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Introduction
i L » Kinematics of rigid bodies: relations between
v time and the positions, velocities, and
N v N e accelerations of the particles forming a rigid
v body.

* Classification of rigid body motions:

translation:

« rectilinear translation
 curvilinear translation

- rotation about a fixed axis
- general plane motion

- motion about a fixed point

general 3D motion
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Pure Translation

y * Consider rigid body in translation:
- direction of any straight line 754 inside
B the body is constant,
- all particles forming the body move in
parallel lines.

» For any two particles 4 and B in the body,

7 FB:FA+FB/A

(a

« Differentiating with respect to time,
Py = Py +gya =
Vg =Vy
All particles have the same velocity.
+ Differentiating with respect to time again,

?B :FA+fB/A :FA

a B~ a A
All particles have the same acceleration.
[epongiunLee ?&’,

Rotation about a Fixed Axis: Velocity

* Consider rotation of rigid body about a
fixed axis 44’

« Velocity vector vV =dF/dt of the particle P is
tangent to the path with magnitude v = ds/dt

As = (BP)AG = (rsin¢)AQ

ds AG .
y=—-= lim (rsin¢g)— = rfsin
dt At—>0( ¢) At ¢

» The same result is obtained from
. dr .
V="-=@XxF

dt
@ = wk = 0k = angular velocity

* Angular velocity is a vector, whose direction
is along the instantaneous rotation axis.

a=(F-r6%)e +(r6 +2:6)z,

RR EN
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Rotation about a Fixed Axis: Acceleration

[eDongiunLee

« Differentiating to determine the acceleration,

I

déa

s @ = angular acceleration
=ak = ok =0k

e Acceleration of P is combination of two
vectors,

Q!

=ax7+ax(ox7)

Q

x 7 = tangential acceleration component
x (@ x 7) =radial acceleration component

B3 =

Gy

]!

Rotation about a Fixed Axis: in Plane

Y

i=(F-r0*)e +(r6+2i6)z,

©DongjunLee

Consider the motion of a representative slab in
a plane perpendicular to the axis of rotation.
Velocity of any point P of the slab,

V= @xF = ok x7F

V=rao

Acceleration of any point P of the slab,

Ad=AXF+Ox(DXF)
a

=

X7 —w*F

Resolving the acceleration into tangential and
normal components,

a, =akxr a;=ra

_— 2 _ 2
d, =—°F a, =rew




Rotation about a Fixed Axis w/ Constant

* Motion of a rigid body rotating around a fixed axis is
often specified by the type of angular acceleration.

* Recall w:ﬁ or dt:ﬁ
dt @
do d*0 do
d=—=—=0——
dt g2 do

» Uniform Rotation, a = 0:

9=6’0+wt

* Uniformly Accelerated Rotation, a = constant:
W =wy+at

_ 1,2
9—90 +(00t+20!l

w? :a)g +2a(0-6,)

[epongiuntee (E8) BN

Sample Problem 15.1

SOLUTION:
/ * Due to the action of the cable, the
‘ tangential velocity and acceleration of
| D are equal to the velocity and
' acceleration of C. Calculate the initial
angular velocity and acceleration.
* Apply the relations for uniformly
a accelerated rotation to determine the

velocity and angular position of the
pulley after 2 s.

Cable C has a constant acceleration of
225 mm/s? and an initial velocity of 300
mms, both directed to the right.  Evaluate the initial tangential and

) ] normal acceleration components of D.
Determine (a) the number of revolutions

of the pulley in2 S, (b) the Velocity and * Uniformly Accelerated Rotation, @ = constant:
change in position of the load B after 2 s, © =g +at

and (c) the acceleration of the point D on 0=0y+og +1ar®

the rim of the inner pulley at = 0. 0? =02 +22(0-6,)

&
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Sample Problem 5.1

_ SOLUTION:
—> « The tangential velocity and acceleration of D are equal to the
velocity and acceleration of C.

(), =), =300mm/s >  (@p),=dc =9in/s >
(VD)o:rwo CZD)[:VO.’
on:ﬂ:Mad/s a:@=2=3rad/s2
r 5 r 3

* Apply the relations for uniformly accelerated rotation to
determine velocity and angular position of pulley after 2 s.

® =y +at =4rad/s + (3rad/52X2 s)=10rad/s
0 = wt +%at2 = (4rad/s)(2 s)+%(3rad/s2 XZ sy

=14rad
N=(14 rad)( 21 revdj = number of revs N =2.23rev
7T T8
v, = ro = (125 mm)10rad/s) v, =125m/s T
Ay, =r6=(125mm)14rad) Ay, =1.75m
wnLee “g;

Sample Problem 5.1

* Evaluate the initial tangential and normal acceleration
components of D.

(@,), =a. =225mm/s’ -

(ap), = ry@; = (75 mm)(4rad/s) =1200mm/s’

‘(ﬁn )t =225 mm/sz - (ﬁn )11 =1200 mm/s2 ‘L‘

(a,),
1200
L__Zap - 225

\
Jkﬂ'w ]
[___ij | : Magnitude and direction of the total acceleration,
2 2
p (ap)=225 mm/s? ap = (aD )t + (aD )n
— 2
| =225 +1200? a, =1220mm/s
|
I
a
(ap), = 1200 mm/s? i tan ¢ = @
|
|
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General Plane Motion

Plane motion o Translation with A + Rotation about A

» General plane motion is neither a translation nor
a rotation.

* General plane motion can be considered as the
sum of translation (2-DOF) and rotation (1-DOF).

* Displacement of particles 4 and B to 4, and B,
can be divided into two parts:
- translation to 4, and Bj
- rotation of Bj about 4, to B,

z@‘ ENGINEERING
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Absolute and Relative Velocity in Plane Motion

Plane motion = Translation with A + Rotation about A

* Any plane motion (or rigid-body motion) can be replaced by a
translation of an arbitrary point 4 and a simultaneous (relative)
rotation about that point 4.

Vp=V4+Vp/y Vga = Ok XTy vy, =r®

VB =‘7A +QJEXFB/A

* Angular velocity of any point of a rigid body is the same: for
the p()int B, with ﬁA/B = _ﬁB/A and ?A/B = —T_')B/A,

VB =VatVpjs

Vi =V Vg Vap = Vg =0k XIy, =0k XT,,

@ ENGINEERING
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Absolute/Relative Velocity with Constraints

why?

ol ! VEB/A
N -+ A
\\ h X \ /‘
N O o
" O
A 3
\C}-—b\v
' A (fixed) £
. Vp=V I
Plane motion = Translation with A +  Rotation about A B A B/A

» Assuming that the velocity v, of end 4 is known, wish to determine the
velocity v, of end B and the angular velocity @ in terms of v, /, and 6.

