Lecture 8: Inductor and RLC filter

Inductor

Coil wound on various core materials such as iron, iron alloys, ferrite to multiply the inductance of a given coil by permeability of core material. It is to store the electric energy into the inductor's magnetic field

Symbol L[H]

Law

V=Ldi/dt or i= $\int Vdt/L$ or L=V/(di/dt)

Where V=Across voltage, i=current flow, L=Inductance [H]

Let alternating voltage signal, $V=V_{o}exp(j\omega t)$,

then $i=\int V dt/L=V_o exp(j\omega t)/j\omega L=V/j\omega L$

Thus Impedance, $Z=V/i=j\omega L$ [Ω] for alternating voltage or current

Application: Transformer (primary coil->magnetic field->secondary coil)

Filters, RF circuit, etc

Comparison between Resistor/Capacitor/Inductor

Resistor(R)	Capacitor(C)	Inductor(L)
		_000-
Energy into	Energy into	Energy into
Heat dissi.	Electric field	Magnetic field
i=V/R	i=CdV/dt	i=∫Vdt/L
(When V=const.)		
i 🖡 📕	i 🔒	i t
(Proportional)	(Derivative)	(Integral)
Impedance	Impedance	Impedance
Z=R	Z=1/jωC	Z=jωL

The above three elements are complimentary each other, thus can be used for variety of application.

High Pass Filter

 \therefore This is a HPF with $\omega_{\rm 3dB}{=}R/L$

The venin's equivalent impedance, $Zth=Z_R \parallel Z_L=j\omega LR/(j\omega L+R)$, and $|Zth|=\omega LR/\sqrt{\{(\omega L)^2+R^2\}} \le R$ (at $\omega=\infty$)

 \therefore This is a LPF with ω_{3dB} =R/L

∠H

The venin's equivalent impedance, $Zth=Z_L \parallel Z_R=j\omega LR/(j\omega L+R)$, and $|Zth|=\omega LR/\sqrt{\{(\omega L)^2+R^2\}\leq R}$ (at $\omega=\infty$)

RLC filter

:Narrow Bandpass Filter

The impedance of LC parallel connection becomes $Z_L {{{\mathbb{I}}} {{\mathbb{Z}}} {{\mathbb{C}}}} ,$ and

$$\begin{aligned} Z_{L} \parallel Z_{C} = Z_{L}Z_{C}/(Z_{L}+Z_{C}) = j\omega L/j\omega C/(j\omega L+1/j\omega C) \\ = j\omega L/(1-\omega^{2}LC) \\ H = V_{out}/V_{in} = Z_{L} \parallel Z_{C}/(Z_{R} + Z_{L} \parallel Z_{C}) \\ = j\omega L/(1 - \omega^{2}LC)/\{R + j\omega L/(1 - \omega^{2}LC)\} \\ = j\omega L/\{R(1 - \omega^{2}LC) + j\omega L\} \\ Magnitude, |H| = \omega L/\sqrt{\{R^{2}(1 - \omega^{2}LC)^{2} + (\omega L)^{2}\}} \\ Phase, \ \angle H = \angle(j\omega L) - \angle \{R(1 - \omega^{2}LC) + j\omega L\} \end{aligned}$$

Plot for performance

If $\omega \ll 1/\sqrt{LC}$ then |H| = 0 and $\angle H = 90^{\circ} - 0^{\circ} = 90^{\circ}$

If $\omega = 1/\sqrt{LC}$ then |H| = 1 and $\angle H = 90^{\circ} - 90^{\circ} = 0^{\circ}$

If $\omega \gg 1/\sqrt{LC}$ then |H| = 0 and $\angle H = 90^{\circ} - 180^{\circ} = -90^{\circ}$

This is the <u>Narrow Band Pass Filter</u> that gives much narrower BPF with centre frequency $\omega_0=1/\sqrt{LC}$

The *3dB frequency* ω_1 and ω_2 can be evaluated as the freqs that gives the height of $1/\sqrt{2}$, by solving the equation

 $|H| = \omega L/\sqrt{\{R^2(1 - \omega^2 LC)^2 + (\omega L)^2\}} = 1/\sqrt{2}$, and if $0 < \omega_1 < \omega_2$ then

