

Environmental Thermal Engineering

Lecture Note #8

**Professor Min Soo KIM** 



# Refrigerant



# Refrigerant Type of Refrigerant

- □ Halocarbon
- □ Hydrocarbon
- □ Inorganic compound
- Carbon dioxide

CFC, HCFC, HFC, R-12, R-32, R-134a

R-50, R-170, R-290, R-600, R-1270

Ammonia(R-717), water

R-744



# Refrigerant Type of Refrigerant

#### □ CFC (chlorofluorocarbon )

- Compound that consists of carbon, chlorine, fluorine
- R-12, R-113, R-114, R-115
- Most high ODP(Ozone Depletion Potential
- They have an effect on global warming

#### □ HCFC (hydrochlorofluorocarbon)

- Compound of CFC which has at least one hydrogen atom.
- R-22, R-123, R-124, R-141b, R-142b
- With substitution of a portion of CI with H, ODP has reduced
- They have a little effect on global warming

## □ HFC (hydrofluorocarbon)

- Compound that consists of only carbon, chlorine, hydrogen
- R-32, R-125, R-134a, R-143a, R-152a
- No influence on Ozone layer

## Refrigerant Notation - Methane, Ethane, Propane (1)

#### □ Notation (1)

- Expressed on treble figures each digit is related with elements
- Hundreds digit x = the number of carbon atom 1
- Tens place y = the number of hydrogen atom + 1
- Unit digit z = the number of fluorine

#### □ Notation (2)

- Adding 90 on R-xyz, which makes new notation that each digit represent the number of elements
- Hundreds digit x = the number of carbon atom
- Tens place y = the number of hydrogen atom
- Unit digit z = the number of fluorine

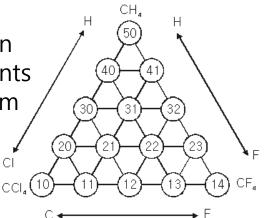



FIGURE Halocarbon (Methane series) Composition

## Refrigerant Notation - Methane, Ethane, Propane (2)

#### □ Notation (3)

- In the case that refrigerant is composed of 4 species -carbon, hydrogen, fluorine, and chlorine- the number of chlorine atom is 2x-y-z+5
- In the case that isomer exists, alphabet a or b is added for clarifying according to stability of halogen element

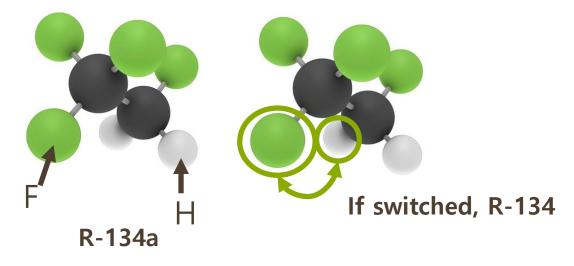



FIGURE Notation expressed by structure



**Question :** Figure out chemical compound of R-134a

**Answer**: 134+90 = 224

Carbon = 2 Hydrogen = 2 Fluorine = 4 Carbon = 1+1 = 2Hydrogen = 3 - 1 = 2Fluorine = 4

134

# Refrigerant Notation of Refrigerant

#### **Zeotropic mixture refrigerant**

- Naming as R-400~
- The number and mass composition for a component of the compound should be specified in the ascending order of the boiling point

#### □ Azeotropic mixture refrigerant

Naming as R-500~

#### **Organic compound refrigerant**

- Naming as R-600~
- Butane series : R-600
- Oxygen compound : R-61O
- Organic compound : R-62O
- Nitrogenous compound : R-630

# Refrigerant Heat Pump Cycle

#### Inorganic compound refrigerant

- Naming as R-700
- Last two digits mean molecular weight (For example, water is named as R-718)

