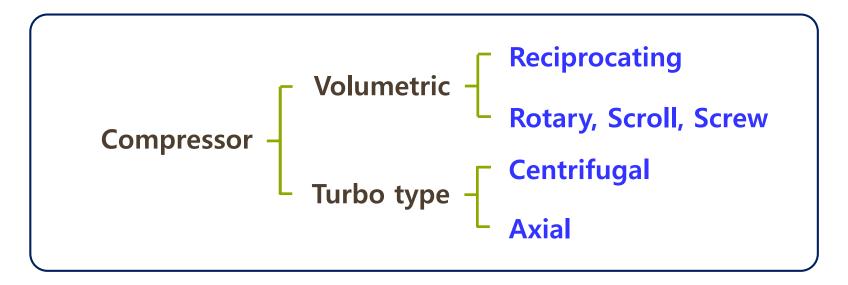


Environmental Thermal Engineering

Lecture Note #3

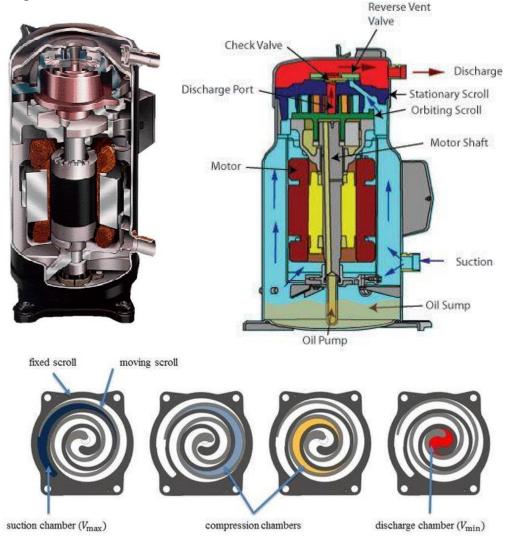
Professor Min Soo KIM

The Main Contents of the Compressor

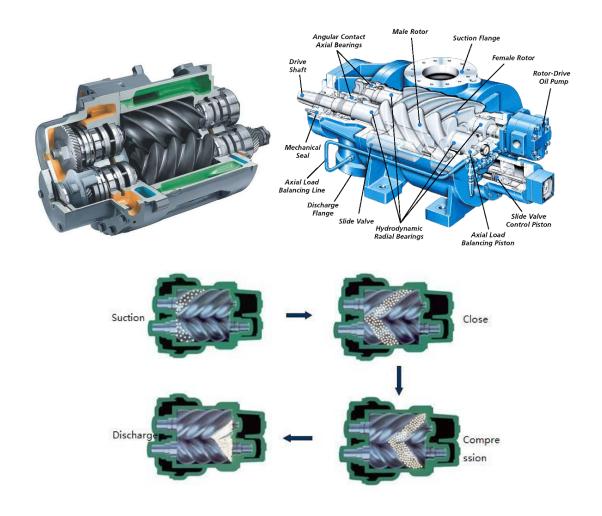

- Overview of Compressor
- Types of Compressor
- Reciprocating Compressor
- Ideal Compressor Performance
- Actual Compressor Performance

Overview of Compressor

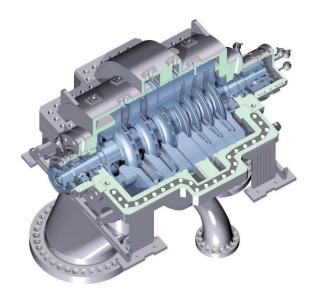
- One of the most important components for refrigeration and air conditioning.
- A compressor is a machine that compresses a working gas to increase pressure by receiving power from an electric motor or a turbine power device and applying a compression work to air or refrigerant.
- It is used for refrigerant compressors, ventilation of buildings with low pressure, supercharging of automobile engines, compression of working fluid in power generation cycles, etc.

