Classical Second Law of

Thermodynamics (2)
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(*) Some texts and figures are borrowed from Sonntag & Borgnakke unless noted otherwise.
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Classical Second Law of Thermodynamics

5.5 The Carnot Cycle

If the efficiency of all heat engines is less than 100%, what is the most

efficient cycle we can have?

> Carnot cycle is the most efficient, reversible cycle that can operate

between two constant-temperature reservoirs.
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Classical Second Law of Thermodynamics

5.6 Two Propositions Regarding the Efficiency of a Carnot Cycle

> First Proposition
“It is impossible to construct an engine that operates between two
given reservoirs and is more efficient than a reversible engine (or
Carnot engine) operating between the same two reservoirs.”
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Classical Second Law of Thermodynamics

> Second Proposition

Low-temperature reservoir

“All engines that operate on the Carnot cycle between two given
reservoirs have the same efficiency, independent of working

substance.”
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Classical Second Law of Thermodynamics

5.7 The Thermodynamic Temperature Scale

> From the equality of the efficiencies of Carnot cycles,

nrev — f(THﬂTL)

Here, the efficiency of the heat engine using a Carnot cycle is given as,

L
Nthermal = 1 — Q_ =1 — YLz, Tg)
On
> Define the thermodynamic scale of the absolute temperature as,
Qu _1Iu
O 1
Then, this leads to ,
£ g
Nthermal = 1 — —— = 1 — ——  (for Carnot cycle only)
On Ty
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Classical Second Law of Thermodynamics

5.8 The ldeal-Gas Temperature Scale

> Use of constant-volume gas thermometer of an ideal gas:
» Let the gas bulb be placed in the T measurement location.
» Let the mercury column be adjusted so that the level of mercury
stands at the reference mark A.
» Read the height L to figure out pressure, thus leading to temperature.
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Classical Second Law of Thermodynamics

> To evaluate the ideal-gas temperature by using a real gas,
o Conduct a series of the same T measurement at different pressures.
« The ideal-gas temperature can be calculated by extrapolation of the
curve to zero pressure.
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Classical Second Law of Thermodynamics

> Let's demonstrate that the ideal-gas temperature scale (from ideal gas
EOS) is identical to the thermodynamic temperature scale (from Carnot
cycle and the second law).
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Classical Second Law of Thermodynamics

Ideal gas <—

oq = CvOdT+(

(1)—@): Reversible isothermal heat addition

j g = f CvodT+j ( jdv > g, =¢,, =RT, In2

V|

(2—@): Reversible adiabatic expansion

Jj L 04T + ( jdv—)O j "OdTJrRln

V2
(3—(@: Reversible isothermal heat rejection
j oq = j CvOdT+J ( )dv — —q, =q4, = RT, lnv—
3
@—@): Reversible adiabatic compression
qu j VOdT+j[ jdv — 0= J. VOa’T+R1nV4
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Classical Second Law of Thermodynamics

> Here,

10

> Thus,

> Finally,

3C AV T C Vv T C v
O=| =2 gT+RIn= > | 22dT=-RIn—= > | 2247 =RIn=
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“ T LT v, LT v,
Vs_ Y B
v, v v, V
V Idealgas T
2
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In _ L Same definition as the thermodynamic
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Classical Second Law of Thermodynamics

5.9 Ideal versus Real Machines

11

> The thermal efficiency or coefficient of performance of a real device is
always lower than that of a Carnot cycle system.

(Carnot Cycle)
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