* The directions of v; and vy, are known. Complete the velocity diagram (cf.

ICR). S
£ = tano —A =4 = cos@
Vg VB/A lo
vp =v  tanf =
B 4 a):lvAg §B=\7A+kaFB/A
Ccos
[epongiuntee %

Absolute/Relative Velocity with Constraints

V4 =Vp+ Vg

Plane motion = Translation with B + Rotation about B ‘7,4 — VB + wk x FA/B

Selecting the point B and solving for the velocity v, of end 4 as a combination
of vp and the relative velocity due to @ leads to an equivalent velocity triangle.

v,,5 has the same magnitude but opposite sense of v;,,. The sign of the
relative velocity is dependent on the choice of reference point.

Angular velocity @ of the rod in its rotation about B is the same as its rotation
about 4. Angular velocity is not dependent on the choice of reference point.

C Dong unlee




Sample Problem 15.7

Strategy:

» Will determine the absolute velocity of
point D with
\7D = VB + VD/ B
* The velocity v is obtained from the
given crank rotation data.

The crank 4B has a constant clockwise ° The directions of the absolute velocity v,

angular velocity of 2000 rpm. and the relative velocity v p/p are
determined from the problem geometry.
For the crank position indicated,

determine (a) the angular velocity of ~ * The unknowns in the vector expression

the connecting rod BD, and (b) the are the velocity magnitudes vp and vp/p
velocity of the piston P. which may be determined from the
corresponding vector triangle.

* The angular velocity of the connecting
rod is calculated from vp)p.

© 2019 McGraw-Hill Education.

Sample Problem 15.7 .

Modeling and Analysis:
75 mn}f\ B »  Will determine the absolute velocity of point D with,
Vi =V + Vi

* The velocity ¥, is obtained from the crank rotation
data.

o, = (zooori_vj (@] (zmad) =209.4 rad/s
min/ \ 60s rev

v, =(4B)w,, =(75mm)(209.4 rad/s)=15,705 mm/s

The velocity direction is as shown.

* The direction of the absolute velocity V,, is
T~ — 200 mm horizontal. The direction of the relative velocity v,
T is perpendicular to BD. Compute the angle between
the horizontal and the connecting rod from the law of
sines,
. o .
sin40° _ sin 3 B=13.95°
200mm  75mm

© 2019 McGraw-Hill Education.



Sample Problem 15.7 .

Plane motion = Translation + Rotation

* Determine the velocity magnitudes vp andvp/g

vp from the vector triangle.
50° 76,05°\ Lﬁ:]s,g? vp _ Yp/B _ 15,705 mm/s
sin53.95& sin50 sin76.057
vg= 15,705 mm/s Vo/B
05, vp =13,083mm/s =13.08m/s [y, =v,, =13.08m/s|
Vp/p =12,400mm/s =12.4m/s
S Vp/p = 10y
Vvp=vpt+V
DB D/ Vos  12,400mm/s
@50 =777 7200 mm _ .
= 62.0 rad/s" ‘a)BD =(62.0rad/s)k‘

© 2019 McGraw-Hill Education.

Sample Problem 15.7.

Reflect and Think:
/\l — 900 i Note that as the crank continues to move
75 m/r>n\ T clockwise below the center line, the piston

changes direction and starts to move to the
left.

Can you see what happens to the motion of
the connecting rod at that point?

© 2019 McGraw-Hill Education.




Sample Problem 15.2

SOLUTION:

» The displacement of the gear center in
one revolution is equal to the outer
circumference. Relate the translational
and angular displacements. Differentiate

%y =100 mm to relate the translational and angular

LT Ty velocities.

* The velocity for any point P on the gear
The double gear I'OHS on the may be written as
stationary lower rack: the velocity of

. . Vp =V, +Vp =V, +akxF
its center is 1.2 m/s. P=VYATVPIA= V4 P4

Determine (a) the angular velocity of
the gear, and (b) the velocities of the
upper rack R and point D of the gear.

\73 :VA +wEXfB/A

Dongjun Lee &) BN
[20eongiur a2

Evaluate the velocities of points B and D.

Sample Problem 15.2

SOLUTION:

+ The displacement of the gear center in one revolution is
equal to the outer circumference.

For x, > 0 (moves to right), @ < 0 (rotates clockwise).
1y =100 mm

2 X 0
MDA —4 __Z xy=-n0o _27”1:_2_”
2rr 2z Uy w

Differentiate to relate the translational and angular
velocities.

Vy=—hw

_ vy_ l2m/s
A 0.150m

@ =k = —(8rad/s)l;‘

C Dong unlee
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Sample Problem 15.2

* Forany point P on the gear, Vp =V, +Vp 4=V, +a)l€><;7p/A

= (L2m/s) + (0.8m/s)f Vp =(1.2m/s)i +(1.2m/s)j

vp =1.697m/s

 analysis using the point C (i.e., instantaneous rotation center) is also possible
[epongiunLee ?&’,

B Vi
""""""""" s - ~ [/
/4 % ‘E‘ o=l /l A
r>>_.? ‘;T”‘ D ( <JJ\; J D \(l (L\—;») )
e N\ N N
r =150 Tom % Il e & g
....................... s o =
T'ranslation + Rotation Rolling Motion
Velocity of the upper rack is equal to Velocity of the point D:
velocity of point B:
VRZVBZVA+Q)EXFB/A VD:T/A"'CO];XFD/A
=(1.2m/s) + (8rad/s)k x(0.10m); =(1.2m/s)i +(8rad/s)k x(~0.150 m)i

Instantaneous Center of Rotation in Plane Motion

T * Plane motion of a slab can always be represented by the
O A translation velocity v, of an arbitrary point 4 and
e angular velocity w about 4.

* The translational and rotational velocities (v4, w) at 4
e can also be obtained by allowing the slab to rotate with
\J the same angular velocity w about a point C on the line
perpendicular to the velocity v, at 4.

r=u/o

The velocity of all other particles in the slab rotating
about this C will also be the same as originally given.

Ar * As far as the velocities are concerned, the slab seems to
; l\.\ rotate about the instantaneous center of rotation C.

Chasles Theorem: Any rigid body motion can be realized by
a rotation about an axis combined with a translation parallel
to that axis = general plane motion = pure rotation about C

R EN
B

C Dong unlee
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Instantaneous Center of Rotation in Plane Motion

[eDongiunLee

¥

If the velocity at two points 4 and B are known, the
instantaneous center of rotation lies at the intersection
of the perpendiculars to the velocity vectors through 4
and B (e.g., car steering).

