Lecture 8: Inductor and RLC filter

Inductor

Coil wound on various core materials such as iron, iron alloys, ferrite to multiply the inductance of a given coil by permeability of core material. It is to store the electric energy into the inductor's magnetic field

Symbol L[H]

$$
v \cdot r 000-
$$

Law
$\mathrm{V}=\mathrm{Ldi} / \mathrm{dt}$ or $\mathrm{i}=\int \mathrm{Vdt} / \mathrm{L}$ or $\mathrm{L}=\mathrm{V} /(\mathrm{di} / \mathrm{dt})$
Where $\mathrm{V}=$ Across voltage, $\mathrm{i}=$ current flow, $\mathrm{L}=$ Inductance $[\mathrm{H}]$
Let alternating voltage signal, $\mathrm{V}=\mathrm{V}_{\mathrm{o}} \exp (\mathrm{j} \omega \mathrm{t})$,
then $\mathrm{i}=\int \mathrm{Vdt} / \mathrm{L}=\mathrm{V}_{0} \exp (\mathrm{j} \omega \mathrm{t}) / \mathrm{j} \omega \mathrm{L}=\mathrm{V} / \mathrm{j} \omega \mathrm{L}$
Thus Impedance, $\mathrm{Z}=\mathrm{V} / \mathrm{i}=\mathrm{j} \omega \mathrm{L}[\Omega]$ for alternating voltage or current
Application: Transformer (primary coil->magnetic field->secondary coil)
Filters, RF circuit, etc

Comparison between Resistor/Capacitor/Inductor

Resistor(R)	Capacitor(C)	Inductor(L)
m~n	$-\vdash$	mor
Energy into	Energy into	Energy into
Heat dissi.	Electric field	Magnetic field
$\mathrm{i}=\mathrm{V} / \mathrm{R}$	$\mathrm{i}=\mathrm{CdV} / \mathrm{dt}$	$\mathrm{i}=\int \mathrm{Vdt} / \mathrm{L}$
(When $\mathrm{V}=$ const.)		
(Proportional)	(Derivative)	(Integral)
Impedance	Impedance	Impedance
$Z=R$	$Z=1 / j \omega C$	$Z=j \omega L$

$\underline{\text { RL filter }}$

High Pass Filter

$H=V_{\text {out }} / V_{\text {in }}=Z_{L} /\left(Z_{R}+Z_{L}\right)=j \omega L /(R+j \omega L)$
Magnitude $=|H|=\omega L / \sqrt{ } R^{2}+(\omega L)^{2}$
Phase $=\angle \mathrm{H}=90^{\circ}-\tan ^{-1}(\omega \mathrm{~L} / \mathrm{R})$

\therefore This is a HPF with $\omega_{3 d B}=R / L$
Thevenin's equivalent impedance, Z th $=Z_{R} \| Z_{L}=j \omega L R /(j \omega L+R)$,
and $|Z t h|=\omega L R / V\left\{(\omega L)^{2}+R^{2}\right\} \leq R$ (at $\omega=\infty$)

Low Pass Filter

$\mathrm{H}=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\mathrm{Z}_{\mathrm{R}} /\left(\mathrm{Z}_{\mathrm{R}}+\mathrm{Z}_{\mathrm{L}}\right)=\mathrm{R} /(\mathrm{R}+\mathrm{j} \omega \mathrm{L})$
Magnitude $=|H|=R / \sqrt{ } R^{2}+(\omega L)^{2}$
Phase $=\angle H=-\tan ^{-1}(\omega L / R)$

\therefore This is a LPF with $\omega_{3 d B}=R / L$
Thevenin's equivalent impedance, $Z t h=Z_{L} \| Z_{R}=j \omega L R /(j \omega L+R)$,
and $|Z t h|=\omega L R / \sqrt{ }\left\{(\omega L)^{2}+R^{2}\right\} \leq R$ (at $\omega=\infty$)

