Cryogenic Engineering

Chapter 8.

Vacuum Technology

KIM, Min Soo

8.1 Importance of Vacuum Technology

- Vacuum technology is used for
 - 1. Insulation
 - 2. Liquefaction system (LN₂ precooling)
 - 3. He³-He⁴ dilution system
 - 4. In high vacuum system cold trap before the vacuum pump

Flow in low pressure

At low pressure, the gas molecules are so far apart that the gas cannot be treated as a continuous medium, and we obtain another flow regime

- free molecular flow

The dimensionless parameter used to determine the dividing line between continuum and free-molecular flow is the *Knudsen number*, $K_{Kn} = \lambda/D$

- 1. Continuum flow, $K_{Kn} < 0.01$
- 2. Mixed flow, $0.01 < K_{Kn} < 0.30$
- 3. Free-molecular flow, 0.30 < K_{Kn}
- $\boldsymbol{\lambda}$: mean free path of the gas molecules
- D: characteristic dimension of the flow channel

8.2 Flow Regimes in Vacuum Systems

Degree of vacuum

- 1. Rough vacuum, 25 torr < P
- 2. Medium vacuum, 10^{-3} torr < P < 25 torr
- 3. High vacuum, 10^{-6} torr < P < 10^{-3} torr
- 4. Medium vacuum, 10^{-9} torr < P < 10^{-6} torr
- 5. Medium vacuum, $P < 10^{-9}$ torr

1 torr = 133.322 Pa =
$$\frac{1}{760}$$
 atm

Evangelista Torrichelli

For laminar continuum flow in a circular tube, Poisseuille's equation

 $\Delta p = 128 \mu L \dot{m} / \pi D^4 \rho g_c$

where L = tube length D = tube diameter $\overline{\rho}$ = mean fluid density μ = fluid viscosity

Substituting
$$\overline{\rho} = \frac{\overline{p}M}{R_uT}$$
, where $\overline{p} = (p_1 + p_2)/2$

 $\Delta p = 128 \mu L R_u T \dot{m} / \pi D^4 g_c \bar{p} M$

According to kinetic theory of gases (Kennard 1938), the mass flow rate for mixed flow in a circular tube

$$\dot{m} = \frac{\pi D^4 g_c \bar{p} \Delta p}{128 \mu L R_u T} \left[1 + \frac{8\mu}{\bar{p} \bar{D}} \left(\frac{\pi R_u T}{2g_c M} \right)^{1/2} \right]$$

For free-molecular flow in long tubes

$$\dot{m} = \left(\frac{\pi g_c M}{18R_u T}\right)^{1/2} \left(\frac{D^3 \Delta p}{L}\right)$$

The throughput is commonly used in vacuum work

$$Q = p\dot{V} = \dot{m}R_{u}T/M$$

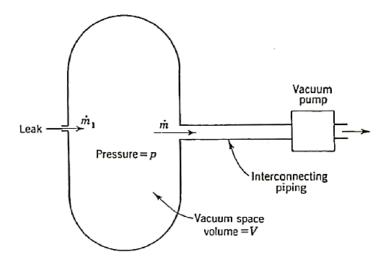
A conductance C for a vacuum element

$$C = \frac{Q}{\Delta p} = \frac{\dot{m}}{\Delta p}$$

The conductance for a long tube may be written as follows.

1. Laminar continuum flow

$$C = \pi D^4 g_c \overline{p} / 128 \mu L$$


2. Mixed flow

$$C = (\pi D^4 g_c \bar{p} / 128 \mu L) [1 + (8\mu/\bar{p}D) \left(\frac{\pi R_u T}{2g_c M}\right)^{1/2}]$$

3. Free molecular flow

$$C = (\pi g_c R_u T / 18M)^{\frac{1}{2}} (D^3 / L)$$

One of the important factors in the design of a vacuum system is the determination of the pump-down time, or the time required to reduce the pressure of the system from ambient pressure to the desired operating pressure.