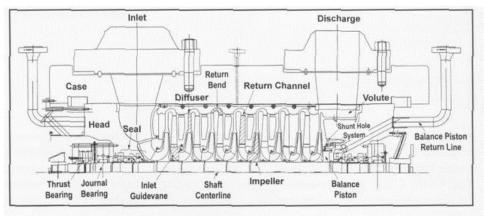

Types of Compressor

- Positive Displacement Compressor
 - → Pressure increase through volume reduction
- Turbo Compressor
 - → Compression by converting the kinetic energy of gas into the form of pressure energy


Types of Compressor

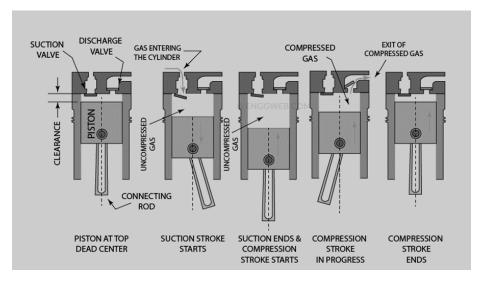
Scroll Compressor


Types of Compressor


Screw Compressor

Types of Compressor

Centrifugal Compressor



Types of Compressor

Reciprocating Compressor

The Scope of Application of Compressor

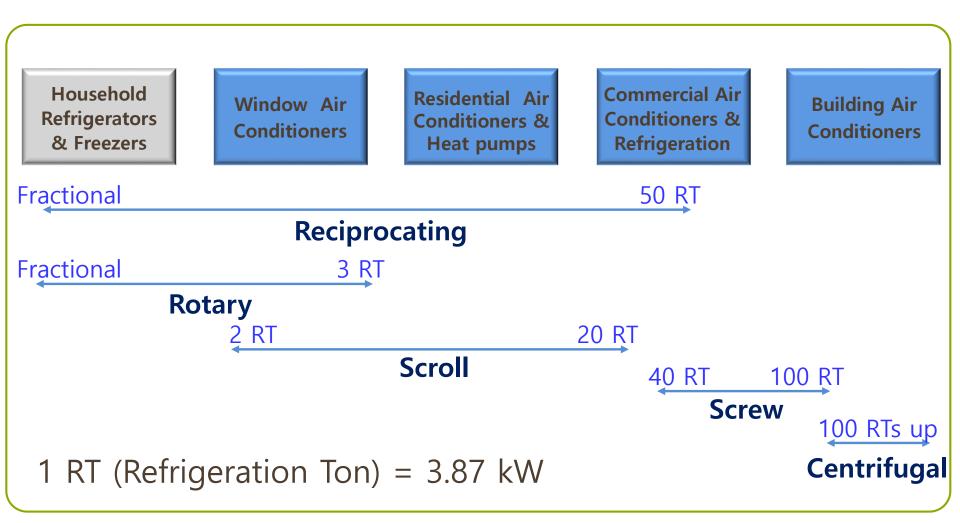
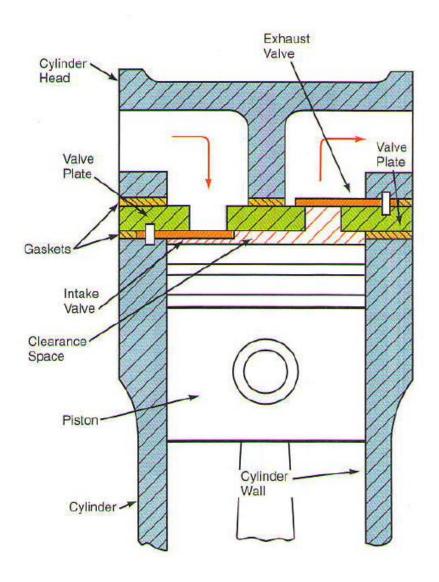
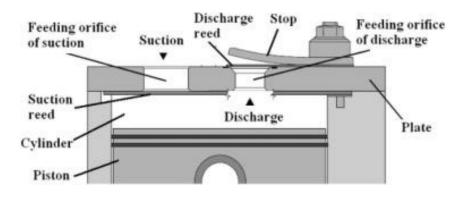