RLC filter

:Narrow Bandpass Filter

The impedance of LC parallel connection becomes $Z_{L} \| Z_{C}$ and
$Z_{L} \| Z_{C}=Z_{L} Z_{C} /\left(Z_{L}+Z_{C}\right)=j \omega L / j \omega C /(j \omega L+1 / j \omega C)$
$=j \omega L /\left(1-\omega^{2} L C\right)$
$H=V_{\text {out }} / V_{\text {in }}=Z_{L} \| Z_{C} /\left(Z_{R}+Z_{L} \| Z_{C}\right)$
$=j \omega L /\left(1-\omega^{2} L C\right) /\left\{R+j \omega L /\left(1-\omega^{2} L C\right)\right\}$
$=j \omega L /\left\{R\left(1-\omega^{2} L C\right)+j \omega L\right\}$
Magnitude, $|H|=\omega L / \sqrt{ }\left\{R^{2}\left(1-\omega^{2} L C\right)^{2}+(\omega L)^{2}\right\}$
Phase, $\angle \mathrm{H}=\angle(\mathrm{j} \omega \mathrm{L})-\angle\left\{\mathrm{R}\left(1-\omega^{2} \mathrm{LC}\right)+j \omega \mathrm{~L}\right\}$

Plot for performance
If $\omega \ll 1 / V L C$ then $|H| \equiv 0$ and $\angle H \doteqdot 90^{\circ}-0^{\circ}=90^{\circ}$
If $\omega=1 / \sqrt{ } L C$ then $|H|=1$ and $\angle H=90^{\circ}-90^{\circ}=0^{\circ}$
If $\omega \gg 1 / \sqrt{ } L C$ then $|H| \equiv 0$ and $\angle H \doteqdot 90^{\circ}-180^{\circ}=-90^{\circ}$

This is the Narrow Band Pass Filter that gives much narrower BPF with centre frequency $\omega_{0}=1 / \sqrt{ }$ LC

The $3 d B$ frequency ω_{1} and ω_{2} can be evaluated as the freqs that gives the height of $1 / \sqrt{ } 2$, by solving the equation
$|H|=\omega L / \sqrt{ }\left\{R^{2}\left(1-\omega^{2} L C\right)^{2}+(\omega L)^{2}\right\}=1 / \sqrt{ } 2$, and if $0<\omega_{1}<\omega_{2}$ then
$\omega_{1}=\left\{-L+\sqrt{ }\left(L^{2}+4 R^{2} L C\right)\right\} / 2 R L C$ and $\omega_{2}=\left\{L+\sqrt{ }\left(L^{2}+4 R^{2} L C\right)\right\} / 2 R L C$

Thus $\Delta \omega=\omega_{2}-\omega_{1}=2 L / 2 R L C=1 / R C \equiv \Delta \omega_{3 \mathrm{~dB}}$

And Quality Factor, Q is defined as follows;
$\mathrm{Q} \equiv \omega_{0} / \Delta \omega_{3 \mathrm{~dB}}=\omega_{0} R C=$ Measure of Profile Sharpness=10~50, typically, and it is one of meaningful design parameters

Thevenin's equivalent impedance, Zth, for the narrow BPF is,
$Z t h=Z_{R}\left\|Z_{L}\right\| Z_{C}=Z_{R} \|\left(Z_{L} \| Z_{C}\right)=Z_{R}\left(Z_{L} \| Z_{C}\right) /\left(Z_{R}+Z_{L} \| Z_{C}\right)$
and $Z_{L} \| Z_{C}=Z_{L} Z_{C} /\left(Z_{L}+Z_{C}\right)=j \omega L /\left(1-\omega^{2} L C\right)$, thus
$Z t h=\left\{j \omega R L /\left(1-\omega^{2} L C\right)\right\} /\left\{R+j \omega L /\left(1-\omega^{2} L C\right)\right\}$
$=j \omega R L /\left\{R\left(1-\omega^{2} L C\right)+j \omega L\right\}$
\therefore Magnitude $\mid Z$ th $\mid=\omega R L / \sqrt{ }\left\{R^{2}\left(1-\omega^{2} L C\right)^{2}+(\omega L)^{2}\right\} \leq R($ at $\omega=1 / \sqrt{L C})$

Thevenin's equivalent circuit is as follows when $Z_{\text {LOAD }}$ is applied,

Zth should drive $Z_{\text {LOAD }}$ and Z th $\ll Z_{\text {LOAD }}$ is to be satisfied. Therefore, $R=R_{\text {LOAD }} / 10$ from the 10X rule $\mathrm{eq}(1)$
$\omega_{0}=$ centre frequency $=1 / \sqrt{ } L C \quad e q(2)$
$\mathrm{Q}=\omega_{0} / \Delta \omega_{3 \mathrm{~dB}}=\omega_{0} R C=$ Profile Sharpness $\quad \mathrm{eq}(3)$
$=10$ to 50 in practice (Design parameter)
With the above 3 equations, the R,L,C components can be determined.
Note that bigger R gives sharper profile, when L,C are fixed.