Vacuum system for pump-down equation development

The capacity of a vacuum pump is given in terms of the pump speed S_p defined as

$$S_p = \frac{Q}{p_i}$$

Where Q is the throughout of the pump and p_i is the pressure at the inlet of the pump. Similarly, the system pumping speed S_s is defined by

$$S_s = \frac{Q}{p}$$

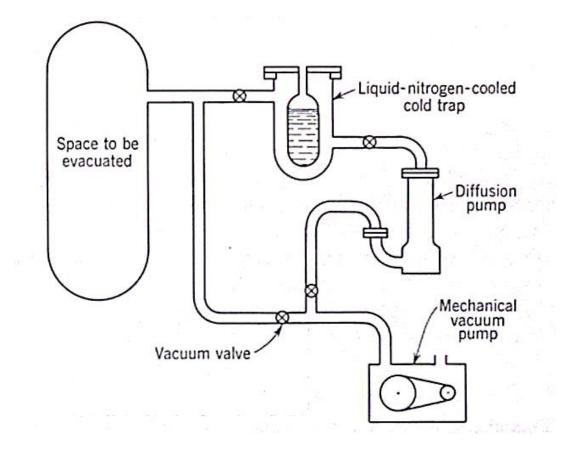
Overall conductance of the piping system between the vacuum space and the vacuum pump can be calculated as

$$C_0 = \frac{Q}{(p-p_i)}$$

$$\frac{1}{S_s} = \frac{1}{S_p} + \frac{1}{C_0}$$

8.4 Calculation of Pump-Down Time for a Vacuum System

The mass flowrate of gas from the system is given by

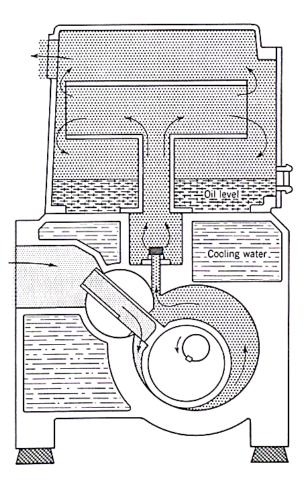

$$\dot{m}_{out} = \rho S_s = p S_s / RT$$

Applying the Conservation-of-Mass Principle to the vacuum system and assuming that the gas obeys the ideal-gas equation of state,

$$\dot{m}_{1} - \dot{m}_{out} = \frac{dm}{dt} = v \frac{d\rho}{dt} = \frac{V}{RT} \frac{dp}{dt}$$
$$\frac{dp}{dt} = \frac{Q_{i}}{V} - \frac{S_{s}p}{V}$$
$$p_{u} = \frac{Q_{i}}{S_{s}}$$
$$t_{p} = \left(\frac{V}{S_{s}}\right) \ln\left(\frac{p_{1}-p_{u}}{p_{2}-p_{u}}\right)$$
$$S_{S} = \left(\frac{F_{S}V}{t_{p}}\right) \ln\left(\frac{p_{1}}{p_{2}}\right)$$

Where F_s is allowance factor, t_p is pump down time

8.5 Components of Vacuum Systems

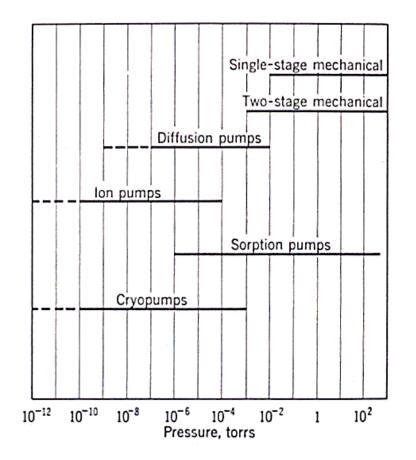


Basic elements of a typical vacuum system

8.5 Components of Vacuum Systems

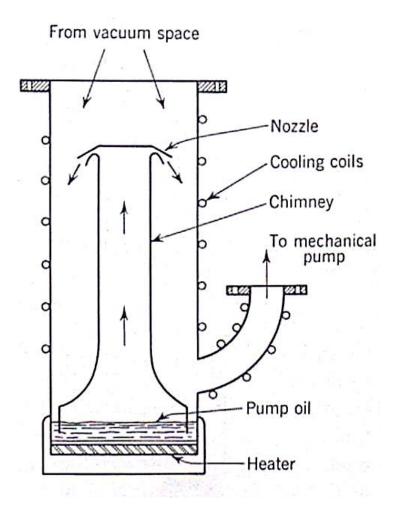
- Mechanical vacuum pump is used as a fore-pump or roughing pump to reduce the system pressure to approx. 1.0 Pa
- Diffusion pump operates if the pressure reduces about 1.0 Pa valve in the by-pass line is closed
- Cold trap or baffle are provided near the inlet of the diffusion pump preventing back streaming of oil vapor, to freeze out condensable gases