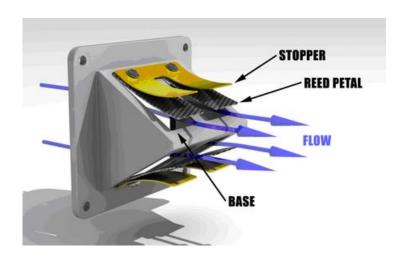
FIGURE Range of Applications of Compressor on Refrigerating Capacity

Types of Compressor

- Open Type Compressor
 - Compressor passing through the compressor housing so that the motor can be externally coupled to the shaft.
 - Refrigerant gas leakage problem
- Hermetic Compressor
 - Eliminates leakage problems by installing the motor within the housing of the compressor
 - Requires electrical isolation of the motor
- Semi-Hermetic Compressor
 - **Bolted Compressor for Field Repair**

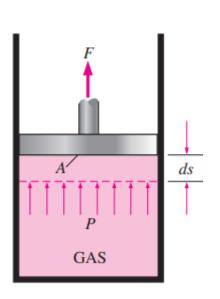



Open Type Compressor

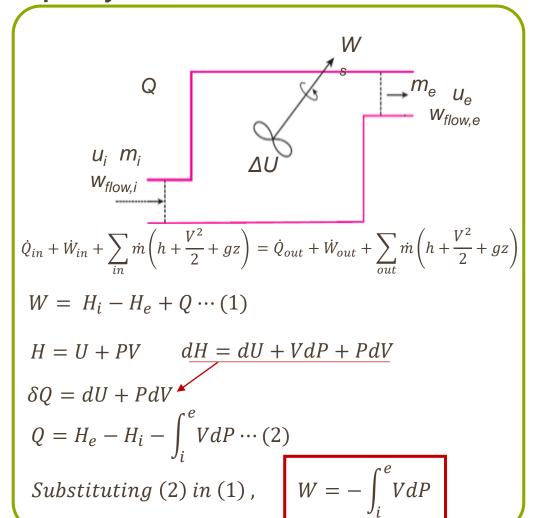


Hermetic Compressor

Cross-sectional View



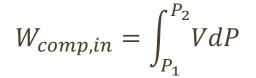
Thermodynamics Review

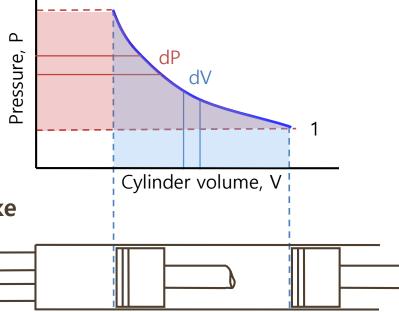

Closed system

$$W_b = \int F \, ds = \int PA \, ds$$

$$W = \int PdV$$

Open system


Compressor Work


Compression Work

Work required to compress a gas from P₁ to P₂

$$W' = \int_{V_1}^{V_2} P dV$$

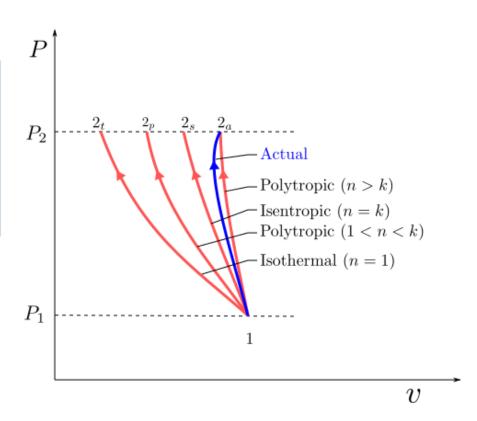
- Compressor Work
 - Work done on working gas by compressor during the entire stroke
 - Sum of compression, discharge, and suction work.

$$W_{comp,in} = \int_{P_1}^{P_2} V dP$$
 where $W_{rev} = -\int_{P_1}^{P_2} V dP$