#### Unsaturated organic refrigerant

Naming as R-1000~
 Following notation of halocarbon at the digits under hundreds

## Refrigerant Notation of refrigerant : Halocarbons

| No. | Chemical Name                  | Chemical<br>formula                 |
|-----|--------------------------------|-------------------------------------|
| 11  | Trichloromonofluoromethane     | CCl <sub>3</sub> F                  |
| 12  | Dichlorodifluoromethane        | $CCl_2F_2$                          |
| 13  | Chlorotrifluoroethane          | CClF <sub>3</sub>                   |
| 22  | Monochlorodifloromethane       | CHClF <sub>2</sub>                  |
| 40  | Methyl chloride                | CH <sub>3</sub> Cl                  |
| 113 | 1,1,2-Trichlorotrifluoroethane | CCl <sub>2</sub> FCClF <sub>2</sub> |
| 114 | 1,2-Dichlorotetrafluoroethane  | CClF <sub>2</sub> CClF <sub>2</sub> |

# Refrigerant Requirements for Refrigerant

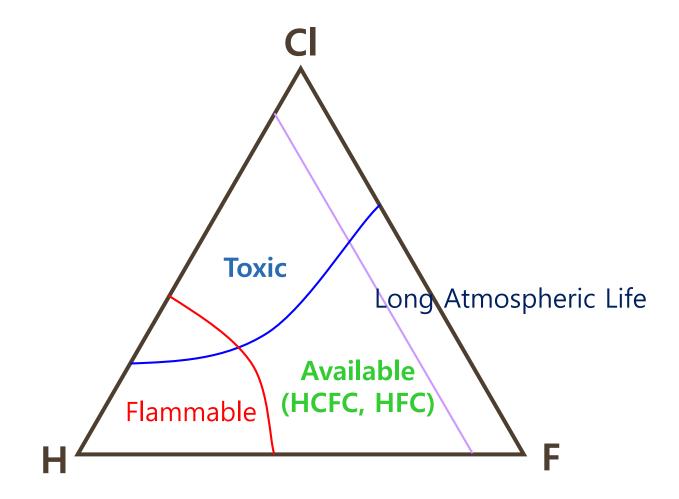
### □ Thermodynamic properties

- High latent heat
- Low coagulation pressure
- Higher critical temperature than ambient condition
- Higher boiling pressure than ambient condition in low temperature
- Low condensing pressure is recommended

#### Physicochemical properties

- High electric resistance of refrigerant vapor
- Good heat transfer property
- Proper solubility to lubricant
- Low hygroscopic
- Chemical stability, no spoilage
- Inactivity, low corrosiveness

## Refrigerant Requirements for Refrigerant


#### Environmental properties

- No flammability and explosiveness
- No toxicity
- Contains are not to be damaged by refrigerant leaking
- Eco-friendly one is recommended

#### Thermal Engineering Criteria

- Volumetric Capacity
- COP
- Discharge Temperature
- Compression Ratio

## Refrigerant General Characteristics



# Refrigerant Characteristics of Refrigerants

### Halocarbon

- Substituting saturated hydro-carbon for halogen series
- Clarified to CFC, HCFC, HFC by a presence of main components : hydrogen, fluorine, chlorine, carbon
- CFC and HCFC is prohibited because of their environmental problem
- R-143a and R-152a in HFC can substitute R-12
- R-32, R-125, and R-143a can be used as azeotropic mixture refrigerant

## ☐ Hydrocarbon

- Refrigerant composed of only hydrogen and carbon
- R-50(methane), R-170(ethane), R-290(propane), R-600(butane), R-600a(iso-butane), R-1270(propylene)
- Non-toxic, stable, eco-friendly
- A large specific volume which makes small quantities of refrigerant injection
- Flammability

## Refrigerant Characteristics of Refrigerants

#### **Zeotropic mixture**

- Mixture of more than two pure refrigerant
- Each refrigerant component has different properties so that the composition of the mixture changes while boiling and condensing
- The temperature rises when boiling reduces when condensing in constant pressure

