Fluid mechanics

Instructor: Jaewook Nam

Fluid mechanics

Fluid mechanics is the *archetype* of the *analysis* and *prediction* of change in the physical world around us.

Everything flows!

At some rate, on some time scale, to some extent. What is not solid is fluid: gas, liquid, liquid crystal, plastic, or composite ...

In fluid mechanics, convective transport is the most obvious agent of change: moving material carries with it (convects) mass, momentum, angular momentum,

energy, etc . . .

by the late L. E. "Skip" Scriven.

Fluid mechanics in chemical engineering

<u>Majority of chemical-processing</u> are conducted either partly or totally in the fluid phase.

biochemical, chemical, energy, fermentation, materials, mining petroleum, pharmaceuticals, polymer, and waste-processing industries.

Why fluids are important in chemical engineering?

- I. <u>Enormous number of materials</u> normally exist as gases or liquids, or can be transformed into such phase.
- 2. More efficient and cost-effective to work with fluids in contrast to solids.
 - e.g. some operating condition with solids can be conducted in a quasi-fluidlike manner:
 - fluidized-bed catalytic refining of hydrocarbons,
 the long-distance pipelining of coal particles using water as the agitating and transporting medium.

Goals (I)

I.Appreciation of the essentials of change in systems that are continuous except for interfaces.

- systematic description of change in fluid systems, mechanical change (by force or momentum fluxes)

- developing **basic principles** from the governing equations of fluid statistics and fluid dynamics.

We will rely on *mathematical terminology* in order to describe equilibrium of fluids, and then movement and deformation of fluids.

Goals (II)

But we will trying to understand the physical contents of every mathematical statement.

a. develop the habit of <u>extracting</u> every bit of *physical meaning* out of formal mathematical reasoning.

b. learn how to *intuit* or *reason* <u>about fluid systems</u> without undue reliance <u>on formal mathematics</u>.

Mathematics is Queen and Servant to Science: Science is King. by L. E. "Skip" Scriven

Goals (III)

2. Familiarity with

representative fluids,

representative flows,

and formulations of fluid mechanics

 idealizations of fluids and the method of *measuring*, *analyzing*, and *predicting* flow phenomena.

Idealizations and approximations can be quite efficient, and they are <u>virtually necessary</u> (because of mathematical complexities).

3. Understanding <u>basic fluid equipments & phenomena</u> for chemical engineering process.

Chemical Engineering

Chemical Engineering

Assignments

Two homeworks: week 5 and week 12

Grading weighting:

- •Homework : 10 %
- •Team project: 10 %
- •Midterm : 30 %
- •Final : 40 %
- •Attendance : 10 %

Mid term and final

Mid term: 2016 Apr 25 Mon (4:30am ~ 6:00pm)

Final: 2016 June 13 Mon (4:30am ~ 6:00pm)

Grading policy

A+:5%
A:35%
B:35%
<C:25%

There is NO negotiation on this.