If the velocity vectors are parallel, the instantaneous
center of rotation is at infinity and the angular velocity
is zero.

« If'the velocity vectors at 4 and B are perpendicular to
the line 4B, the instantaneous center of rotation lies at
the intersection of the line 4B with the line joining the
extremities of the velocity vectors at 4 and B.

+ If the velocity magnitudes are equal, the instantaneous
center of rotation is at infinity and the angular velocity
is zero.

(]

Instantaneous Center of Rotation

P N Space

. de& \
X ceqtmde | !

©DongjunLee

centrode

¢ The instantaneous center of rotation lies at the intersection of]
the perpendiculars to the velocity vectors through 4 and B .

w="4 _ Y1
AC [cosé

Va4

v, =(BC)w = (Isin ) =v, tanf

lcos@

* The velocities of all particles on the rod are as if they are
rotating about the ICR C.

* The particle (or fictitious lab) at the ICR has zero
(instantaneous) velocity.

* The ICR on the slab changes with time (i.e., instantaneous
CR) with the acceleration at ICR is non-zero = the
acceleration of the particles in the slab cannot be
determined as if the slab were simply rotating about ICR C.

» The trace of the locus of the center of rotation on the body
is the body centrode and in space is the space centrode.

22
B8
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Sample Problem 15.4

SOLUTION:

» The point C is in contact with the stationary
lower rack and, instantaneously, has zero
velocity. It must be the location of the
instantaneous center of rotation.

e e L * Determine the angular velocity about C

based on the given velocity at 4.

+ Evaluate the velocities at B and D based on
The double gear rolls on the their rotation about C.
stationary lower rack: the velocity
of its center is 1.2 m/s.

Determine (a) the angular velocity
of the gear, and () the velocities of
the upper rack R and point D of the
gear.

lepongjunLee (28] =
&

Sample Problem 1x5.4

SOLUTION:

* The point C is in contact with the stationary lower rack
and, instantaneously, has zero velocity. It must be the
location of the instantaneous center of rotation.

* Determine the angular velocity about C based on the
given velocity at 4.

vy l2m/s

=8rad/s
ry 0.15m

Vy=ryo (4]

« Evaluate the velocities at B and D based on their rotation

T about C.
AN
}<‘?° ‘ \i\ rg= 21m.uu VR =Vp =Tp0 = (0'25 m)(grad/s)
I A s
x iy /ra =150 mm
AT 4
i\/}/‘7* rp=(0.15mN2=0.2121m
4 vp =rp®=(0.2121m)8rad/s)
vp =1.697m/s
p = (1.27 +1.2] fm/s)
<Don9 unLee ‘&j E
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Sample Problem 15.10 .

Strategy:
/\l =900 mm * Determine the velocity at B from the
e ] mfn\ B given crank rotation data.

» The direction of the velocity vectors at B
and D are known. The instantaneous

D center of rotation is at the intersection of

the perpendiculars to the velocities

The crank 4B has a constant clockwise through B and D.

angular velocity of 2000 rpm. * Determine the angular velocity about the
For the crank position indicated, center of rotation based on the velocity
determine (@) the angular velocity of at B.

the connecting rod BD, and (b) the + Calculate the velocity at D based on its
velocity of the piston P. rotation about the instantaneous center

Use method of instantaneous center of of rotation.

rotation

© 2019 McGraw-Hill Education.

Sample Problem 15.10.

Modeling and Analysis:
¢ From Sample Problem 15.3,

vp =15,705mm/s
B=13.95°

¢ The instantaneous center of rotation is at the intersection
of the perpendiculars to the velocities through B and D.

* Determine the angular velocity about the center of
rotation based on the velocity at B.

vy = (BC)a)BD

75 =40°+ B =53.95°

¥p =90°— B =76.05°

_p 15, 705mm/s -
BC CD_ _200 mm Wpp = BC - 2534 mm ®pp =62.0rad/s

sin76.052 sin53.95  sin50?

* Calculate the velocity at D based on its rotation about
the instantaneous center of rotation.

BC=2534mm CD=211.1 mm vp = (CD) @y, = (211.1 mm)(62.0rad/s)

vp =vp, =13,080mm/s =13.08m/s|

© 2019 McGraw-Hill Education.
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Instantaneous Center of Zero Velocity

Reflect and Think:

What happens to the location of the instantaneous center of
velocity if the crankshaft angular velocity increases from
2000 rpm in the previous problem to 3000 rpm?

What happens to the location of the instantaneous center of
velocity if the angle B is 0?

© 2019 McGraw-Hill Education.

Application of ICR: Ackermann Steering

@itumngeide ™
differential
4-BAR STEERING ACKERMANN STEERING
©DongjunLee ?’If__‘%; RN
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Absolute and Relative Acceleration in 2D

Yy

Plane motion = Translation with A + Rotation about A

« Absolute acceleration of a particle of the slab: ~ dp =d 4 +dp)4

+ Relative acceleration d B/4 associated with rotation about 4 includes
tangential and normal components,

_ o Tox _ ~ = 7 2=
(aB/A)t _aerB/A (aB/A)t =ra Ay =d,+akxry, -7y,
= — 25 - r? =G, +raé —ro’e

(aB/A )n =W TRy (aB/A )n =ro 4 ' r

* This can be thought similarly as: | = (r - 792) e, + (ré + 2i9)é’0

« Can also be derived from: ¥ = V4 + @k x7g) 4

[epongiuntee (&) =Y

Absolute and Relative Acceleration in 2D

15

* Given dy and ¥,
determine dg and @

Gp =i, +ag,
:aA+(aB/A)n+(aB/A)t

P = 2—
dy —aA+ak><rB/A—a) Ty 4

+

-z = 23
=a,+roe —rwe,

N

4 . (b) © .
* Vector diagram result depends on sign of @4 and
the relative magnitudes of a 4 and (a B/A )n @

* Angular velocity w (and (ag,4)_n) is specified by U4 (cf. ICR) 4

C Dong unlee

&
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Absolute and Relative Acceleration in 2D

A (fixed

Plane motion = Translation with A + Rotation about A

* Write dp=d, +dpg/, interms of the two component equations,

+ .
_s X components: 0=ay +1w? sin@—lacosf

.1 ycomponents: a,=—Ilw’cosfd—Ilasinf

dg =5A+akxfB/A—a)2;75/A
*» Solve for agand «a. _ _ 2=
=a,+rae —rwe,

[epongiuntee e

Analytical Expression of Kinematics

* In some cases, it is advantageous to determine the

absolute velocity and acceleration of a mechanism
directly.
[ xy=Isind yp =1lcosd
O\
N Vg =%y Vg =g
' Y =10cos6 =—10sin@
i .
- — =lwcosl =—lwsinf
A
ay =Xy ag =yp
=—10sin@+10cosO =—10? cosO—10sin O
=—lw?sinf+lacosd =—lw?cosO—lasind

©DongjunLee
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Sample Problem 15.6

SOLUTION:

* The expression of the gear position as a
function of @is differentiated twice to
define the relationship between the
translational and angular accelerations.