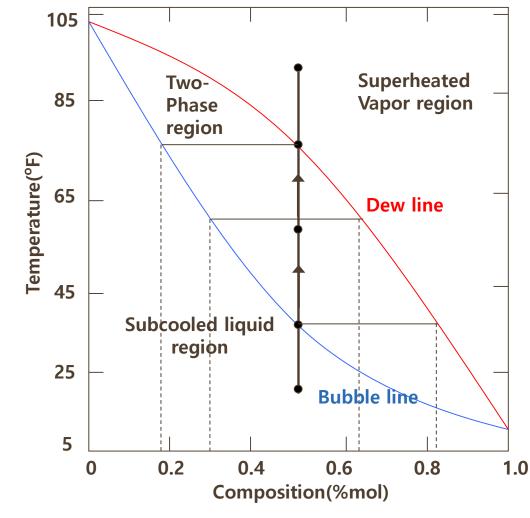
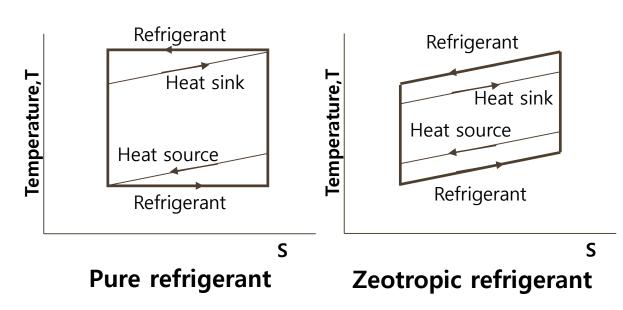




FIGURE Phase change curve of R-22/R-114(Zeotropic mixture)

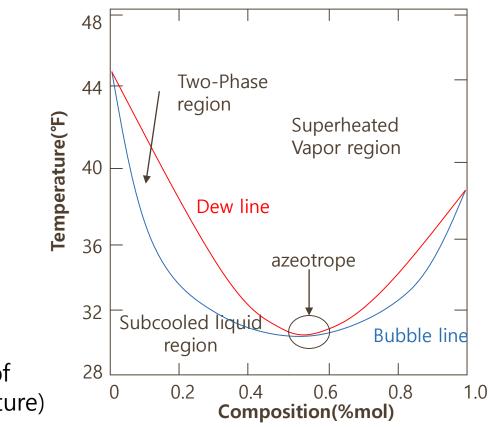
Environmental Thermal Engineering

## Advantages

- Temperature rises when the refrigerant boils in constant pressure
- Temperature reduces when the refrigerant condenses in constant pressure
  - that is, a temperature gradient occurs in phase changing
- Heat exchanger efficiency can be improved by using this characteristic



Zeotropic mixture refrigerant and make temperature of refrigerant and heat source parallel so that mean temperature difference and irreversibility has reduced with efficiency improvement


#### Disadvantages

• Large heat exchange requirement with low temperature difference

$$q = UA\Delta T \qquad \Delta T \downarrow \qquad A \uparrow$$

- High cost with counter-flow heat exchanger
- The most crucial problem is that when refrigerant leaks, composition changes because component with higher vapor pressure escape first. That is, In the case of re-charging, entire refrigerant should be took back and injected newly.

- Mixture of more than two pure refrigerants
- Differently from the Zeotropic mixture, the temperature is uniform while phase changing in constant pressure
- The behavior of the material is similar to the pure material



**FIGURE** Phase change curve of R-500(azeotropic mixture)

# Refrigerant Safety Issue

### □ Flammability Classification (ASHRAE 34)

| Flammability Class |                  | Lower<br>Flammability<br>Limit (LFL, kg/m3) | Heat of<br>Combustion<br>(HoC, MJ/kg) | Burning<br>Velocity<br>(BV, cm/s) | Refrigerants          |
|--------------------|------------------|---------------------------------------------|---------------------------------------|-----------------------------------|-----------------------|
| A3                 | Highly flammable | < 0.1                                       | > 19                                  |                                   | R290, R600a           |
| A2                 | Flammable        | > 0.1                                       | < 19                                  | > 10                              | R152a                 |
| A2L                | Mildly Flammable | > 0.1                                       | < 19                                  | < 10                              | R32, R1234yf, R1234ze |
| A1                 | Non-Flammable    |                                             |                                       |                                   | R410A, R404A, R134a   |