RLC notch filter

Serial connection of L and C gives the impedance of $Z_{L}+Z_{C}$
$=j \omega L+1 / j \omega C$
$\mathrm{H}=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}=\left(\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{C}}\right) /\left(\mathrm{Z}_{\mathrm{R}}+\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{C}}\right)$
$=(j \omega L+1 / j \omega C) /(R+j \omega L+1 / j \omega C)$
$=\left(1-\omega^{2} L C\right) /\left\{\left(1-\omega^{2} L C\right)+j \omega R C\right\}$
Magnitude $=|H|=\left(1-\omega^{2} \mathrm{LC}\right) / \sqrt[V]{ }\left\{\left(1-\omega^{2} \mathrm{LC}\right)^{2}+(\omega R C)^{2}\right\}$
Phase $=\angle \mathrm{H}=\angle\left(1-\omega^{2} \mathrm{LC}\right)-\angle\left\{\left(1-\omega^{2} L C\right)+j \omega R C\right\}$
For plot of performance,
If $\omega \ll 1 / \sqrt{ } L C$ then $|H| \equiv 1$ and $\angle H \doteqdot 0^{\circ}-0^{\circ}=0^{\circ}$
If $\omega=-1 / \sqrt{ } L C$ then $|H|=0$ and $\angle H=0^{\circ}-90^{\circ}=-90^{\circ}$
If $\omega=+1 / \sqrt{ } L C$ then $|H|=0$ and $\angle H=180^{\circ}-90^{\circ}=90^{\circ}$
If $\omega \gg 1 / \sqrt{ } L C$ then $|H|=1$ and $\angle H \doteqdot 180^{\circ}-180^{\circ}=0^{\circ}$
(${ }^{-}$indicates the slightly less, ${ }^{+}$indicates the slightly bigger)
\therefore This is the notch filter or to trap with the centre frequency ω_{0}

The 3 dB frequency ω_{1} and ω_{2} can be evaluated as the freqs that gives the height of $1 / \sqrt{ } 2$, by solving the equation
$|H|=\left(1-\omega^{2} L C\right) / \sqrt{ }\left\{\left(1-\omega^{2} L C\right)^{2}+(\omega R C)^{2}\right\}=1 / \sqrt{ } 2$, and if $0<\omega_{1}<\omega_{2}$ then $\omega_{1}=\left\{-R C+\sqrt{ }\left(R^{2} C^{2}+4 L C\right)\right\} / 2 L C$ and $\omega_{2}=\left\{+R C+\sqrt{ }\left(R^{2} C^{2}+4 L C\right)\right\} / 2 L C$ Thus $\Delta \omega=\omega_{2}-\omega_{1}=2 R C / 2 L C=R / L \equiv \Delta \omega_{3 \mathrm{~dB}}$

And Quality Factor, Q is defined as follows;
$Q \equiv \omega_{0} / \Delta \omega_{3 d B}=\omega_{0} L / R=$ Measure of Profile Sharpness, 10~50, typically and it is one of meaningful design parameters.

Thevenin's equivalent impedance Zth for the Notch filter is,
Z th $=Z_{R} \|\left(Z_{L}+Z_{C}\right)=Z_{R}\left(Z_{L}+Z_{C}\right) /\left(Z_{R}+Z_{L}+Z_{C}\right)$
$=R(j \omega L+1 / j \omega C) /\{R+j \omega L+1 / j \omega C\}$
$=R\left(1-\omega^{2} L C\right) /\left\{\left(1-\omega^{2} L C\right)+j \omega R C\right\}$
\therefore Magnitude, \mid Zth $\mid=R\left(1-\omega^{2} L C\right) / V\left\{\left(1-\omega^{2} L C\right)^{2}+(\omega R C)^{2}\right\} \leq R$ (at $\omega=0$ or ∞)
Thevenin's equivalent circuit is as follows when $Z_{\text {LOAD }}$ is applied,

Zth should drive $Z_{\text {LOAD }}$, and Z th $\ll Z_{\text {LOAD }}$ is to be satisfied. Therefore, $R=R_{\text {LOAD }} / 10$ from the 10X rule eq(4)
$\omega_{0}=$ centre frequency $=1 / \sqrt{ } \mathrm{LC}$
$Q=\omega_{0} / \Delta \omega_{3 d B}=\omega_{0} L / R=$ Profile Sharpness
$=10$ to 50 in practice (Design parameter)
With the above 3 equations, the R,L,C components can be determined.
Note that smaller R gives sharper profile, when L,C are fixed.

