disk.

SOLUTION:

• Define a rotating frame Axyz or F rigidly-
attached to the arm at A.

• Velocity kinematics:

• Acceleration kinematics:

• Disk angular velocity and acceleration:

where to put the rotating frame?

rotating w/ arm, 
not w/ disk

{F}

: with {F}

: in {F}

{O}
fixed/inertial

: with {F}

: in {F}
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Sample Problem 15.15
SOLUTION:

• Define a fixed reference frame OXYZ at O and a 
moving reference frame Axyz or F attached to the 
arm at A.

j

jRiLr




1 



k

jRr

D

AP




2 



F

• With P’ of the moving reference frame coinciding 
with P, the velocity of the point P is found from

 
iRjRkrv

kLjRiLjrv

vvv

APDP

P

PPP







22

11















FF

F

kLiRvP


12  
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Sample Problem 15.15

• The acceleration of P is found from

cPPP aaaa
   F

    iLkLjraP
 2

111  

 
  jRiRk

ra APDDP




2
222 





 FFF

  kRiRj

va Pc




2121 22

2







 F

kRjRiLaP


21
2
2

2
1 2  

• Angular velocity and acceleration of the disk,

FD   kj


21  

 
 kjj






211 





 F

i


21 
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Sample Problem 15.15

{O}
fixed/inertial

rotating w/ arm

{F}

For the disk mounted on the arm, the 
indicated angular rotation rates are 
constant.

Determine:
• the velocity of the point P
• the acceleration of P; and
• angular velocity and angular 

acceleration of the disk.

where to put the rotating frame?

• Velocity kinematics:

• Acceleration kinematics:

• Disk angular velocity and acceleration:

: with {F}

: in {F}

: with {F}

: in {F}

SOLUTION:

• Define a rotating frame Axyz or F rigidly-
attached to the arm at O.

Dongjun Lee

This Lecture
* these lecture notes provided by McGraw Hill

• Kinematics of rigid-body:

  FPPFAPAPAP vvrrvv


 }{

     
cPP

FAPFAPAPAPAP

aaa

rrrraa









 F

}{}{
2

rigid-motion with {F} as observed (relative ) in {F

• Kinematics of P w/ relative motion (as observed) 
in rotating-frame {F}:

rigid-motion with {F} as observed (relative) in {F}

Coriolis acceleration