#### □ GWP vs. Flammability

| GWP |                | R123 like                    | R134a like                                                      | R404A   R22 like                                                    | R410A like                     | Other                                          |                                                                                           |
|-----|----------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|
|     | < 150          | R1233zd<br>R12336mzzz<br>DR2 | <ul> <li>R1270</li> <li>R600a</li> <li>R1234ze</li> </ul>       | <ul> <li>R454C/XL20/D</li> <li>R455A/HD110</li> <li>R290</li> </ul> | R3<br>No LGWP option           | <ul> <li>R744/CO2</li> <li>R717/NH3</li> </ul> | New and on the<br>market<br>Not yet on the<br>market                                      |
|     | < 700          |                              | <ul> <li>R450A/N13</li> <li>R513A/XP10</li> <li>R515</li> </ul> | R454A/XL40/D<br>L40*<br>R444B/L20                                   | R32<br>R452B/DR55              |                                                |                                                                                           |
|     | < 1500         |                              | 🔘 R134a                                                         | © R449A<br>© R448A<br>© N20*                                        |                                |                                                | <ul> <li>B2L - Toxic lowe<br/>flammable</li> <li>Old reference<br/>refrigerant</li> </ul> |
|     | < 2500         |                              |                                                                 | <ul> <li>R452A</li> <li>R22</li> <li>R407A/R407F</li> </ul>         | Flammability<br>line<br>OR410A |                                                | <ul> <li>A2L - Mildly<br/>flammable</li> <li>A3 - Highly<br/>flammable</li> </ul>         |
|     | > <b>4</b> 000 |                              |                                                                 | OR404A                                                              |                                |                                                | Legend<br>A1 - Non<br>flammable                                                           |

GWP versus Density (pressure) of the main refrigerant groups

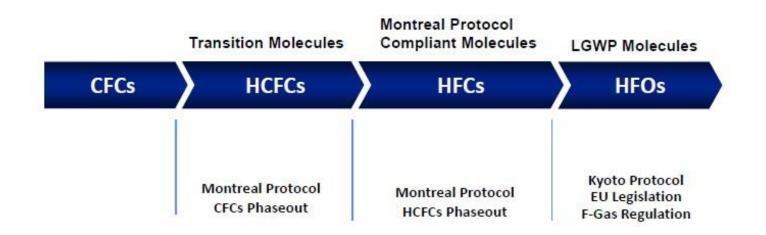
# Refrigerant Attention for Environment

 After finding out Freon gas and ozone layer destructing effect, attention for environmental pollution by emission has increased. And it is concretized by the climate change conventions.

| Туре            | Source                                           |  |  |
|-----------------|--------------------------------------------------|--|--|
| CO <sub>2</sub> | Fossil fuel, Forest fire                         |  |  |
| CH4             | Bacteria,<br>Decomposition of organic matt<br>er |  |  |
| NO <sub>2</sub> | Combustion, Nitrogenous fertili<br>zer           |  |  |
| CFC             | Refrigerant, Spray                               |  |  |



# Refrigerant Attention for Environment


- 1. Carbon dioxide, methane, nitrogen dioxide criteria for 1990
- 2. Alternative refrigerant (HFC, PFC) criteria for 1995



The developed country plays a leading role for solution for environmental problem