Types of Compression

Isothermal Compression

$$PV = C(constant)$$
Compression $W' = P(V)$


Compressor $W_{iso} = -W'_{iso} = P_1 V_1 \ln \frac{P_2}{P_1}$

$$W' = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{C}{V} dV = C \ln \frac{V_2}{V_1}$$

$$= P_1 V_2 \ln \frac{V_2}{V_1} = P_1 V_2 \ln \frac{P_1}{P_2}$$

$$W = \int_{P_1}^{P_2} V dP = \int_{P_1}^{P_2} \frac{C}{P} dP = C \ln \frac{P_2}{P_1}$$

$$= P_1 V_2 \ln \frac{P_2}{P_1}$$

Types of Compression

■ Isentropic Compression

$$PV^{k} = const \qquad T_{2} = T_{1}(\frac{P_{2}}{P_{1}})^{\frac{k-1}{k}}$$
Compression W' isen = \frac{-P_{1}V_{1}}{k-1}[(\frac{P_{2}}{P_{1}})^{\frac{k-1}{k}} - 1]
Compressor Wisen = \frac{kP_{1}V_{1}}{k-1}[(\frac{P_{2}}{P_{1}})^{\frac{k-1}{k}} - 1]

$$W_{isen} = \int_{V_1}^{V_2} V dP = \int_{V_1}^{V_2} \frac{C^{\frac{1}{k}}}{\frac{1}{P^{\frac{1}{k}}}} dP$$

$$= \frac{C^{\frac{1}{k}}}{1 - \frac{1}{k}} \left(P_2^{\frac{k-1}{k}} - P_1^{\frac{k-1}{k}} \right)$$

$$= C^{\frac{1}{k}} \frac{k}{k-1} P_1^{\frac{k-1}{k}} \left(\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right)$$

$$= \frac{k P_1 V_1}{k-1} \left(\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right)$$

Types of Compression

Polytropic Compression

$$PV^{n} = const$$
 $T_{2} = T_{1} \left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}$

Compression
$$W'_{pol} = \frac{-P_1V_1}{n-1}[(\frac{P_2}{P_1})^{\frac{n-1}{n}} - 1]$$

Compressor
$$W_{pol} = \frac{nP_1V_1}{n-1}[(\frac{P_2}{P_1})^{\frac{n-1}{n}} - 1]$$

$$W_{poly} = \int_{V_1}^{V_2} V dP = \int_{V_1}^{V_2} \frac{C^{\frac{1}{n}}}{P^{\frac{1}{n}}} dP$$

$$= \frac{C^{\frac{1}{n}}}{1 - \frac{1}{n}} \left(P_2^{\frac{n-1}{n}} - P_1^{\frac{n-1}{n}} \right)$$

$$= C^{\frac{1}{n}} \frac{n}{n-1} P_1^{\frac{n-1}{n}} \left(\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right)$$

$$= \frac{nP_1 V_1}{n-1} \left(\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right)$$

Reciprocating Compressor

- Most widely used in the "Refrigeration Industry"
- Refrigeration RangeWide Range(Small size to tens of kW)
- Types
 Single-acting, Double-acting
- Working Principle
 connected through a connecting rod and
 a pin from the crankshaft actuated by piston

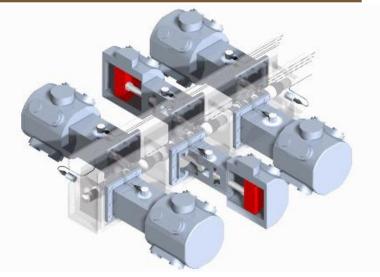
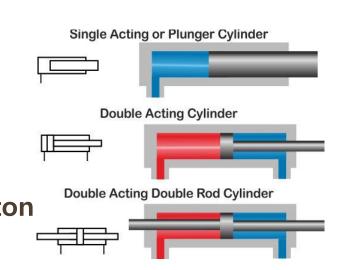
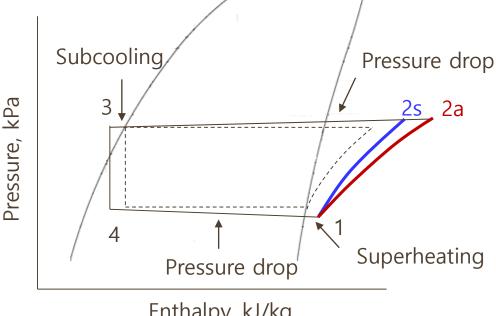



