

Spiking Neural Network Neuromorphic Hardware Research for Novel Stochastic Algorithm

[Introduction to SNU class]

2021.03.30.

Uicheol Shin

Neuromorphic Device, Science & Technology, IBM Research - Tokyo Department of Materials Science and Engineering, Seoul National University

Contents

1. Introduction

2. My Previous works- SNN-RBM chip test results

- 3. Future Research Plans & Summary
 - Toward to novel algorithms

Contents

1. Introduction

2. My Previous works- SNN-RBM chip test results

- 3. Future Research Plans & Summary
 - Toward to novel algorithms

Why Neuromorphic?

Why Spiking neural network neuromorphic?

	ANN : Non-spiking NN		Brain : Spiking NN		
Inputs & Outputs	Real-valued numbers		Spikes		
Neuron Operation	$x_1 \rightarrow \Sigma f$ $x_2 \rightarrow \Sigma f$ $x_3 \rightarrow \Sigma f$) → y ₁	S. Kim <i>et al.</i> , Springer International Publishin	► Л ng, 2017 , pp 153-164	Asynchronous spikes bring us energy efficiency!
Concept of SNN hardware		Leaky		Spike-timing-	
Post-synaptic neuron		Integrate& Fire (LIF)		dependent-plasticity	
		Membrane potential		(STDP)	
Synapse G. Burr <i>et al.</i> , Advanced in Phys	ics: X, 2017 , <i>Vol.2 No.1</i> , 89-124	v urest Input spikes	$u(t)$ $t_{1}^{(1)}$ $t_{2}^{(1)}$ $t_{2}^{(2)}$ <i>et al.</i> , Cambridge Univ. Press, 2017	Synaptic weight change ∆w (%) Synaptic weight change ∆w (%) 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\Delta t < 0$ $\Delta t < 0$ $\Delta t < 0$ $\Delta t < 0$ $\Delta t > 0$ $\Delta t = 0$ $\Delta t = 0$

5

Hardware design of Spiking RBM chip

On-Chip Trainable 1.4M 6T2R PCM Synaptic Array with 1.6K Stochastic LIF Neurons for Spiking RBM

M. Ishii et al., in IEDM, 2019, pp. 14.2.1-4.

M. Ishii^{1*}, S. Kim^{2*}, S. Lewis³, A. Okazaki¹, J. Okazawa¹, M. Ito¹, M. Rasch³, W. Kim³, A. Nomura¹, U. Shin², K. Hosokawa¹, M. BrightSky³, and W. Haensch³ ¹IBM Research - Tokyo, Japan, ²Seoul National University, South Korea, ³IBM Research, T.J. Watson Research Center, USA

*These authors contributed equally to this work, email; ishiim@jp.ibm.com, sangbum.kim@snu.ac.kr

Restricted Boltzmann machine (RBM)

(eCD: event-driven Contrastive Divergence)

Neftci et al., Frontiers in Neurosci., 2014, Vol.7, 272

Algorithmic components:

- i) Bidirectional activity
- ii) Bipolar weight update
- iii) Asynchronous and event-driven

iv) Bipolar synaptic weight (G⁺ & G⁻)

Implementation of stochasticity on Spiking RBM chip

On-chip implementation: "Random walk function"

The firing probability is determined by the membrane potential.

Implementation of the other SNN components

Implemented SNN primitives:

- i) Random walk function Ensure stochasticity of neurons
- ii) Leak function:

The membrane potential gradually returns to resting potential.

- iii) Refractory period:
 - Ignoring incoming spikes for a specific period after the fire.

Further 'Chip test' works for improvements of chip performance

Why is the error rate of real hardware higher than 20%? Is there any issue that degrade the training accuracy?

Chip test can

i) Observe and analysis real phenomena on chipii) Optimize chip operations for algorithm efficiencyiii) Mapping novel algorithm using on-chip functions

Contents

1. Introduction

2. My Previous works- SNN-RBM chip test results

- 3. Future Research Plans & Summary
 - Toward to novel algorithms

Experimental demonstration of spiking RBM chip (Restricted Boltzmann machine)

ii) Bidirectional synaptic connection

Demonstrating the symmetrical performance for the spiking RBM.

