

2**상유동 열전달 공학** Two-phase flow and heat transfer Engineering

2022년 1**학기**

서울대학교 원자핵공학과 조형규

Two-phase flows in our daily life

스팀 난방의 원리

Two-phase flow in nuclear system

Classification of Two-Phase Flow

Classification of Two-Phase Flow Modelling

https://cfdflowengineering.com/basics-of-multi-phase-flow-and-its-cfd-modeling/

Void fraction

- \checkmark Volume fraction of gas
- ✓ In a local instantaneous analysis
 - Delta function
- ✓ Averaged void fraction
 - Time averaged
 - Volume averaged
 - Area averaged

$$\alpha(\mathbf{x}) = \frac{1}{T} \int_{t-T}^{t} X_{v}(\mathbf{x}, t') dt'$$
$$X_{v}(\mathbf{x}, t) = \begin{cases} 1 & \text{when vapor is at point } \mathbf{x} \text{ at time} \\ 0 & \text{otherwise} \end{cases}$$

In one-dimensional approaches,
 Area averaging is necessary!

t

- Void fraction
 - ✓ Volume average

$$<< \alpha(t)>>= \frac{1}{V} \iint_{V} \alpha(X,t) dv = \frac{V_g}{V_l + V_g}$$

✓ Area-averaged void fraction

$$<\alpha(t)>=\frac{\Delta z \iint_{A_g} dA}{\Delta z \iint_A dA}=\frac{A_g}{A_l+A_g}$$

✓ Void fraction range

$$0 \le \alpha \le 1$$

Void fraction measurement

Counts

1000

800

Void fraction measurement

https://www.hzdr.de/db/Cms?pOid=55368&pNid=393

✓ Wire mesh sensor

Void fraction measurement

✓ Gamma ray or x-ray densitometer

Scan method	360° rotation with pulse X-rays				
Type of X-ray beam	Fan-shaped X-ray beam of 34° radiation angle				
Voltage of X-ray tube	Max. 120 kV				
Current	Max 400mA				
Scanning time	15s				
Scanning region	D=300 mm				
Dimensions of reconstruction element	0.3mm X 0.3mm				

Void fraction measurement

✓ Ultra fast x-ray CT

Void fraction measurement

https://www.mdpi.com/2311-5521/5/4/216/htm

E :	Principle	Technique	Authors	D [mm]	Fluid	Туре
ETC.	Mechanical	Quick-closing valves	Hashizume [10] Schrage et al. [11] Xu et al. [12] Wilson [13] Yashar et al. [14] Koyama et al. [15] Srisomba et al. [16]	10.0 7.94 9.79 6.12 4.26 7.52 8.0	R12; R22 Water-air Water-air R134a; R410A R410A R134a R134a	Evap. Adiab. Adiab. Evap. Evap. Adiab. Adiab.
		Ultrasound	Zheng and Zhang [17]	76.0	Water Water (with	Adiab.
			Murakawa et al. [18]	50.0	nylon)-air Water-air	Adiab.
		Pressure drop	lia et al. [20]	50.0	Water-air	Adiab.
		Light	Revellin et al. [21]	0.5	R134a	Evap.
		Laser	Sempértegui-Tapia et al. [22]	1.1; 2.32	R134a; R245fa	Adiab.
	Optical	Particle Image Velocimetry (PIV)	Harada and Murakami [23]	n/d	He II; He I	n/d
		Gamma-ray radiation	Dowlati et al. [24]	12.7	Water-air	Adiab.
	Ionizing radiation	X-ray radiation	Kendoush and Sarkis [25]	28.0; 36.0	Water-air	Adiab. Diab.
		Neutron emission	Mishima and Hibiki [26]	1.05	Water-air	n/d
		Capacitive (ring sensor)	Portillo et al. [27]	3.0	R410A	Evap.
		Impedance	Paranjape et al. [28]	0.78	Water-air	Adiab.
		Capacitive (Annular sensor)	Shedd [29] Olivier et al. [30]	0.508 8.38	R410A R134a	Cond. Cond.
	Electrical	Capacitive (concave sensor)	De Kerpel et al. [31]	8.0	R134a, R410A	Adiab.
		Resistive	Barreto et al. [32]	1.2	Water-air	Adiab.
		Capacitively coupled contactless conductivity detection (C^4D)	Zhou [33]	2.8; 3.9	Water-nitrogen	Adiab.
		Single-wire capacitance probe	Huang et al. [34]	29	Water-air	Adiab.
9		Multi-wire	He et al. [35]	50	Water-air	Adiab.
		capacitance probe	Netto and Peresson [36]	53	Water-air	Adiab.

2.1 A. A. A. A.

Velocities

✓ Actual velocity (phase velocity)

$$u_l = \frac{Q_l}{A_l} \qquad u_g = \frac{Q_g}{A_g}$$

✓ Superficial velocity

$$j_G = \frac{Q_G}{A} = \frac{Q_G/A_g}{(A_l + A_g)/A_g} = \alpha_g u_G \qquad j_l = \frac{Q_l}{A} = \alpha_l u_l = (1 - \alpha_g) u_l$$
$$j = \frac{Q}{A} = \frac{Q_g + Q_l}{A} = j_g + j_l$$

For two-phase flows, the phase velocities are larger than the corresponding volumetric fluxes of each phase.