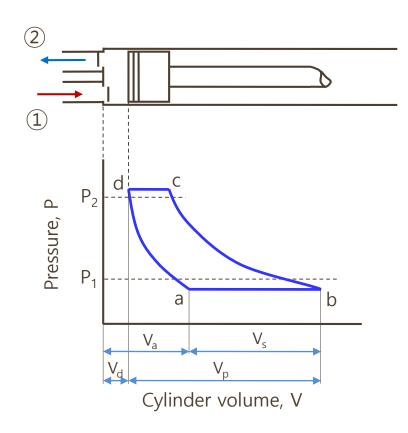
Figure Reciprocating Compressor


Reciprocating Compressor

Ideal reciprocating compressor (Process: 2s)

Actual reciprocating compressor (Process: 2a)

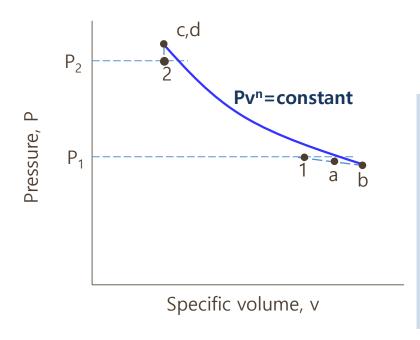
It is assumed that the compression process is reversibly adiabatic without pressure loss through suction and discharge ports and other valves.


Different from the ideal compressor, some losses occur, and these points must be taken into account in the performance of the compressor.

Enthalpy, kJ/kg

Figure The comparison of isentropic compression and actual compression

Performance of Reciprocating Compressor



It is assumed that the pressure in the cylinder is constant ($P_c = P_d$, $P_a = P_b$) during the discharge and suction processes.

The pressure loss that occurs as it passes through the valve is taken into account.

Figure Schematic Indicator Diagram for a Reciprocating Compressor

Performance of Reciprocating Compressor

P_c (Start of discharge) = P_d (End of discharge)

P₂: Discharge gas (After valve)

P₁: Suction gas (Before valve)

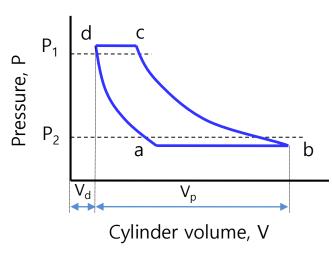
P_a: Start of suction

P_b: End of suction

Figure Pressure-Specific Volume Diagram for Compressor

a → b Re-expansion caused by residual gas in the process

Volumetric Efficiency

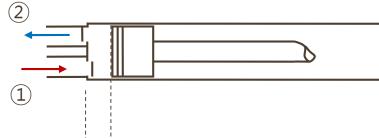

Clearance volume

When the piston reaches top dead center, there is a slight clearance at the top

Gas Volume Ratio

Ratio of clearance and stroke volume

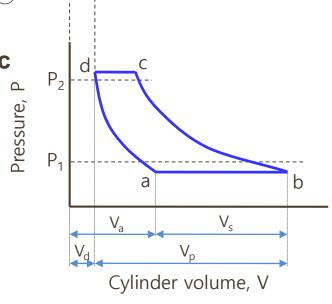
$$C = \frac{V_d}{V_p}$$


After the compression and discharge strokes are completed, the fluid in the gap volume expands during the suction stroke, and the volume flowing into the compressor decreases as much as the expansion of the residual gas.

