Lecture 5-Capacitors

:Conductor plates with insulator (vacuum, dielectric material such as ceramic, plastic, metal oxide) to give greater capacitance (or storage capacity) per unit area. (Mechanical analogy =Tank, Accumulator)

d,A where $\varepsilon=$ permittivity $[F / m]$
Application: Filtering or Conditioning, Smoothing, DC blocking, etc

Laws for Capacitor

1. Static description

Charge $\mathrm{Q}=\mathrm{CV}$ [Coloumb], or $\mathrm{V}=\mathrm{Q} / \mathrm{C}=\int \mathrm{idt} / \mathrm{C}$ and $\mathrm{i}=$ current

Serial connection:
$\begin{array}{lll}V_{T} & V_{1} & V_{2}\end{array}$
$-\mid+\quad \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{Q}_{1} / \mathrm{C}_{1}+\mathrm{Q}_{2} / \mathrm{C}_{2}=\mathrm{Q} / \mathrm{C}_{\mathrm{T}}\left(\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}\right.$ why? $)$
$C_{1} \quad C_{2}$
Thus $1 / C_{T}=1 / C_{1}+1 / C_{2}$, and $C_{T}=C_{1} C_{2} /\left(C_{1}+C_{2}\right)=C_{2} /\left(1+C_{2} / C_{1}\right)$
$=C / 2$ (if $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$)
$\fallingdotseq C_{2}$ (if $\left.\mathrm{C}_{1} \gg \mathrm{C}_{2}\right) \quad \therefore$ Smaller capacitor dominates

Parallel connection

C_{1}

Thus $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}=\mathrm{C}_{1}\left(1+\mathrm{C}_{2} / \mathrm{C}_{1}\right)=2 \mathrm{C}$ (if $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$)

$$
\fallingdotseq C_{1}\left(\text { if } C_{1} \gg C_{2}\right)
$$

\therefore Larger capacitor dominates
2. Dynamic description
:Differentiation of static description w.r.t. time. That is,
$\mathrm{dQ} / \mathrm{dt}=\mathrm{i}=\mathrm{CdV} / \mathrm{dt}$
\therefore Current $\propto \mathrm{dV} / \mathrm{dt}$ where $\mathrm{V}=$ voltage across capacitor

Thus bigger current gives faster voltage change.

Application 1 (Constant current input): Ramp generator $\mathrm{i}=$ const. $\quad \therefore \mathrm{V}_{\text {out }}=\mathrm{Q} / \mathrm{C}=\mathrm{it} / \mathrm{C}$

Application2 (Constant voltage input)
$V_{\text {in }}=$ const.

C I
$V_{\text {in }}=V_{R}+V_{C}=i R+\int i d t / C$, assuming very little current flows into $V c$ RCdi/dt $+\mathrm{i}=0 \therefore \mathrm{i}(\mathrm{t})=\mathrm{i}_{0} \exp (-\mathrm{t} / \mathrm{RC})$ and $\mathrm{i}_{0}=\mathrm{Vin} / \mathrm{R}$

\therefore After 5RC time, no current flows $->\mathrm{Z}_{C} \equiv$ Impedance of capacitor $=\infty$

$$
\begin{aligned}
& V_{c}=\int \text { idt } / C=V_{\text {in }}(1-\exp (-t / R C))=V_{\text {in }}(\text { after 5RC }) \text {, or } \\
& V_{c}=V_{\text {in }} Z c /(R+Z c)=V_{\text {in }}(1+R / Z c) \doteqdot V_{\text {in }}(\because Z c=\infty)
\end{aligned}
$$

Application3 (Varying voltage input or AC input)
When $\mathrm{V}=\mathrm{AC}$ (Alternating Current) voltage, it can be expressed as
$\mathrm{V}=\Sigma \mathrm{V}_{i} \exp \left(\mathrm{j} \omega_{\mathrm{i}} \mathrm{t}\right)=\Sigma \mathrm{V}_{\mathrm{i}}\left(\cos \omega_{\mathrm{i}} \mathrm{t}+\mathrm{j} \sin \omega_{\mathrm{i}} \mathrm{t}\right)$, and $\mathrm{i}=1$ to ∞
For a specific ith component,
$\mathrm{V}=\mathrm{V} \exp (\mathrm{j} \omega \mathrm{t})=\mathrm{V}(\cos \omega \mathrm{t}+\mathrm{j} \sin \omega \mathrm{t})$ is applied to the following elements
(1) Resistor