Velocities

✓ Relative velocity or slip velocity

 $u_R = u_g - u_l$

- ✓ Homogeneous flow (?)
 - No slip between two phases $u_R = 0$

$$u_R = u_g - u_l = \frac{j_g}{\alpha_g} - \frac{j_l}{(1 - \alpha_g)} = 0$$
$$\alpha_g = \frac{1}{j_g + j_l}$$

Velocities

✓ Slip ratio

$$S = \frac{u_g}{u_l}$$

- For homogeneous flow, ?
- If not,

$$S = \frac{u_g}{u_l} = \frac{\dot{m_g}/\rho_g A_g}{\dot{m_l}/\rho_l A_l} = \left(\frac{x}{1-x}\right) \left(\frac{\rho_l}{\rho_g}\right) \left(\frac{1-\alpha_g}{\alpha_g}\right)$$

Quality

✓ Thermodynamic equilibrium quality: x_e

$$x_e = \frac{h - h_f}{h_{fg}}$$

✓ Flow quality: x

$$x = \frac{\dot{m}_g}{\dot{m}_g + \dot{m}_l} = \frac{\rho_g u_g A_g}{\rho_g u_g A_g + \rho_l u_l A_l}$$

✓ Static quality: x_s

$$x_s = \frac{m_g}{m_g + m_l} = \frac{\rho_g A_g}{\rho_g A_g + \rho_l A_l}$$

Volumetric quality

$$\beta = \frac{Q_g}{Q_g + Q_l} = \frac{j_g A}{jA} = \frac{j_g}{j}$$

Quality

 \checkmark Flow quality vs. static quality

$$\begin{aligned} x &= \frac{\dot{m}_g}{\dot{m}_g + \dot{m}_l} = \frac{\rho_g u_g A_g}{\rho_g u_g A_g + \rho_l u_l A_l} \qquad x_s = \frac{m_g}{m_g + m_l} = \frac{\rho_g A_g}{\rho_g A_g + \rho_l A_l} \\ \frac{x}{1 - x} &= \frac{\rho_g u_g A_g}{\rho_l u_l A_l} = \left(\frac{u_g}{u_l}\right) \left(\frac{x_s}{1 - x_s}\right) \end{aligned}$$

For homogeneous flow

$$x = x_s$$

Area-averaging Operator : Zuber notation

✓ Averaged properties

$$<\xi>=\frac{1}{A}\int_{A}\xi\,dA$$

$$< \alpha >= A_G / A$$

→ A

✓ Phasic average

$$<\xi_G>_G=\frac{1}{A_G}\int_{A_G}\xi_G dA_G=\frac{1}{<\alpha>A}\int_A\xi_G \alpha dA=\frac{<\xi_G \alpha>}{<\alpha>}$$

$$<\xi_{L}>_{L}=\frac{1}{A_{L}}\int_{A_{L}}\xi_{L}dA_{L}=\frac{1}{A(1-<\alpha>)}\int_{A}\xi_{L}(1-\alpha)dA=\frac{<\xi_{L}(1-\alpha)>}{<1-\alpha>}$$

Who is Novak Zuber?

Thermodynamics is a funny subject. The first time you go through it, you don't understand it at all. The second time you go through it, you think you understand it, except for one or two small points. The third time you go through it, you know you don't understand it, but by that time you are so used to it, it doesn't bother you anymore."

✓ Drift flux model

- Uncertainty of the large-break loss-ofcoolant-accident (LOCA) predictions were made in the TRAC code
- Developing something called phenomena identification and ranking tables (PIRT) to guide the process
- A general scaling approach he called fractional scaling analysis (FSA)
- \checkmark Check the supplement

Averaged flow parameters

✓ Mass flow rate

$$\dot{m}_g = \rho_g < u_g >_g A_g = \rho_g < u_g >_g < \alpha > A = G < x > A$$

$$\dot{m}_l = \rho_l < u_l >_l A_l = \rho_l < u_l >_l (1 - <\alpha >)A = G(1 -)A$$

$$\dot{m} = \dot{m}_g + \dot{m}_l = G < x > A + G(1 - \langle x \rangle)A = GA$$

$$G = \frac{\dot{m}_g}{A} = \frac{\dot{m}_g}{\langle x > A} = \frac{\rho_g \langle u_g \rangle_g \langle \alpha \rangle}{\langle x > \rangle} = \frac{\rho_l \langle u_l \rangle_l (1 - \langle \alpha \rangle)}{1 - \langle x > \rangle}$$

$$G_g = \frac{\dot{m}_g}{A} \quad G_l = \frac{\dot{m}_l}{A} \quad G = G_g + G_l$$

$$< u_g >_g = \frac{G < x >}{\rho_g < \alpha >} < u_l >_l = \frac{G(1 - \langle x \rangle)}{\rho_l(1 - \langle \alpha \rangle)}$$

Void-quality relation

$$S = \frac{u_g}{u_l} = \frac{\dot{m_g}/\rho_g A_g}{\dot{m_l}/\rho_l A_l} = \left(\frac{x}{1-x}\right) \left(\frac{\rho_l}{\rho_g}\right) \left(\frac{1-\alpha_g}{\alpha_g}\right)$$

 \checkmark For homogeneous flow or for the static quality

$$< \alpha_g > = \frac{< x >}{< x > \rho_l + \rho_g (1 - < x >)}$$

Two-phase density

✓ Mixture density and specific volume

 $<\bar{\rho}>=(1-<\alpha>)\rho_l+<\alpha>
ho_g$

 $<\bar{v}>=(1-<x>)v_l+<x>v_g$

Interfacial Area Concentration (IAC)

 $IAC = \frac{Interfacial\ area}{Mixture\ volume}$ [1/m]

- ✓ Importance of IAC
 - (Interfacial Transfer Terms) ~ (IAC) X (Driving Force)

✓ First Order Importance to Interfacial Transfer Terms

✓ Driving Force: Local Transport Mechanism

- » Potential Related to the Momentum & Energy Transport
- Significantly Affect the Results of Two-Phase Flow Analysis

IAC models

- \checkmark Correlation bases on static flow regime map
- ✓ Dynamic Flow Regime Map Based on Transport Equation