Volumetric Efficiency

Volumetric Efficiency

$$\begin{split} \eta_{vol} &= \frac{Actual\ refrigerant\ intake}{Theoretical\ refrigerant\ Intake} \\ &= \frac{V_s/\nu_b}{V_p/\nu_1} = \frac{V_p - (V_a - V_d)}{V_p} \frac{\nu_1}{\nu_b} \end{split}$$



If the process at points d~a is a polytropic

$$V_a = V_d \left(\frac{P_d}{P_a}\right)^{\frac{1}{n}} = V_d \left(\frac{P_c}{P_b}\right)^{\frac{1}{n}}$$
 The polytropic index **n** is determined by the experimental value.

$$\eta_{vol} = \frac{V_p - (V_a - V_d)}{V_p} \frac{v_1}{v_b} = 1 - \frac{V_a - V_d}{V_p} \frac{v_1}{v_b}$$

$$\eta_{vol} = \left\{1 - C\left[\left(\frac{P_c}{P_b}\right)^{\frac{1}{n}} - 1\right]\right\} \frac{v_1}{v_b} \quad \text{where } C = \frac{V_d}{V_p}$$

Figure Schematic Indicator Diagram for a Reciprocating Compressor

Volumetric Efficiency and Mass Flow Rate

- If the re-expansion and compression processes are isentropic,
 - Volumetric Efficiency

$$\eta_{vol} = \left[1 - C\left\{\left(\frac{P_c}{P_b}\right)^{\frac{1}{n}} - 1\right\}\right] \frac{\nu_1}{\nu_b} = \left[1 - C\left\{\left(\frac{\nu_b}{\nu_c}\right) - 1\right\}\right] \frac{\nu_1}{\nu_b} \quad \text{Isentropic index k value}$$

Mass Flow Rate

$$\dot{m} = \eta_{vol} \frac{V_p}{v_1} N_c = \left[1 - C \left\{ \left(\frac{P_c}{P_b} \right)^{\frac{1}{n}} - 1 \right\} \right] \frac{V_p}{v_b} N_c$$

 V_p : Piston displacement [m³]

 N_c : Crankshaft revolution [1/s]

Volumetric Efficiency and Mass Flow Rate

■ Volumetric Efficiency and Mass Flow Rate

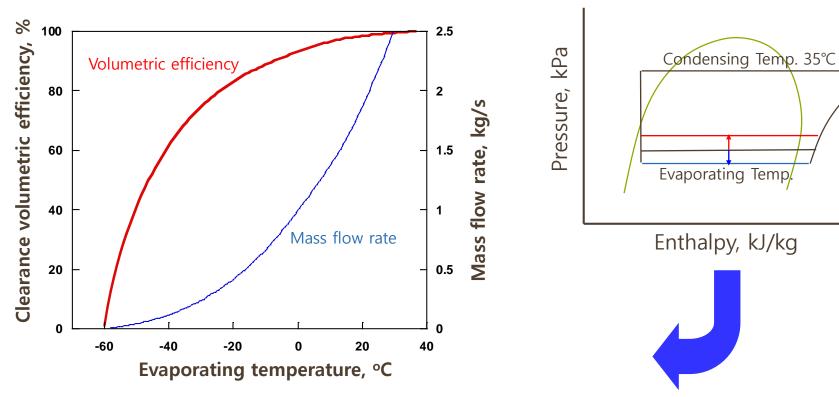
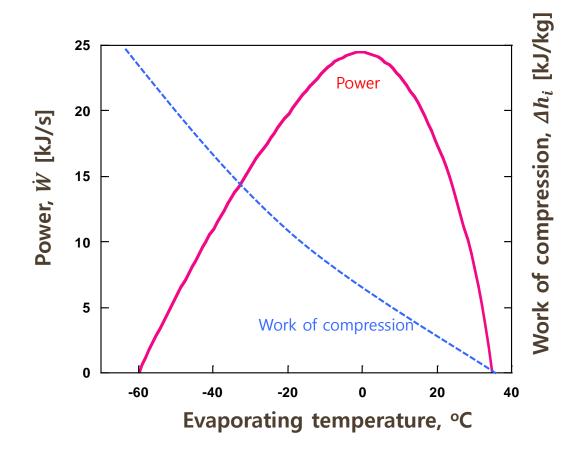