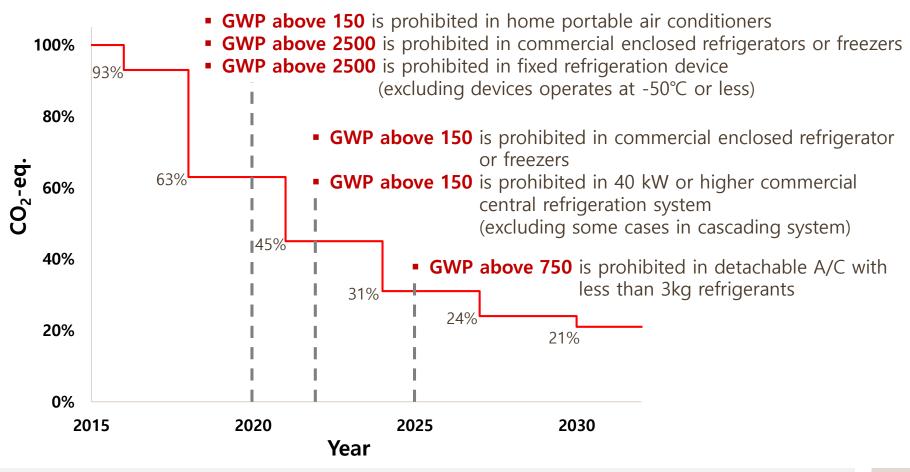
- **Regulations related to refrigerant** 
  - 1. Montreal Protocol, 1989 : Ozone Layer Destruction Index (ODP) Regulation
  - 2. Kyoto Protocol, 1997 : Global Warming Index (GWP) Regulation
  - 3. Alternative refrigerant (HFC, PFC) criteria for 1995
  - > The need for a new refrigerant to respond to regulations.



#### Kyoto Protocol,1997

- Goal and term are set up: 2008 2012
- Target for reduction
  - 1. Carbon dioxide, methane, nitrogen dioxide criteria for 1990
  - 2. Alternative refrigerant (HFC, PFC, SF6) criteria for 1995
- Net CO2 emissions system and emission rights trade system introduced
- Eco-development fund settled supporting developing countries
- Reduction goal has legal force
- Differential application through nations
  - 1. Developing countries are excluded
  - 2. Differentially applied for the advanced country, East-European countries

#### **Buenos Aires Plan of Action**, 1998


 170 countries consent with trade permit system, clean production developing system, joint carrying system until the sixth assembly in 2000



Visualization of birth of greenhouse gas market with scale of a billion ton annually

#### **EU F-gas regulation, 2005**

 Greenhouse gases above GWP 150 are prohibited from being used in all cars (2017)



### □ Refrigerant 1234yf

- Pressure characteristics and performance similar to R134a, which is widely used for vehicles.
- Low global warming index (GWP=4)
- Evaluation of refrigerant suitable for A/C for vehicles

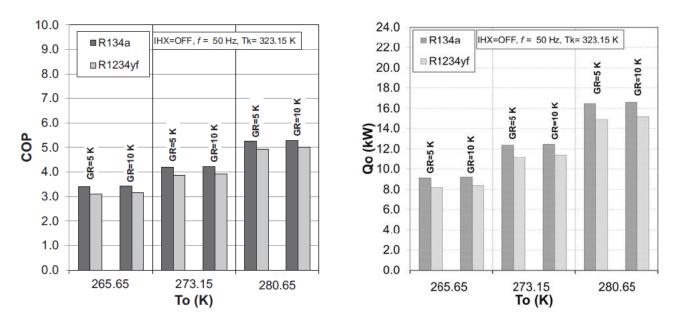



FIGURE Performance Comparison between R134a and 1234yf

## Refrigerant Greenhouse Gas Regulation

#### □ Solution for greenhouse gas prohibition

- Strengthening competition of the industry
- Improvement of efficiency, Alternation of fuel
- Forest conservation and reforestation industry
- Reduction of greenhouse gas emission
- Regulation of emission gas

#### Current situation of Korea

- As Korea has transited to the energy conservation industry, the emission of pollutant material has reduced. However, it is still higher than the level of advanced country
- Most portion of greenhouse gas is due to energy area which is followed by industrial process area

#### □ Greenhouse gas policy of authorities

- Continuous transition to the energy-saving industry is needed
- Consideration of regulation of greenhouse gas emission and alternative material is needed.