R

$$
\mathrm{i}=\mathrm{V} / \mathrm{R}=\mathrm{V} \exp (\mathrm{j} \omega \mathrm{t}) / \mathrm{R}
$$

$\therefore \mathrm{Z} \equiv$ Impedance or Generalized resistance

$$
\begin{aligned}
& =\text { Resistance (by resistor) }+ \text { Reactance (by capacitor or inductor) } \\
& \equiv \Delta \mathrm{V} / \Delta \mathrm{i}=\mathrm{V} / \mathrm{i}=\mathrm{R} \text { (} \omega \text { independent) }
\end{aligned}
$$

\therefore Resistor gives constant impedance for AC or DC
(2) Capacitor

C

$\mathrm{i}=\mathrm{CdV} / \mathrm{dt}=\mathrm{Cj} \omega \mathrm{V} \exp (\mathrm{j} \omega \mathrm{t})=\mathrm{j} \omega \mathrm{CV} \therefore \mathrm{Z}=$ Impedance $=\mathrm{V} / \mathrm{i}=1 / \mathrm{j} \omega \mathrm{C}=\mathrm{f}(\omega)$
If ω-> 0 then $Z \doteqdot$ (Disconnect or DC blocking)
if ω-> ∞ then $Z \doteqdot 0$ (Connect or Current free-flowing)
\therefore Capacitor can give DC blocking or Filtering (ω dependant)
Application 4 (RC filters or RC voltage dividers)

LPF (Low Pass Filter)

:To pass low frequency component, or
To filter out the high frequency noise from the signal

The left RC circuit can be changed as the right circuit of voltage divider, considering that $Z_{R}=R$ and $Z_{C}=1 / j \omega C$

Transfer function $=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{Z}_{2} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)=(1 / \mathrm{j} \omega \mathrm{C}) /(\mathrm{R}+1 / \mathrm{j} \omega \mathrm{C})$
$=1 /(1+j \omega R C)$, assuming very little current flows into Vout.
This is the complex number, thus magnitude, phase are of interest.
Magnitude $=|\mathrm{H}|=\left|\mathrm{V}_{\text {out }} / V_{\text {in }}\right|=1 / \sqrt{ }\left\{1+(\omega R C)^{2}\right\}$
Phase $=\angle \mathrm{H}=\angle \mathrm{V}_{\text {out }} / V_{\text {in }}=0-\angle(1+j \omega R C)=-\tan ^{-1}(\omega R C)$
where $\omega=$ angular velocity of signal $[\mathrm{rad} / \mathrm{sec}]=2 \pi f$
and $\mathrm{f}=$ frequency of signal $[\mathrm{Hz}]$
Let's plot the magnitude and phase in the ω domain;
If $\omega<1 / R C$; then $|H|=1$ and $\angle H=0^{\circ}$ (or $\left[-45^{\circ}, 0^{\circ}\right]$)
If $\omega=1 / R C$ then $|H|=1 / \sqrt{ } 2=0.707$ and $\angle H=-45^{\circ}$
If $\omega>1 / R C$ then $|H| \doteqdot 0$ and $\angle H \fallingdotseq-90^{\circ}$
$|\mathrm{H}|$

If $\omega \leq 1 / R C$ then $|\mathrm{H}| \geq 0.707$ and $|\angle \mathrm{H}| \leq 45^{\circ}$, and they are acceptable for many engineering application. This circuit effectively can pass the signal of frequency range under $1 / R C$. Thus it is LPF, Low Pass Filter.

At $\omega=1 / R C, d B \equiv-20 \log |H|=-20 \log (1 / \sqrt{ } 2) \doteqdot 3$, thus $1 / R C$ is called as $\omega_{3 d B}$ which is very important for application. At $\omega=\omega_{3 d B} 70 \%$ amplitude of signal is delivered, while 30% of signal is attenuated, which is quite acceptable for many engineering application. Ex) $\omega_{3 \mathrm{~dB}}$ for sensor?

This LPF is very useful tool for signal conditioning, or removing the high frequency noise from the signal.