 $\omega_1 = \{-L + \sqrt{(L^2 + 4R^2LC)}\}/2RLC \text{ and } \omega_2 = \{L + \sqrt{(L^2 + 4R^2LC)}\}/2RLC$

Thus $\Delta \omega = \omega_2 - \omega_1 = 2L/2RLC = 1/RC = \Delta \omega_{3dB}$

And Quality Factor, Q is defined as follows;

 $Q = \omega_0 / \Delta \omega_{3dB} = \omega_0 RC$ = Measure of Profile Sharpness = 10~50, typically,

and it is one of meaningful design parameters

Thevenin's equivalent impedance, Zth, for the narrow BPF is,

$$\begin{aligned}
Zth=Z_R \parallel Z_L \parallel Z_C = Z_R \parallel (Z_L \parallel Z_C) = Z_R(Z_L \parallel Z_C)/(Z_R + Z_L \parallel Z_C) \\
and Z_L \parallel Z_C = Z_L Z_C/(Z_L + Z_C) = j\omega L/(1 - \omega^2 LC), thus \\
Zth=\{j\omega RL/(1 - \omega^2 LC)\}/\{R + j\omega L/(1 - \omega^2 LC)\} \\
= j\omega RL/\{R(1 - \omega^2 LC) + j\omega L\} \\
\therefore Magnitude |Zth| = \omega RL/\sqrt{R^2(1 - \omega^2 LC)^2 + (\omega L)^2} \leq R (at \omega = 1/\sqrt{LC})
\end{aligned}$$

The venin's equivalent circuit is as follows when $Z_{\mbox{\scriptsize LOAD}}$ is applied,

Zth should drive Z_{LOAD} and Zth $\ll Z_{\text{LOAD}}$ is to be satisfied. Therefore,

 $R=R_{LOAD}/10$ from the 10X rule eq(1)

 ω_0 =centre frequency=1/ \sqrt{LC} eq(2)

 $Q = \omega_0 / \Delta \omega_{3dB} = \omega_0 RC = Profile Sharpness eq(3)$

=10 to 50 in practice (Design parameter)

With the above 3 equations, the R,L,C components can be determined.

Note that bigger R gives sharper profile, when L,C are fixed.

Serial connection of L and C gives the impedance of Z_L+Z_C

=j ω L+1/j ω C H=V_{out}/V_{in}=(Z_L+Z_C)/(Z_R+Z_L+Z_C) =(j ω L+1/j ω C)/(R+j ω L+1/j ω C) =(1- ω^{2} LC)/{(1- ω^{2} LC)+j ω RC} Magnitude=|H|=(1- ω^{2} LC)/ $\sqrt{(1-\omega^{2}$ LC)²+(ω RC)²} Phase= \angle H= \angle (1- ω^{2} LC) - $\angle{(1-\omega^{2}$ LC)+j ω RC} For plot of performance, If $\omega \ll 1/\sqrt{LC}$ then |H|=1 and \angle H=0°-0° =0° If $\omega = 1/\sqrt{LC}$ then |H|=0 and \angle H=0°-90°=-90° If $\omega = 1/\sqrt{LC}$ then |H|=0 and \angle H=180°-90°=90°

If $\omega \gg 1/\sqrt{LC}$ then |H| = 1 and $\angle H = 180^{\circ} - 180^{\circ} = 0^{\circ}$

($\ensuremath{^{-}}$ indicates the slightly less, $\ensuremath{^{+}}$ indicates the slightly bigger)

The 3dB frequency ω_1 and ω_2 can be evaluated as the freqs that gives the height of $1/\sqrt{2}$, by solving the equation

 $|H| = (1 - \omega^2 LC) / \sqrt{(1 - \omega^2 LC)^2 + (\omega RC)^2} = 1 / \sqrt{2}$, and if $0 < \omega_1 < \omega_2$ then

 $\omega_1 = \{-RC + \sqrt{(R^2C^2 + 4LC)}\}/2LC \text{ and } \omega_2 = \{+RC + \sqrt{(R^2C^2 + 4LC)}\}/2LC \}$

Thus $\Delta \omega = \omega_2 - \omega_1 = 2RC/2LC = R/L \equiv \Delta \omega_{3dB}$

And Quality Factor, Q is defined as follows;

 $Q = \omega_0 / \Delta \omega_{3dB} = \omega_0 L/R =$ Measure of Profile Sharpness, 10~50, typically and it is one of meaningful design parameters.