* The acceleration of each point on the
gear is obtained by adding the

The center of the double gear has a acceleration of the gear center and the
velocity and acceleration to the right of relative accelerations with respect to the
1.2 m/s and 3 m/s?, respectively. The center. The latter includes normal and
lower rack is stationary. tangential acceleration components.

Determine (a) the angular acceleration
of the gear, and () the acceleration of

points B, C, and D. ) )
A moves only horizontally -> constrained

G.=d,+roe, —ro’e, B, C, D move along their circumferences

[epongiuntee e

Sample Problem 15.6

R SOLUTION:
"""""""""""""" » The expression of the gear position as a function of 8
is differentiated twice to define the relationship
between the translational and angular accelerations.

'7,::]()(}”\”\ _xA:—rle

''''''''''''' v =10 = 1o
vy 12mfs _

= =-8rad/s
A 0.150m

a,=-10 =-na

©DongjunLee
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Sample Problem 15.6

* The acceleration of each point
is obtained by adding the
acceleration of the gear center
and the relative accelerations
from the center.

The latter includes normal and
tangential acceleration
components.

dp=dy+dp 4 =dy +(dB/A)t +(ﬁB/A)n

=d+ak xTg 4 — 07Ty 4

3m/ 52)? - (20rad/ SZ)E % (0.100m); — (8rad/s)*(~ 0.100m);

= (3m/sz)f + (2 m/sz)lT - (6.40m/82)7

g =[sm/s?)i —(6.40m/s’)]  ay=8.12m/s*|

[eDongiunLee 'ﬁ) 3
Sample Problem 15.6
Do
Translation Rotation = Rolling motion
e =dy+ac)y=ay+akxig -0 T,
= (3m/ 52)7 - (20rad/ sz)/E x(=0.150m)j — (8rad/s)*(~ 0.150 m);
as = (3m/52)f—(3m/52)f+(9.60m/52)f
. =0.60m/s’ 7
dp =dy+ap)y =0, +akxFp —©°Tp) 4
= (3m/ sz)? - (20rad/ SZ)E x (= 0.150m)7 — (8rad/s)*(~ 0.150m)i
= (3m/s2)zT + (Sm/sz)]' + (9.6Om/s2 )7
ap =(12.6m/s* ) +Bm/s’)i  ap=12.95m/s?|
©DongjunLee (8] EnvozyeeR
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Crank AG of the engine system has a
constant clockwise angular velocity of
2000 rpm.

Two unknowns: ap,, gp

- = - = — 2—
a-=a,+a.  =a,+rae —rw-e,

Sample Problem 15.7

SOLUTION:

» The angular acceleration of the
connecting rod BD and the acceleration
of point D will be determined from
dp=dg+dpg=dp+ip/p) +\apss)
apyx, (apy = 0) Wap  @BD Wgp

¢ The acceleration of B is determined from
the given rotation speed of 45.

The directions of the accelerations

For the crank position shown,
determine the angular acceleration of ap, (dD/B )z’ and (dD/B )n arc
the connecting rod BD and the
acceleration of point D.

determined from constraints

» Component equations for acceleration
of point D are solved simultaneously for
acceleration of D and angular
acceleration of the connecting rod.

o

B

A

EC“Donﬁ'un Lee

=200 mm
r=7v'5$ /B\r
\< - G

0 L )

40

[

Sample Problem 15.7

SOLUTION:

+ The angular acceleration of the connecting rod BD and
the acceleration of point D will be determined from

dp=dp+adp/p =ag+aps ), + (50/3),,
apyx, (apy = 0) Wap  Opp Wgp
Up
* The acceleration of B is determined from the given rotation

speed of AB.
@ ., = 2000 rpm = 209.4 rad/s = constant

=0

a, =ra’, = (2 m)209.4rad/s) =3289m/s

1000

d, = (3289 m/s? |- cos 40°7 —sin 40°5)

[

20



Sample Problem 15.7

QBD wpp \ADVB/n
‘ 13 9501“_\\.< %D P
(apply
Plane motion = Translation + Rotation

* The directions of the accelerations d, (d, /B )t, and (dp /B )n are
determined from the geometry.

dp=TFapi
From Sample Problem 15.3, @y, =62.0rad/s, f#=13.95°.
(@), = (B0, =Gty m)62.0r2d)s)' = 768 8m/s*
(dys), = (768.8m/s* [~ cos13.95° +5in13.95°)
(ap/5), = (BD)ary, = (G mety, = 0201y,
The direction of (@), is known but the sense is not known,

(G0ya), = (0200, Y 5in 76.05°F £c0576.05° )

R ENGI

=

‘?Dons'un Lee

Sample Problem 15.7

n{m wyp aD/Ba
=200 mm
r"—<"5 iy /‘\r ¢ ’ 13959E ‘; %D +
=1
D (apph
Plane motion = Translation Rotation
/ a . . .
4 - o Component equations for acceleration of point D are solved
13,950 ;'/-/“.M ) 4 simultaneously.
7 | £ dp =dg+dpg =dg +\app) +\dps),
,:' \ / X components:
j‘—{:‘ —a, =-3289c0s40°—768.8c0s13.95°+0.2a,, sin13.95°
13.95°

y components:
0=-3289sin40°+768.8sin13.95°+ 0.2c,, cos13.95°

agp = @940racf sz) 13

ap = —@790m/s) 7

tczDonﬁ'un Lee
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Sample Problem 15.8

160 mm 240 mm 340 mm

In the position shown, crank 4B has a
constant angular velocity @, =20 rad/s
counterclockwise.

Determine the angular velocities and
angular accelerations of the connecting
rod BD and crank DE.

Four unknowns.