8.6 Mechanical Vacuum Pumps



<Section view of a typical rotary-piston mechanical vacuum pump>

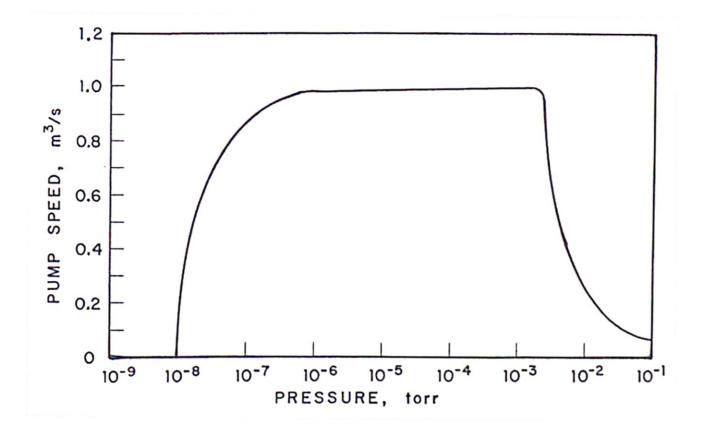
8.6 Mechanical Vacuum Pumps


- Basic principle the same as the rotary pump for higher pressures!
- Eccentric rotor(piston) rotates within the cylindrical jacket.
- Gas enters the space between the two cylinders is compressed to a higher pressure as the piston rotates.
- Gas is discharged through a check valve that prevents backflow of the air into the pump space.
- Oil separator is provided to remove the oil from the gas and return the oil to the pump.
- Gas Ballast To prevent moisture condensation within the pump volume.
 Admit sufficient atmospheric air into the pump space.

8.6 Mechanical Vacuum Pumps

Operating range for various vacuum pumps

8.7 Diffusion Pumps



Schematic of a single-stage diffusion pump

8.7 Diffusion Pumps

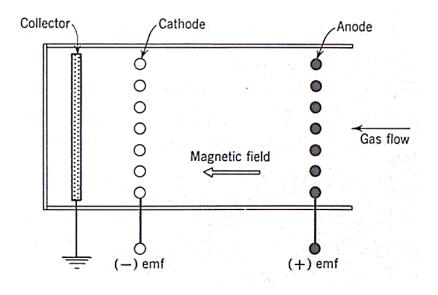
- Diffusion pumps similar to the action of a steam ejector pump.
- Ordinarily operates in the free-molecular flow regime rather than the continuum regime.
- Working fluid is evaporated in the boiler at the bottom, flows up the chimney, vapor is ejected at high velocities in a downward direction from vapor jets.
- Vapor molecules strikes gas molecules force the gas molecules downward and out the pump exhaust.
- Vapor molecules are condensed and returned to the boiler.
- Gas molecules removed by a mechanical backing pump.

8.7 Diffusion Pumps

Pumping-speed curve for a diffusion pump having a nominal diameter of 100mm(4in)

Ideal case, a diffusion pump should remove gas molecules as fast as they diffuse into the pump inlet

 \rightarrow maximum pumping speed is the same as the conductance of an aperture!


$$S_p^0 = (\frac{\pi g_c R_u T}{32M})^{1/2} D^2$$

The ratio of the actual pump speed to the theoretical pump speed is called the $\rm H_{o}$ coefficient

$$S_{p} = H_{0}S_{p}^{0}$$

Typical H_o coefficients for commercial vacuum pumps range between 0.40~0.55.

8.8 Ion Pumps

Schematic of an ion pump

lon pump structure :

- Combination of ionization and chemisorption
- A large positive electric potential Anode, a large negative electric potential Cathode
- Magnetic field is applied to the entire unit

8.8 Ion Pumps

- Electrons from cathode attracted to the anode
- Due to the magnetic field, electrons moves cycloidal path
- Collision supplies more free electrons
- Positive ion attracted to the Cathode
- Remainder of the ions bombard the cathode and tear out
- Sputtered material buries the gas ions
- The gas ions are driven to the collector
- The Ion pump has relatively high pumping efficiency!