

Environmental Thermal Engineering

Lecture Note #6

Professor Min Soo KIM

Absorption Refrigeration System

- □ Vapor compression refrigeration system
 - (1) It uses electrical energy for compression work.
 - (2) Electrical energy is an advanced energy form.
 - (3) It demands a large amount of energy in vapor compression due to the significant change in specific volume.
- □ To increase coolant pressure while minimizing work
 - Vapor Compression → Liquid Compression
- □ Absorption refrigeration system
 - Uses natural coolant such as water or ammonia
 - Operates with gases, wasted heated or solar heat

Absorption Refrigeration System Comparison

Refrigerant / Absorbent of Absorption system

Refrigerant / Absorbent of Absorption system Refrigerant / Absorbent

□ Water Refrigerant System (H₂O/LiBr)

- A binary system based on H2O/LiBr, and a advanced ternary and quaternary system.
- Water has large evaporative latent heat, and high COP and easily acquire.
- Due to large boiling point, it is hard to air cooling.
- It cannot acquire cold heat source below 0°C.
- Due to strong corrosiveness, it is hard to manage solution.
- Recently, water receives attention as coolant/absorber of absorption refrigerating system for solar heat.

□ Ammonia Refrigerant System (NH₃/H₂O)

- Due to high operating pressure, it needs pressure vessel.
- Ammonia has adequate characteristic for coolant.
- Toxicity, flammable and explosiveness is critical defects.
- Applications : large absorption refrigerating system for industry, small absorption refrigerant system for air conditioning.

□ Alcohol Refrigerant System

- The latent heat of evaporation is large and the freezing point is lower than that of water.
- Flammability problem.

Environmental Thermal Engineering

□ Halocarbon refrigerant System

- Use dimethylformide (DMF) as absorbent.
- Refrigerant includes R21, R22, R124, R31, R123, R133a, etc

Refrigerant/ Absorbent	NH ₃ /H ₂ O	H ₂ O/LiBr
Refrigerant	NH ₃	H ₂ O
Absorbent	H ₂ O	LiBr
СОР	0.3~0.7 (Single effect)	0.7~1.2 (Single effect)
High Pressure	4~5 bar	0.01bar
Low Pressure	10~15 bar	0.07~0.1 bar
Boiling Point	-33 °C at 1 atm	100 °C
Freezing point	-77°C	0 °C
Crystallization	Ν	Y
Piping material	Steal (C.S, S.S)	Steal, Copper tube
O.D.P	Ν	Ν
G.W.P	Ν	Ν
Toxicity	Y	Ν
Flammability	Some (Not Explosive)	Ν

Cycles in Absorption system

Cycles in Absorption System Components in Absorption cycle

□ Absorber

It absolves evaporated refrigerant steam in evaporator and sends regenerator.

Generator

It absolves coolant and heats solution from absorber, so it separates coolant and absorbent. Evaporated coolant is sanded to condenser and absorbent is sanded to absorber

Condenser

It condenses refrigerant steam by heat exchanging with cooling water.

Evaporator

It sprays liquid coolant from condenser on upper part of cooling pipe. Depriving the heat, this liquid is evaporated and sanded to absorber.

Cycles in Absorption System Components in Absorption cycle

Figure 17-32. Absorption refrigeration cycle which uses water as refrigerant and lithium bromide as absorber.

Ref. Modern Refrigeration and Air Conditioning

Environmental Thermal Engineering

Cycles in Absorption System Principle of Absorption System

- **Absorber:** Water vapor from an evaporator is absorbed into a lithium bromide solution (Strong Solution)
- 1 → 2: Increase the pressure of the solution by pump
- 2 → 3: The temperature rises through heat exchange with a dilute solution in the solution heat exchanger.
- **Generator** : Water vapor generation in a high concentration solution by receiving heat (Weak Solution)
- **7** → **8**: Heat exchange with cooling water and steam condensation in Condenser.
- 8 → 9: Pressure drop through the expansion valve.
- 9 → 10: Evaporator absorbs external heat and evaporates.
- 10 → 1: Steam enters Absorber and is absorbed into the lithium bromide solution.
- 4 → 5: The temperature of the diluted solution decreases through heat exchange with the high concentration solution in the solution heat exchanger.
- 5 → 6: Pressure drops through the expansion device.