HW5) Design a Narrow Band Pass Filter as follows;
Centre freq $=5 \mathrm{KHz}$, Quality factor $=20, \mathrm{R}_{\mathrm{LOAD}}=200 \mathrm{~K} \Omega$

RC Circuits revisited

1) HPF as Differentiator

$V_{\text {out }} / V_{\text {in }}=R /(1 / j \omega C+R)=j \omega R C /(1+j \omega R C)$
If $R C \ll 1$ then $j \omega R C$ is very small
From Taylor's expansion formula,
$1 /(1+j \omega R C) \fallingdotseq 1-j \omega R C+(j \omega R C)^{2}-(j \omega R C)^{3} \ldots$
Thus $V_{\text {out }} / V_{\text {in }}=j \omega R C\left(1-j \omega R C+(j \omega R C)^{2} \ldots\right)$
$=j \omega R C-(j \omega R C)^{2}+(j \omega R C)^{3}-\ldots$
$\fallingdotseq j \omega R C(\because$ Higher order term can be very small $)$
Thus $V_{\text {out }}=j \omega R C V_{\text {in }}$
As $\mathrm{V}_{\text {in }}$ can be generally expressed as $\operatorname{Vexp}(j \omega t)$,
$d V_{i n} / d t=j \omega V \exp (j \omega t)=j \omega V_{i n}$, therefore,
$V_{\text {out }}=j \omega R C V_{\text {in }}=R C d V_{\text {in }} / d t$ if $R C \ll 1$ or $1 / R C$ is very big.
\therefore HPF can be a differentiator if $\omega_{3 \mathrm{dd}}=1 / R C$ is very high

For a practical example, $\mathrm{R}=10 \mathrm{~K} \Omega$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ in the above HPF design gives $R C=1.0 \mathrm{E}-4$ (i.e. $\mathrm{f}_{3 d B} \equiv 1600 \mathrm{~Hz}$) as quite small and can be used as a differentiator. This observation is really wonderful as the differentiator can be easily implemented with the HPF.

The following demonstrates a good example for the leading edge detector in CMOS circuit with $C=100 \mathrm{pF}$ and $\mathrm{R}=10 \mathrm{~K} \Omega$ (or $\mathrm{RC}=1.0 \mathrm{E}-6$)

A

B

$5 v$
C

(Q: What about trailing edge detector?)
2) LPF as Integrator

$V_{\text {out }} / V_{\text {in }}=1 / j \omega C /(R+1 / j \omega C)=1 /(1+j \omega R C)$
If $R C$ is quite big such as $R C \gg 1$, then $1 /(1+j \omega R C) \fallingdotseq 1 / j \omega R C$
Thus $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }} \doteqdot 1 / \mathrm{j} \omega R \mathrm{RC}$, and $\mathrm{V}_{\text {out }} \doteqdot \mathrm{V}_{\text {in }} / j \omega R C$
Remembering $\mathrm{V}_{\text {in }}=\operatorname{Vexp}(j \omega t)$, then $\int \mathrm{V}_{\text {in }} \mathrm{dt}=\operatorname{Vexp}(j \omega t) / j \omega=\mathrm{V}_{\text {in }} / j \omega$
Thus $V_{\text {out }} \neq \bigvee_{\text {in }} / j \omega R C=\int V_{\text {in }} d t / R C$ if $R C \gg 1$ or $\omega_{3 d B}=1 / R C \ll 1$
\therefore LPF can be a Integrator if $\omega_{3 d B}=1 / R C$ is quite low

For a LPF with $R=100 K, C=100 \mu F$, then $R C=10$, and $f_{3 d B}=0.016 \mathrm{~Hz}$.
Thus it can be used as Integrator.
HPF/LPF based Integrator/Differentiator is quite simple to implement, but it needs some care for the assumption.
->OP amp based Differentiator/Integrator will give wider application.