SOLUTION:

» The angular velocities are determined by
simultaneously solving the component
equations for (or via ICR)

Vp = \73 +VD/B
WpE Wgp

(w/ dir)

» The angular accelerations are determined
by simultaneously solving the component
equations for

dD =ﬁB +aD/B

WpE, @pE Wgp, ®Bp

lepongjuntLee 15’;&93 X
Sample Problem 15.8
— - SOLUTION:
min s —
/s P 3 * The angular velocities are determined by simultaneously
/ NN

160 mm 240 mm 340mm

Tpyp = 240i + 60j

tczDonﬁ'un Lee

D =
D
E
x
rg = 160i + 280§
rp=-340i + 340j

5 o // S\ Momm  solving the component equations for
l‘_\i: {"“ \i 17D :\73 +\7D/B

By = Bpy % 7y = @,k x(~ 3407 +3407)
=—1Tw,i —1Twp, ]
By = @5 Xy = 20k x (1607 +2807)
—280i +160;
(> Vo = @y X Ty = @k x (2407 +607)
=-3w,,l +12w,,]
x components: —17w,; =—-280-3w,,

y components: —17wpp =+160+12wp,

@pp =—(29.33rad/s)k  @py = (11.29rad/s)k|
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Sample Problem 15.8

+ The angular accelerations are determined by
Bmm =1 ks simultaneously solving the component equations for

& ;V\\ . &D=ZIB+&D/B

260mm / . 340mm
:; L R ) -
J"‘/ @ m ap =CQpp X1I'p = Wpglp

| | = ok x (- 0.347 +0.347 )~ (11.29) (- 0.347 +0.347)
160 mm 240 mm 340 mm _ _0.340{DElT _ 0'34aDEj +43.337 — 4333}

=

Gy = X7y — 0y =0—(20) (167 +0.287)
=—64i +112]
o/ aD/B = Oy X ;E/D - a)éD;B/D
= at,ypk x (247 +0.06 )~ (29.33)°(0.247 +0.06)
¥ =0.0601,,,0 +0.24a,,j —206.4i —51.61]

A

rp = 160i + 250j
= -3401 + 340j

o = 2401 + 60j x components: —0.34«,,, +0.06c,, =-313.7

y components: —0.34a,,, —0.24a,, =—120.28

‘&BD = —(645rad/52)? app = (809rad/sz)l?‘
lepongiunLee 1) e

—

Rate of Change with Rotating Frame
* If expressed by the rotating frame Oxyz {1, , I:}

Q:QmZ+Qy.7+Qz
» Rate of change (differentiation) of 6 (t) in {O}:
(@), = Qul + Qu + Qo + Qi + Qyf + Q.

 « Rate of change of 19} (t) as observed in rotating
' frame {&} (or differentiation w.r.t. {§}):

(é)oz = Qa4 Qui + QR

« Frame OXYZ is fixed {O}. . IfQ(t) is constant in {§}, then, (Q) =0 and

Oxyz

« Frame Oxyz {8} = {I,], ]—(’} since (Qj =0 is the velocity of a point Q(t)
rotates about a fixed axis rigidly attached to {ér’} rotating with Q
0A with angular velocity Q QT’L +Q,J ] 1 0. =0« 9]

« Avector §(t) can be . . A A =
expressed in Oxyz (or {§}) Combining these: (Q> oxXvz (Q> Ozyz X0

N . PR rate of change  rate of change  rate of change
recall v =ré, +rbéy in inertial as observed (or  due torigid-
frame {O} relative) in {§} mo}'?{‘ with {5}

©DongjunLee {8} BN




Plane Rotation with Rotating Frame

* Frame OXY is fixed {O} and frame Oxy {3} rotates with
angular velocity Q

* Position vector 7p for the particle P

* The absolute velocity of the particle P is

Vp :(’_})OXY :QXFJF(F')Oxy

» Imagine a rotating rigid slab, to which a frame Oxy or §
for short is rigidly-attached. Let P’ be a point of the
slab, which corresponds to P instantaneously.

v, = velocity of P’ rigidly-attached on the slab

Vi = (? )Oxy = velocity of P as observed in (or relative
to) the slab
» Absolute velocity for the particle P is given by:

Vp =Vp +Vp/5

rigid-motion with {F} as observed in (relative to) {

Fl
@DonsunLEe H&IVNH"R“L
—

Sample Problem 15.q

Disk § N
\ R =50 mm SOLUTION:
* The absolute velocity of the point P
may be written as
Vp =Vp +Vp/q
* Magnitude and direction of velocity

‘ Vp of pin P are calculated from the
Disk D radius and angular velocity of disk D.

* Direction of velocity ¥ of point P’ on
S coinciding with P is perpendicular to
radius OP.

Disk D of the Geneva mechanism rotates
with constant counterclockwise angular
velocity @y, = 10 rad/s.

* Direction of velocity vp/; of P with

At the instant wh = 1500, determi .
¢ instant when § ; Cetermine respect to S is parallel to the slot.

(a) the angular velocity wg of disk S, and
(b) the VClOCity of pln P relative to disk S. Solve the vector triangle for the

w.rt. DL, Wrt S}V, =V +V, g angular velocity of S and relative
. - T r— velocity of P.
p=r(t)i(t) = v,=p=ri+7i
oDongjunLee ?’1’%; ENGINEERING
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E Dons un Lee

Sample Problem 15.9

SOLUTION:
+ The absolute velocity of the point P may be written as
17}) = 17})' + \71)/ s

* Magnitude and direction of absolute velocity of pin P are
calculated from radius and angular velocity of disk D.

vp = Rwp = (50 mm)(10 rad/s) = 500mm/s

+ Direction of velocity of P with respect to S is parallel to slot.

From the law of cosines,
72 =R?+1* —2RIc0s30°=0.551R>  r=37.1mm

From the law of cosines,
sinf} _sin 30 sin 8 = sin30
R r 0.742

B=42.4°

The interior angle of the vector triangle is
7 =90°-42.4°-30°=17.6°

C Dong unlee

vp =500 mm/s

Sample Problem 15.q

+ Direction of velocity of point P’ on S coinciding with P is
perpendicular to radius OP. From the velocity triangle,

vp = vpsiny =(500mm/s)sin17.6° =151.2mm/s

151.2mm/s
= @5 = 37.1mm

’c?)s =(- 4.08rad/s)/;‘

Vpjs =VpCOSy = (500m/s)cos17.6°

’VP/S = (477 m/s)(— c0s42.4° —sin 42.4°f)‘

25



Plane Rotation with Rotating Frame: Acceleration

! » Absolute acceleration for the particle P is
=1 = - o = d -
dp = Ox 7 +Qx(F )y +E[(r)0xy]
3P
v\