Cycles in Absorption System Absorption System (Double Effect, H₂O, LiBr)

FIGURE Schematics of double effect absorption cycle (Series Flow)

Cycles in Absorption System Absorption System (Triple Effect, H₂O, LiBr)

FIGURE Schematics of triple effect absorption cycle

Cycles in Absorption System Basic Process of Thermodynamics

FIGURE T-x diagram of isotropic 2-fluids mixture

□ Isotropic 2-fluid mixture

- Uniform composition
- It does not separated by mechanical ways
- It needs pressure, temperature and concentration
- Several saturated temperature in each pressure

Cycles in Absorption System h(i)-x diagram

FIGURE h(i)-x diagram of isotropic 2-fluids mixture in liquid-gas region

Environmental Thermal Engineering

Cycles in Absorption System LiBr/H₂O h(i)-x diagram

Environmental Thermal Engineering

Cycles in Absorption System Adiabatic mixing – Two Streams

Cycles in Absorption System Example of Adiabatic mixing

□ Adiabatic mixing

- Stream 1 :
 - *x* = 0.7
 ▶ 4.54 kg/min
 - ▶ 4.54 kg/1▶ 15.5°C
 - ▶ 689 kPa
- Stream 2 :
 - ➤ Saturated Liquid
 - ➤ 2.27 kg/min
 - ➢ 93.3℃
 - ≻ 689 kPa
- A graphical method is used to obtain temperature and the composition of state 3

Cycles in Absorption System Heating and Cooling Process

To increase the purity of the water-ammonia system

FIGURE Simple heating and cooling processes for steady-flow conditions

Cycles in Absorption System Adiabatic Throttling- Binary Liquid Mixture

- 1: High pressure, Saturated solution
 2: Low Pressure, Saturated condition
- Temperature of the final state is obtained using a graphical approach

Cycles in Absorption System Absorption Refrigeration System COP

Cycles in Absorption System Calculation of heat in Absorption Ref. system

Cycles in Absorption System Ideal System COP

$$\begin{split} \dot{Q}_A + \dot{Q}_C &= \dot{Q}_E + \dot{Q}_G + \dot{W}_P \qquad \dot{Q}_O = \dot{Q}_A + \dot{Q}_C \\ \Delta S_G &= -\frac{\dot{Q}_G}{T_G} \qquad \Delta S_E = -\frac{\dot{Q}_E}{T_E} \qquad \Delta S_O = \frac{\dot{Q}_O}{T_O} \\ \Delta S_{total} &= \Delta S_G + \Delta S_E + \Delta S_O = -\frac{\dot{Q}_G}{T_G} - \frac{\dot{Q}_E}{T_E} + \frac{\dot{Q}_O}{T_O} \ge 0 \\ \dot{Q}_G \frac{T_G - T_O}{T_G} &\ge \dot{Q}_E \frac{T_O - T_E}{T_E} - \dot{W}_P \\ &= \frac{\dot{Q}_E}{\dot{Q}_G} \le \frac{T_E (T_G - T_O)}{T_G (T_O - T_E)} \qquad COP_{\text{max}} = \frac{T_E (T_G - T_O)}{T_G (T_O - T_E)} \end{split}$$

COP

Classification of Various Absorption Refrigeration Systems

Classification of Various Absorption Refrigeration Systems Absorption Chiller

• Heating Cycle

Ref. World energy catalog

Classification of Various Absorption Refrigeration Systems Absorption Chiller

Cooling Cycle

Classification of Various Absorption Refrigeration Systems Absorption Heat Pump – Type 1

Ref. World energy catalog

Classification of Various Absorption Refrigeration Systems Absorption Heat Pump – Type 2

Ref. World energy catalog

Environmental Thermal Engineering

Classification of Various Absorption Refrigeration Systems Water-Ammonia system for Industry

FIGURE Water-Ammonia Absorption refrigerating system for industry

Cycles in Absorption System Solar-Powered NH₃/H₂O Absorption System

FIGURE Solar-Powered ammonia absorption refrigeration cycle

Ref. Cengel, Boles, Thermodynamics

Environmental Thermal Engineering

Q&A Question and Answer Session