5 Design Procedures or 5 Steps for LPF

1) Frequency identification of signal

Measured signal can be analyzed by oscilloscope or frequency spectrum analysis. Then identify $f_{\text {signal }}$ and $f_{\text {noise }}$
2) Choose $f_{3 d B}$

You can assign $f_{3 d B}$ at your design target, and $f_{\text {signal }}$ can be conveniently chosen as the $f_{3 \mathrm{~dB}}$
3) Choose R, C such that $1 / R C=\omega_{3 d B}=2 \pi f_{3 \mathrm{~dB}}$ among commercially available components
4) Use 10X rule for components choosing if necessary
5) Performance Verification by using Signal to Noise ratio, or S / N ratio, etc

Ex) LPF design

Design a LPF to remove the noise from the signal. This LPF will be connected to A / D converter of $100 \mathrm{~K} \Omega$ input impedance.

Oscilloscope shows the measured signal as follows;

II

$$
+
$$

1)Frequency identification
$f_{\text {signal }}=1 \mathrm{KHz}, f_{\text {noise }}=16 \mathrm{KHz}$ by oscilloscope or spectrum analysis
2)Choose $f_{3 \mathrm{~dB}}$
$f_{3 d B}=f=1 \mathrm{KHz}$
(Q: What happen if we chose $f_{3 d B}$ as 16 KHz ?)
3)Choose R, C from $\omega_{3 d B}=1 / R C$

Thus $1 / R C=\omega_{3 \mathrm{~dB}}=2 \pi f_{3 \mathrm{~dB}}=6280[\mathrm{rad} / \mathrm{sec}]$
There are so many combinations to satisfy, thus we need more information from the 10X rule
4) 10 X rule

This LPF is to drive the ADC of $100 \mathrm{~K} \Omega$ input impedance as follows; And it can be transformed to Thevenin's equivalent circuit

$Z \operatorname{th}=Z_{1} \| Z_{2}=Z_{1} Z_{2} /\left(Z_{1}+Z_{2}\right)=(R / j \omega C) /(R+1 / j \omega C)=R /(1+j \omega R C)$

Magnitude of Zth, $\mid Z$ th $\mid=R / V\left\{1+(\omega R C)^{2}\right\} \leq R$
Thus maximum of Z th is R, and Z th is to drive the Z_{L}; therefore it is quite reasonable to choose R as one tenth of $Z_{L}(=100 \mathrm{~K} \Omega)$ by the 10 X rule, satisfying $Z_{\text {out }} \leq Z_{\text {in }} / 10$ in general application of voltage circuit.

Thus $\mathrm{R}=10 \mathrm{~K} \Omega$, and $\mathrm{C}=1.59 \mathrm{E}-8 \mathrm{~F} \fallingdotseq 0.02 \mu \mathrm{~F}$ from commercial availability.
5) Verification

For 1 KHz signal, or $\omega=2 \pi(1000) \mathrm{rad} / \mathrm{sec}$
$|H|=\left|V_{\text {out }} / V_{\text {in }}\right|=1 / V\left\{1+(\omega R C)^{2}\right\} \div 0.623$ (why not 0.707?)
$\angle \mathrm{H}=-\angle(1+j \omega R C)=-\tan ^{-1}(\omega R \mathrm{C}) \fallingdotseq-51.5^{\circ}$ (why not -45° ?)
For 16 KHz noise, or $\omega=2 \pi(16000) \mathrm{rad} / \mathrm{sec}$
$|H|=\left|V_{\text {out }} / V_{\text {in }}\right|=1 / \sqrt{ }\left\{1+(\omega R C)^{2}\right\} \fallingdotseq 0.06(6 \%)$
$\angle \mathrm{H}=-\angle(1+j \omega R C)=-\tan ^{-1}(\omega R C) \doteqdot-87.2^{\circ}$
Before LPF application, Given $S=1, N=1$, then $S / N=1$
After LPF application, $S=0.623, \mathrm{~N}=0.06$, then $\mathrm{S} / \mathrm{N}=0.623 / 0.06 \doteqdot 10.4$
Thus S / N ratio changes from 1 to 10.4 , which is more than 10 times improvement!

It is wonderful result for S / N ratio improvement by the LPF application.
Q: What happen if only Z_{L} is changed to $10 \mathrm{~K} \Omega$, while others are unchanged?
\rightarrow Hint: $\mathrm{H}=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=1 /\left\{1+\mathrm{R} / \mathrm{R}_{\mathrm{L}}+\mathrm{j} \omega \mathrm{RC}\right\}$