\ /" L7 =07+, > L |- Fly + 0%,

* Absolute acceleration for the particle P becomes

Ap =0p +dpp+d,

’ something else!
acceleration due acceleration of within e o celeration
to rigid-motion motion relative (linear+angular velocities or
rotating with {F} (as observed) in {F} linear motion in rotating frame)

dp :éx7+ﬁx(ﬁx7)

aP/F = (;)Oxy

de = 2(—2><(?)0

Xy

i=i—-r0%)e +(rf+2/0)¢ .
¢ (r s )E' (r 4 )eg => d better seen when (i)gyy, = Q=0

E Dons un Lee

Coriolis Acceleration

* Consider a collar P which is sliding at constant relative
velocity u along rod OB as observed in OB. The rod is
rotating at a constant angular velocity @. The point 4 of
the rod corresponds to the position of P instantaneously.

dp =éXF+QX(QXF)+2QX(’;’)Oxy+(’-7.)Oxy

* Absolute acceleration of the collar is: dp =d, +dp/s +ad,

dA:fo?+QX(QXF) aA:ra)2

- centripetal: need to intentionally slow down to maintain constant speed u

apls = (r)Oxy =0
- no acceleration as observed in the rotating rod since u is constant
d. =2QxVp/g a, =2wu

- tangential: will experience being pushed to the left on the rod
(if no rod (i.e., no force acting on it), the collar will drift to the right)

+ Absolute acceleration consists of radial (rw?) and tangential (2wu) components

C Dong unlee
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Coriolis Acceleration

» Change in velocity over At is represented by the
sum of three vectors

AV =RR' +TT"+T'T’

« TT"is due to change in direction of the velocity of
point 4 on the rod,

" A0
. T _ _ 2
lim =limv,—=roo=ro” =ay
A—0 At A—0 At

I T 2
att, 5= recall, aA:er+Q><(Q><r) a,=ro
att + At, y'= e« RR'and T'T’ result from combined effects of

relative motion of P and rotation of the rod

W B . (RR" T'T' . A0 Ar
fru lim + =lim|lu—+w—
At—0\ At At At—0\ At At

=uw+ ou =2wu

recall, d, = 2£a2><\7p/ng a. =2wu

[€Dongjun Lee 15@3-5;';.—;m.r

Concept Question .

You are walking with a constant y
velocity with respect to the platform, T_x, &
which rotates with a constant angular

velocity w. At the instant shown, in
which direction(s) will you experience
an acceleration (choose all that

apply)?
a) +x

b) —x
©) +y
d) -y

e) Acceleration =0

© 2019 McGraw-Hill Education.
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Concept Question .

You are walking with a constant y
velocity with respect to the platform, T_X, ®
which rotates with a constant angular

velocity w. At the instant shown, in
which direction(s) will you experience
an acceleration (choose all that
apply)?
a) +x

b) —x

) +y
d) -y

e) Acceleration =0

© 2019 McGraw-Hill Education.

As Observed in a Rotating Frame

/[ Y.
’l)p = Up’ —+ ’l)p/p ‘/ /‘/
=w X 1p + (1p) Oy { \
\ \
\\ y N\
ap = ap/ + ap/p + Qe ~ __d \\\7 o

=aXr,+wX (wxry)+ (Fp)owy + 2w X (p) Oy

If you're sitting at the center of the rotating frame {F} (with constant w) and see the ball
moving straight in the inertial frame {O} (with constant v), you will experience the relative
motion (as observed in {F}) of the ball from you as follows:

—w X (w X 1)

P

(f';)Owy =Up —WXTp

C Dong unlee
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Disk §

In the Geneva mechanism, disk D
rotates with a constant counter-
clockwise angular velocity of 10

Sample Problem 15.10

SOLUTION:

R =50 ' i
~ "™« The absolute acceleration of the pin P may

be expressed as
Zip = dp' +Zip/s +dc
 The instantaneous angular velocity of Disk

S is determined as in Sample Problem 15.9.

Disk D
* unknowns: g, ap,s (directions known

though)

» Resolve each acceleration term into the

C Dong unlee

rad/s. At the instant when ¢ = 150° component parallel to the slot. Solve for
determine angular acceleration of the angular acceleration of Disk S.
disk S. — —

dp=0ap+dp,,+a
w.rt.D, w.r.t.S r = r _P/F_ ¢ — -

- dp = Qx7 +Qx(Qx 7 )+ 20x(F)g,, + 7)oy,
Sample Problem 15.10
SOLUTION:
/ DM;\T Disk D + Absolute acceleration of the pin P may be expressed as

/\t (@p), = (s )37.1mm)(~sin 42.4°7 +cos42.4°5)

d}) = a})/ + dP/S + dc
* From Sample Problem 15.9.
B=424° &g =(-4.08rad/s)k
Vpys = (477 mm/s - cos42.4° —sin42.4°)

» Considering each term in the acceleration equation,
ap = Ro} =(500mm)(10rad/s)* = SOOOmm/s2
dp =(5000mm/s2 [cos30°7 —sin30°7)

Ay dp =(ap), +(ap),

(@p), = (ra)§ X— C0s42.4°7 —sin42.4°5)

(@p), = (ras \—sin42.4°7 +cos42.4°])

note: og may be positive or negative

15
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Sample Problem 15.10

 The direction of the Coriolis acceleration is obtained
by rotating the direction of the relative velocity Vpyy
by 90°in the sense of ag

d, = (2wgvp) [~ sin42.4° + cos42.47)
= 2(4.08rad/s (477 mm/s )~ sin 42.4° + cos42.4} )
— (3890mm//s? (- sin 42.4°% + cos42.47)

* The relative acceleration dp/; must be parallel to

Fd SO0 mm
e the slot.
42.4“5 N /124
SN e

» Equating components of the acceleration terms

49,4 ! j
L wJae perpendicular to the slot,
/ N 37.1ag +3890 - 5000c0s17.7° = 0
' \ \ 42.4° ag =-233rad/s
/ N g = (~233rad/s)k|
[eoongiuntee 15[889

3D Rigid Rotation about a Fixed Point

* The most general 3D motion of a rigid body with a fixed
point O is equivalent to a pure rotation of the body about
an axis through O (due to Chasles’ or Euler’s theorem)

Chasles’ Theorem: Any rigid body motion can be produced by a
rotation about an axis combined with a translation along that axis.
= for O to be fixed, W should go through O with no translation.

) Euler’s Theorem: Any displacement of a rigid body such that a
(f) oxy 0 point on the rigid body, say O, remains fixed, is equivalent to a
rotation about a fixed axis through the point O.