Thevenin's equivalent impedance Zth for the Notch filter is,

$$Zth = Z_R \parallel (Z_L + Z_C) = Z_R (Z_L + Z_C) / (Z_R + Z_L + Z_C)$$

$$= R(j\omega L + 1/j\omega C)/\{R + j\omega L + 1/j\omega C\}$$

$$= R(1-\omega^2 LC)/\{(1-\omega^2 LC)+j\omega RC\}$$

∴Magnitude, $|Zth| = R(1-\omega^2 LC)/\sqrt{(1-\omega^2 LC)^2+(\omega RC)^2} \le R$ (at $\omega=0$ or ∞)

Thevenin's equivalent circuit is as follows when Z_{LOAD} is applied,

Zth should drive Z_{LOAD} , and Zth $\ll Z_{LOAD}$ is to be satisfied. Therefore,

 $R=R_{LOAD}/10$ from the 10X rule eq(4)

 ω_0 =centre frequency=1/ \sqrt{LC} eq(5)

 $Q = \omega_0 / \Delta \omega_{3dB} = \omega_0 L / R = Profile Sharpness eq(6)$

=10 to 50 in practice (Design parameter)

With the above 3 equations, the R,L,C components can be determined.

Note that smaller R gives sharper profile, when L,C are fixed.

HW5) Design a Narrow Band Pass Filter as follows;

Centre freq=5KHz, Quality factor=20, R_{LOAD} =200K Ω

RC Circuits revisited

1) HPF as Differentiator

 $V_{out}/V_{in}=R/(1/j\omega C+R)=j\omega RC/(1+j\omega RC)$

If RC \ll 1 then j ω RC is very small

From Taylor's expansion formula,

 $1/(1+j\omega RC) = 1-j\omega RC + (j\omega RC)^2 - (jw RC)^3...$

Thus $V_{out}/V_{in}=j\omega RC(1-j\omega RC+(j\omega RC)^2...)$

 $=j\omega RC - (j\omega RC)^2 + (j\omega RC)^3 - ...$

 $= j\omega RC$ (: Higher order term can be very small)

Thus V_{out}≒jωRCV_{in}

As V_{in} can be generally expressed as $Vexp(j\omega t)$,

 $dV_{in}/dt = j\omega Vexp(j\omega t) = j\omega V_{in}$, therefore,

 $V_{out} = j\omega RCV_{in} = RCdV_{in}/dt$ if $RC \ll 1$ or 1/RC is very big.

For a practical example, R=10K Ω and C=0.01 μ F in the above HPF design gives RC=1.0E-4 (i.e. f_{3dB} =1600Hz) as quite small and can be used as a differentiator. This observation is really wonderful as the differentiator can be easily implemented with the HPF.

The following demonstrates a good example for the leading edge detector in CMOS circuit with C=100pF and R=10K Ω (or RC=1.0E-6)

(Q: What about trailing edge detector?)

 $V_{out}/V_{in}=1/j\omega C/(R+1/j\omega C)=1/(1+j\omega RC)$

If RC is quite big such as RC \gg 1, then 1/(1+j ω RC)=1/j ω RC

Thus $V_{out}/V_{in} = 1/j\omega RC$, and $V_{out} = V_{in}/j\omega RC$

Remembering V_{in} =Vexp(j ω t), then $\int V_{in}dt$ =Vexp(j ω t)/j ω =V_{in}/j ω

Thus $V_{out} = V_{in}/j\omega RC = \int V_{in} dt/RC$ if $RC \gg 1$ or $\omega_{3dB} = 1/RC \ll 1$

\therefore LPF can be a Integrator if $\omega_{3dB} = 1/RC$ is quite low

For a LPF with R=100K, C=100 μ F, then RC=10, and f_{3dB}=0.016Hz. Thus it can be used as Integrator.

HPF/LPF based Integrator/Differentiator is quite simple to implement, but it needs some care for the assumption.

->OP amp based Differentiator/Integrator will give wider application.