Figure Clearance Volumetric Efficiency and Mass Flow Rate of Ideal Compressor, Refrigerant 22, 4.5% Clearance, 50 L/s Displacement Rate, and 35°C Condensing Temperature

Required Power

Power Requirement for Compressor $\dot{W} = \dot{m}\Delta h_i$

Refrigeration Capacity and COP

- **Refrigeration Capacity** $\dot{Q} = \dot{m}(h_1 h_4)$

Coefficient of Performance
$$COP_c = \frac{\dot{Q}}{\dot{W}} = \frac{(h_1 - h_4)}{\Delta h_i} = \frac{Refrigeration Capacity}{Required Work}$$

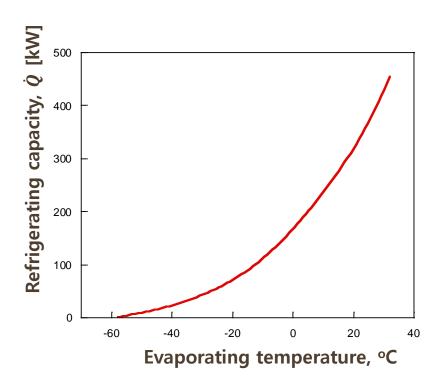


Figure Cooling Capacity according to evaporation temperature

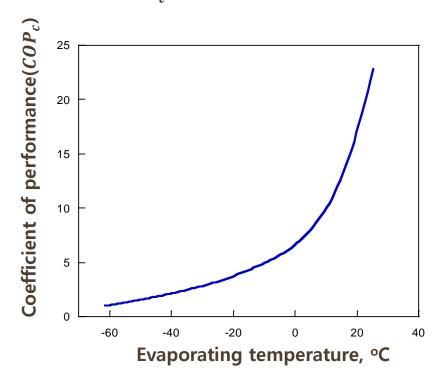


Figure COP according to evaporation temperature

Actual Compressor Performance

- Performance trends for ideal compressors also exist for real compressors
- Power required
 - Theoretical power required (Adiabatic case)

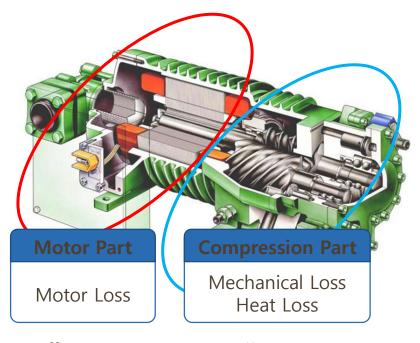
$$W_o = \frac{kP_bV_b}{k-1} \left[\left(\frac{P_c}{P_b} \right)^{\frac{k-1}{k}} - 1 \right]$$

Isentropic Compression

$$PV^k = const T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

Compression
$$W'_{isen} = \frac{-P_1V_1}{k-1}\left[\left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} - 1\right]$$

Compressor Wisen
$$= \frac{kP_1V_1}{k-1} \left[\left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} - 1 \right]$$


Actual power required

$$W_{s} = \frac{W_{o}}{\eta_{c}\eta_{mech}} = \frac{1}{\eta_{c}\eta_{mech}} \frac{kP_{b}V_{b}}{k-1} \left[\left(\frac{P_{c}}{P_{b}} \right)^{\frac{k-1}{k}} - 1 \right]$$

 η_c : Compression Efficiency (W_o/W)

 $\eta_{mech} : 0.85 \sim 0.95$

Compressor Efficiency

Power Required by Compressor

ex) 100

 η_{motor}

90

100

 η_{mech}

Work sed for Refrigerant compression

 $\frac{80}{100}$

$$\eta_{comp} = \eta_{moter} \cdot \eta_{mech} = 0.8$$

Question and Answer Session