« With instantaneous axis of rotation and angular velocity w,

_odr . Y . do
V=—=@XF a:a)(}’+6()><(a)><l") o=—.
dt dt

vector

©DongjunLee
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3D Rigid Rotation about a Fixed Point

_odr 5 -
v:dtza)Xr (r)Oxy_O
T T _ da
d=axr+odx(®xF) a=—.

dt

* The angular acceleration & represents the velocity of
the tip of @. Note that @ and W are not collinear!

* As the vector @. moves within the body and in space,
it generates a body cone and space cone which are
tangent along the instantaneous axis of rotation.

Angular velocities are vectors, obeying the law of
addition. Rotation motion itself is not though.

Space cone

Body cone

For the same point P, given velocities v; = w; X r and
v, = Wy X 1, we can add them s.t.,
V=V +0, =W + W) XT=WXT7T

i.e., W combining wy and w, is given by W = w; + w,
0? (for more on motions = =¥ F¢1 )

[epongiuntee ok

Sample Problem 15.11

SOLUTION:
With @, =030/ @&, =0.50k
7 =12(cos30° +sin30°5)
=10.39/ +6;
* Angular velocity of the boom,

The crane rotates with a constant @ =0+,
angular velocity @, = 0.30 rad/s and the * Angular acceleration of the boom,

boom is being raised with a constant =iy + @y =iy = () oxyz + Dxd,
angular velocity @, = 0.50 rad/s. The o

length of the boom is /= 12 m. =W X0y

Determine: * Velocity of boom tip,

« angular velocity of the boom, V=adXF

. angul'ar acceleration of the boom, « Acceleration of boom tip,

* velocity of the boom tip, and T

« acceleration of the boom tip. a=axF+Gx(OXT)=axF+dxV

VP :(?)OXY :QXF-'—(’:)OX,V ﬁP :ﬁXFJrQX(QXF)JerX(?)Oxy+(}'7')Oxy

©DongjunLee
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Sample Problem 15.11

y

—10.39 m *»‘

=4
@, =0.50k

~———10.39 m

@ =030 @,=0.50k

SOLUTION:
* Angular velocity of the boom,
C?) = (T)l + (T)z

‘a‘) =(0.30rad/s); + (O.SOrad/s)E‘

* Angular acceleration of the boom,

@ =y + 0y =0y = (), + 2x 0y

=@ x @y =(0.30rad/s); x (0.50rad/s )k

a=(0.15rad/s |

* Velocity of boom tip,

’\7 =—(3.54m/s) +(5.20m/s); —(3.12m/s)l€‘

C Dong unlee

=) =015
,=0.50k

@ =030] @, =0.50k

7=10.397 +6

7 =10.397 +6J
Sample Problem 15.11
H Acceleration of boom tip,
= e, { G=GxF+@x(BxF)=axF+BxV
i i |7 Fi K
G=0.15 0 0+|0 0.30 0.50
1039 6 0 -3 520 -3.12

=0.90k —0.94i —2.60i —1.507 +0.90k

a=—{3.54m/s’F - (1.50m/s?Jj + 1.80m/s* |

15[ 4 e

32



E Dons un Lee

General 3D Motion of Riqid Body

Yy

» For two points 4 and B of a rigid body,

FB = FA + FB/A
FB/A:T’%/AZ‘FT?JB/A]‘FTZB/AE = (FB/A>{}_}:
+ Differentiating this, we obtain the velocity of B:
Up =7p =74 +7B/A
= Uy + W X FB/A

* Similarly, the acceleration of the particle B is

e

7 ap = U

1

Il
-

d .,
’A+E[MXTB/A]

=dA+ 0 X T4+ WX (WX TFp/a)

* Most general motion of a rigid body is equivalent to the combination of:
- atranslation in which all the particles are translating together with a
velocity of a point of the rigid-body; and
- arotation in which all the particles are rotating about that point

Sample Problem 15.12

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

SOLUTION:
* Position of the collar is ({§}={ij,k}):

B =TA+TB/A

TB/A :T%/Ai—kr%mj—&—rg/f,k

* Velocity of the collar is:
Up = Ua + Up/A
Ta = Wy X 74

Up/a = WaAB X TB/A

since ({}={ij.k}) is rotating w/ Wpp

X I i * 3 equations, four unknowns. ..
rzp =3 + 2k
i *
A: ball and socket connection dg=| 0|, wag=1] =
B: collar with clevis connection 0

w; = 12rad/s: constant

. T -
) + one constraint: Wip = e =0
determine: (a) vg and (b) wyp

oongjunLee ) ponm
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Sample Problem 15.12

Copyright © The , nc o or display Copyright © nc. display

Yy

» VA

@ =12i
r, =2k
rp = 6i+3j
rp = 6i+3j -2k

[eDongiunLee 1 5'@7 y

Recall: Particle Motion with Rotating Frame

A X » With respect to the fixed frame OXYZ and rotating
frame Oxyz with Q,

(Q)OHZ = (Q)Oxyz +Qx0

 Consider motion of particle P relative to a rotating
frame Oxyz or {&} for short. The absolute velocity
can be expressed as

@
=P = QxF +(r)0xyz
=Vp +V pis
rigid-motion Wit{Oxyz as-observed (relative) in Oxyz (= 0)

» The absolute acceleration can be expressed as
G, =Qx 7+Qx(ﬁx?)+2§2x(}é)wyz +(17
:/ap, +dpgtd,

rigidly-motion with Oxyz as observed (relative) in Oxyz

)Oxyz

i, =20x (? )Oxyz =20x vy = Coriolis acceleration

¥ 0 X ENGINEER
oongjunLee ) e
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3D Motion with Moving/Rotating Frame

* Kinematics equation of P with relative
motion (as observed) in rotating-frame {§}:

B =Ta+TB/A
_ = o7 ¥y o Z.z L
—TA+'B/AZ+7"B/AJ+’B/A1~

where {F} = {i, ], E} and 75,4 # 0

Velocity and acceleration of P can still be
found as a combination of rigid-motion with
{8} and as observe motion in {§}:

Tp =V 4 +Qx g + (P4 )Axyz

:7‘?P’ +Vp/s

as observed (relative ) in {§}
rigid-motion with {&}

dp =dy +f)xFP/A +QX(Q><7P/A)
+2Qx (’_}P/A )Axyz + (#P/A )Axyz

:EiP’ +ap/g +ﬁ

c
S~ Coriolis acceleration

rigid-motionwith {§}  as observed (relative ) in {5}

lepongjunLee (28] =
&

Sample Problem 15.11

SOLUTION:

* Angular velocity of the boom,

@ = CB] + @2
The crane rotates with a constant
angular velocity @, = 0.30 rad/s and the
boom is being raised with a constant
angular velocity @, = 0.50 rad/s. The * Velocity of boom tip,

* Angular acceleration of the boom,

a=0+0, =0 X0,

length of the boom is /= 12 m. V=ax¥
Determine: * Acceleration of boom tip,
* angular velocity of the boom, G=axr+dx(&x7)= av,/dt

+ angular acceleration of the boom,
* velocity of the boom tip, and
* acceleration of the boom tip.