## Refrigerant Greenhouse Gas Regulation

#### **Domestic reduction plan related to refrigerant regulation.**

- According to the Montreal Protocol, HCFC use reduction began in 2013
- Based on the Montreal Protocol, the annual reduction rate is 5.1% → ('13~15) 6.3% → ('16~20) 13.1% → ('21~25) 42.6% based on the Montreal Protocol.



FIGURE Domestic HCFCs Refrigerant Consumption Reduction Plan (Draft)

## Refrigerant Greenhouse Gas Regulation

□ 2030 GHG reduction Target for Korea : 40% (Compared to 2018)

|      |          |           |                                   | (단위: 백만톤CO <sub>2</sub> eq)       |
|------|----------|-----------|-----------------------------------|-----------------------------------|
| 구분   | 부문       | 기준연도('18) | <b>現 NDC</b><br>('18년 比 감축률)      | NDC 상향안<br>('18년 比 감축률)           |
| 배출량* |          | 727.6     | 536.1                             | 436.6                             |
|      | 120      |           | ( <b>△191.5</b> , <b>△26.3%</b> ) | ( <b>△291.0</b> , <b>△40.0%</b> ) |
|      | 전환       | 269.6     | 192.7                             | 149.9                             |
|      |          | 20010     | (△28.5%)                          | <b>(</b> ∆ <b>44.4%)</b>          |
|      | 산업       | 260.5     | 243.8                             | 222.6                             |
|      |          | 200.5     | (△6.4%)                           | ( <b>△14.5%</b> )                 |
|      | 건물       | 52.1      | 41.9                              | 35.0                              |
|      | Ue       |           | (△19.5%)                          | ( <b>∆32.8%</b> )                 |
|      | 수송       | 98.1      | 70.6                              | 61.0                              |
| 배출   | Fo       | 90.1      | (△28.1%)                          | ( <b>∆37.8%</b> )                 |
|      | 농축수산     | 24.7      | 19.4                              | 18.0                              |
|      |          |           | (△21.6%)                          | ( <b>∆27.1%</b> )                 |
|      | 폐기물      | 17.1      | 11.0                              | 9.1                               |
|      | 페기갈      |           | (△35.6%)                          | ( <b>△46.8%</b> )                 |
|      | 수소       | -         | -                                 | 7.6                               |
|      | 기타(탈루 등) | 5.6       | 5.2                               | 3.9                               |
| 흡수   | 흡수원      | -41.3     | -22.1                             | -26.7                             |
| 및    | CCUS     | -         | -10.3                             | -10.3                             |
| 제거   | 국외 감축**  | -         | -16.2                             | -33.5                             |

< 부문별 감축 목표 >

\* 기준연도('18) 배출량은 총배출량, '30년 배출량은 순배출량(총배출량 – 흡수·제거량)

\*\* 국내 추가감축 수단을 발굴하기 위해 최대한 노력하되, 목표 달성을 위해 보충적인 수단으로 국외 감축 활용

※ 상기 배출량은 직접배출량을 기준으로 작성

## Refrigerant Type of Natural Refrigerant

| Refrigerant      | Advantages                                              | Disadvantages                             |  |
|------------------|---------------------------------------------------------|-------------------------------------------|--|
| H <sub>2</sub> 0 | Non-toxic<br>Direct usage of refrigerant                | System enlargement                        |  |
| Air              | Non-toxic<br>Applied for high speed<br>Train in Germany | Gas cycle                                 |  |
| Не               | Used in stirring engine                                 | Gas cycle<br>Low efficiency               |  |
| НС               | Good property<br>Working in low pressure                | Combustible                               |  |
| CO <sub>2</sub>  | Good property<br>Used for ship                          | High pressure<br>Low critical temperature |  |
| NH <sub>3</sub>  | Used in industry<br>(in large scale plant)              | Toxic<br>combustible                      |  |

## **Q&A** Question and Answer Session