Experimental discussion of LIF functional test

Measuring the LIF output by adjusting the interval of input spikes demonstrates that **leak function** and **refractory period** are properly working in our LIF circuitry.

This work shows not only bipolar synaptic weights are implemented well, but also i) the leaky function ii) the refractory period.

Test condition

CCK_BASE 0, 1 = 10us, CCK_Leak = 80 μ s (\rightarrow fixed by PG) SET voltage = 0.75V, RESET voltage = 1.50V Test site = axon201-210 // neuron 211-220 Trigger period = 20ms, Gp_dly = 0.00130s, Gm_dly = 0.00020s Spike period = 10-10000 μ s, Spike counter = 200

Gradual PGM & LIF results

Why should we check 'LIF vs BLIF' = 'Bidirectional Synaptic connection'

Result of LIF vs BLIF

[Comparing the best and the worst balance] 1. LIF PW0 (53.4 ns) vs BLIF PW7 (211.3 ns)

<u>LIF conditions</u> Fire times : 200 (# of input spikes) Fire interval : 1,000µs

4. LIF PW7 (250.9 ns) vs BLIF PW7 (211.3 ns)

We finally fine-tuned the chip conditions for well-balanced between forward & backward.

Experimental optimization of random walk: Sigmoid firing probability

Random walk results from sweeping Vadjr

Random walk results from sweeping Vadjr

Contents

1. Introduction

2. My Previous works- SNN-RBM chip test results

- 3. Future Research Plans & Summary
 - Toward to novel algorithms

Algorithm implementation on the SNN hardware

20

Summary

- Neuromorphic hardware is promising technology for future edge devices.

- : ① SNN is investigating as a 3rd generation of AI, with greatly reduced power consumption.
- : ② RBM is one of the machine learning algorithms based on probability.
- : ③ PCM is one of the emerging memory devices which is matured and commercialized(Intel).

- Demonstrations of SNN-RBM chip

- : ① Gradual change of bipolar synaptic weights.
- : ② Symmetric operation on bi-directional synaptic connections.
- : ③ Implementation of firing probability by random walk circuitry.

- Implementation of novel algorithms

: Not only MNIST-handwritten recognition, probabilistic problems such as 'Max-cut' and 'TSP'.

We are still debugging test algorithms and searching proper conditions

Thank You!

-Appendix-

LIF functional test

Leaky-Integrate and Fire (LIF) is core operation of our SNN chip! So first, we should confirm that our circuitry executes LIF correctly.

LIF vs BLIF experimental results

Demonstrating the symmetrical performance of LIF and Backward LIF (BLIF), Since the spiking RBM requires both forward- and backward-propagation.

<u>Test condition</u>

CCK_BASE 0, 1 = 10us, CCK_Leak = $800\mu s$ (\rightarrow fixed by PG) SET voltage = 0.75V, RESET voltage = 1.50V Test site = axon210 // neuron 214 (**One cell**) Trigger period = 20ms, Gp_dly = 0.00130s, Gm_dly = 0.00020s Spike period = 10-10000us, Spike counter = 200

Performing the identical LIF functional experiment on the hidden side neuron circuit, we confirmed that bidirectional connections are implemented well.

In addition to hardware in-situ results, the comparable tendency of simulation results indicates LIF circuitry is well-fabricated.

Conditions of pulse widths for 'LIF vs BLIF' test

LIF_WL pulse width (TMH_VPR_A2 <2:0>)

- 1) PW0 (53.4 ns)
- 2) PW4 (116.2 ns)
- 3) PW6 (205.0 ns)
- 4) PW7 (250.9 ns)

BLIF_WL pulse width (TMH_VRP_N1 <2:0>)

1) PW7 (211.3 ns)

Since BLIF output is less than LIF, fixed to the longest width.

26