= using body frame {§} attached on cab?

C Dong unlee
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Sample Problem 15.11

SOLUTION:

* Angular velocity of the boom,
@ =0+ b,
* Angular acceleration of the boom,
G =0+, = b XD,
* Velocity of boom tip,
V=@ x7
 Acceleration of boom tip,
d=axi+éx(@x7)=dv,/dt
foponguntee

SOLUTION with body-frame /§}:

* Body-frame {8} is rigidly-attached to
the cabin and rotating with constant wy
* Velocity of the boom-tip:

Up = Uy + Up/F
Upr =Wy X 7 : rotating together with {§}
U5 = Wo X 7 : motion as observed in {&}

» Acceleration of the boom-tip:

Gp = Gy + p/p + dc
Ay = @1 X T+ X (W X T) :with {§}
G/ p = Wy X (W X T) :in {§}
de = 2y x (7)(ry = 201 X (W2 X 7)

 This is the same as before, which can be
shown by using the Jacobi identity:

wy X (we X 1) +ws X (rXxwy)+7rx(w xwe) =0

R EN
(&8
&

Sample Problem 15.15

| |
‘ = i,

t w/ disk

Disk D7

indicated angular rotation rates are
constant.

Determine:

* the velocity of the point P

* the acceleration of P; and

+ angular velocity and angular
acceleration of the disk.

where to put the rotating frame?

C Dong unlee

rotating w/arm,

For the disk mounted on the arm, the

SOLUTION:
* Define a rotating frame 4xyz or § rigidly-
attached to the arm at 4.

* Velocity kinematics:
Up = Upr + Up/F

’Up/ =W X FP/O =—Lu K s with {§}
- - - = inf§
Up/F = Wy X Tpjg = —Rws X :in {8}

» Acceleration kinematics:

= = = =
Ap = Ay + Ap/p + Gc

Gy = w1 x (W X 7p/o) = —Lw?T - with {5
p/F = Wa X (W2 X Tp/a) = —RwiJ :in{s}

e = 20 % (7))
B 2U71 X (LU‘Q X FP/A) = QR’UJﬂ,UQI;;
* Disk angular velocity and acceleration:
w = 1171 -+ 1172 _ wllz’ + U)lf(‘

p

w = Wy = u‘)’l X ’IEQ = wleI
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Sample Problem 15.15

SOLUTION:

* Define a fixed reference frame OXYZ at O and a
moving reference frame Axyz or & attached to the

| P
L y. a) arm at 4.
— u RN A & - — - —
TJ— ) =Li+Rj Ppia =R
‘ Disk D

a“)D/g = 6021_6.

) + With P’ of the moving reference frame coinciding
L A with P, the velocity of the point P is found from

T Vp =Vp +Vp/5

Vp = OxF = jx(Li +Rj)= - Lk

vp/g Z@D/g XFP/A :a)zngRj :—a)zR?

“_;P = —C()zR Z. - Q)ILE

EDonsunLEe
Sample Problem 15.15
I i ¢ The acceleration of P is found from
a P Zipzc"zp/+iip/g+iic
d! |

¢ ) @ .\_;l S - - . ) )
U#‘;u : . R\ B dP’ =0x (.Q X F)Z a)lj X (— a)lLk): —a)12Ll
T'— s ) dpjs =Gpjs x|@pjs *7pj4)

ZWZEX(—WzRT)Z —a)zzR]

Disk D~

d. =20 xVp/s

= 2(()1; X (— szf) = 2601(()2R]€

’dp =—wfLi-03Rj+ 2a)1a)2Rl€‘

» Angular velocity and acceleration of the disk,
&= Q+apjs

a=(@); +2xad

= 0,7 (1] + o2k)

C Dong unlee
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Sample Problem 15.15

SOLUTION:
H L I * Define a rotating frame Axyz or § rigidly-
{0} Y P attached to the arm at O.
fixed/inertial | i_,' @) P =S
}_ . A8 . Veloc1ty kinematics:
( Zjé_." )ﬂ}) = Up + U,,/F
7% i {5} \ ’U ;= X TP/O - —Lw1[& swith {5}
ko8t Disk D . L [in {5}
rotating w/arm == 'Up/F = Wy X 'rP/O = —R’LUQX : 3

For the disk mounted on the arm, the » Acceleration kinematics:

indicated angular rotation rates are p =y + Qp/F + de

constant. Gy = @ % (1 X Fpjo) = —Lw?l i (5]
Determine: Jp/F =Wy X (W X 7pja) = —RwiJ :in{5}
» the velocity of the point P = 23, x (F) (7

* the acceleration of P; and

+ angular velocity and angular
acceleration of the disk. e Disk angular Veloc1ty and acceleration:

Wy + We = wlA + wllﬁ
= U72 = w1 X ’LUQ = wlwgl

2LU1 X (w2 X rP/A) = 2Rw1wok

where to put the rotating frame?
EDons un Lee

gy Ql

=2

(£

* these lecture notes provided by McGraw Hill

This Lecture
» Kinematics of rigid-body:

'B=7TA+7TB/A
e 7’%/;5* T%/A5+ TBak = (FB/A> .

—

B=TB=7Ta+7TB/A=Ua+WXTpB/a

=L

2

= o d — —
B:UB:UA+E [erB/A]
:C_E'A‘FO_ZX FB/A‘F’IBX (QEXFB/A)
» Kinematics of P w/ relative motion (as observed)
in rotating-frame {§}:
TR =TA+Tp/A="Ta +rg/Ai +7”Z,/Aj +7"ZB/A/£
B =7+ Qx4 o) =V 4V
rigid-motionwith {§} * as observed (relative ) in {i
Gy =+ Qxity, + x (Qxiy Jr 205G, )+ 6

=dp+ayetd,

7\ S~ Coriolisacceleration

Z rigid-motion with {&}

as observed (relative) in {&} 88} ENGINEERD

C Dong unlee
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