One-Dimensional Separated Flow Model

* Mass and momentum equations for each phase
\checkmark Two mass and two momentum equations
* Energy equation
\checkmark One equation
- One of the phases can be assumed to be saturated
- Liquid in bulk boiling/vapor in condensation
\checkmark Two equations
- Conditions involving a subcooled liquid and superheated vapor
* Assumptions
\checkmark A stratified or annular flow pattern

One-Dimensional Separated Flow Model

- Mass conservation equation
$\checkmark \quad \Gamma$: phase change rate per unit volume
- Positive: evaporation, negative: condensation
\checkmark For gas phase,

$$
\frac{\partial \rho_{G} A \alpha \delta}{\partial t}=\left[\rho_{G} U_{G} \alpha A\right]_{z}-\left[\rho_{G} U_{G} \alpha A\right]_{z+\infty}+\Gamma A \delta z
$$

$$
\frac{\partial \rho_{G} \alpha}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left(\rho_{G} U_{G} \alpha A\right)=\Gamma
$$

One-Dimensional Separated Flow Model

- Mass conservation equation
$\checkmark \quad \Gamma$: phase change rate per unit volume
- Positive: evaporation, negative: condensation
\checkmark For liquid phase,

$$
\frac{\partial \rho_{L} A(1-\alpha) \delta \mathcal{Z}}{\partial t}=\left[\rho_{L} U_{L}(1-\alpha) A\right]_{z}-\left[\rho_{L} U_{L}(1-\alpha) A\right]_{z+\infty}-\Gamma A \delta z
$$

$$
\frac{\partial \rho_{L}(1-\alpha)}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{L} U_{L}(1-\alpha) A\right]=-\Gamma
$$

One-Dimensional Separated Flow Model

* Mass conservation equation
$\checkmark \Gamma$: phase change rate per unit volume
- Positive: evaporation, negative: condensation

$$
\Gamma=m_{l}^{\prime \prime} a_{I}^{\prime \prime}=\frac{[k g]}{\left[m^{2} \cdot s\right]} \frac{\left[m^{2}\right]}{\left[m^{3}\right]}=\frac{[k g]}{\left[m^{3} \cdot s\right]}=m_{I}^{\prime \prime} \frac{p_{I} \delta z}{A \delta z}=\frac{m_{I}^{\prime \prime} p_{I}}{A}
$$

" $a^{\prime \prime}{ }_{I}$: interfacial area concentration (IAC), interfacial surface area per unit volume

- p_{I} : interfacial perimeter, interfacial surface area per unit channel length
\checkmark Interfacial perimeter
- For ideal annular flow in a pipe

$$
\begin{aligned}
D_{I} / D=\sqrt{\alpha} ; & p_{I}=\pi D \sqrt{\alpha} ; \Gamma=\frac{4 m_{I}^{\prime \prime} \sqrt{\alpha}}{D} \quad \alpha=\frac{A_{g}}{A}=\frac{\pi D_{I}^{2} / 4}{\pi D^{2} / 4} \\
& p_{I}=\pi D_{I}
\end{aligned}
$$

One-Dimensional Separated Flow Model

* Mass conservation equation

$\checkmark \quad \Gamma$: phase change rate per unit volume

- Positive: evaporation, negative: condensation

$$
\Gamma=m_{I}^{\prime \prime} a_{I}^{\prime \prime}=\frac{[k g]}{\left[m^{2} \cdot s\right]} \frac{\left[m^{2}\right]}{\left[m^{3}\right]}=\frac{[k g]}{\left[m^{3} \cdot s\right]}=m_{I}^{\prime \prime} \frac{p_{I} \delta z}{A \delta z}=\frac{m_{I} p_{I}}{A}
$$

" $a^{\prime \prime}{ }_{I}$: interfacial area concentration (IAC), interfacial surface area per unit volume

- p_{I} : interfacial perimeter, interfacial surface area per unit channel length
\checkmark Interfacial perimeter
- For ideal bubbly flow

$$
\begin{array}{cl}
p_{I}=\frac{N_{B} \pi d_{B}^{2} V}{\delta z}=N_{B} \pi d_{B}^{2} A & N_{B}\left(\pi d_{B}^{3} / 6\right)=\frac{\#}{V}\left(\pi d_{B}^{3} / 6\right)=\frac{V_{\text {bubble }}}{V}=\alpha \\
N_{B}=\frac{\#}{V} & N_{B}=\frac{\alpha}{\left(\pi d_{B}^{3} / 6\right)}
\end{array}
$$

One-Dimensional Separated Flow Model

* Interfacial area concentration (IAC)
$\checkmark \quad a^{\prime \prime}$: interfacial surface area per unit volume

$$
\Gamma=m_{I}^{\prime \prime} a_{I}
$$

- In two-fluid model
- Mass transfer, momentum transfer, energy transfer
$\propto I A C$
- IAC varies depending on flow regime
- Large uncertainty in developing flows
* Interfacial area transport equation
\checkmark Transport equation of IAC
\checkmark Dynamic flow regime map?
\checkmark TRACE, CATHARE, SPACE
\checkmark Can replace the conventional flow regime map?

One-Dimensional Separated Flow Model

* Momentum conservation equation
$\checkmark U_{I}$: interfacial velocity, the axial velocity at the interphase
\checkmark For gas phase

$$
\begin{aligned}
\frac{\partial \rho_{G} U_{G} \alpha A \delta z}{\partial t}= & \left(\rho_{G} U_{G}^{2} \alpha A\right)_{z}-\left(\rho_{G} U_{G}^{2} \alpha A\right)_{z+\delta z}+(P \alpha A)_{z}-(P \alpha A)_{z+\delta z}+\Gamma U_{I} \\
& -A \delta z F_{w G}+P \frac{\partial}{\partial z}[A \alpha] \delta z-A \delta z \rho_{G} \alpha g \sin \theta-F_{I} A \delta z+F_{V M} A \delta z
\end{aligned}
$$

$$
\frac{\partial \rho_{G} U_{G} \alpha}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left(\rho_{G} U_{G}^{2} \alpha A\right)-\Gamma U_{I}=-\alpha \frac{\partial P}{\partial z}-\rho_{G} \alpha g \sin \theta-F_{w G}-F_{I}+F_{V M} \quad F_{I}=f\left(U_{G}-U_{L}\right)
$$

One-Dimensional Separated Flow Model

* Momentum conservation equation
$\checkmark U_{I}$: interfacial velocity, the axial velocity at the interphase \checkmark For liquid phase

$$
\begin{gathered}
\frac{\partial \rho_{L} U_{L}(1-\alpha) A \delta z}{\partial t}=\left[\rho_{L} U_{L}^{2}(1-\alpha) A\right]_{z}-\left[\rho_{L} U_{L}^{2}(1-\alpha) A\right]_{z+\delta z}+[P(1-\alpha) A]_{z}-[P(1-\alpha) A]_{z+\delta z}-\Gamma U_{I} \\
-A \delta z F_{w L}+P \frac{\partial}{\partial z}[A(1-\alpha)] \delta z-A \delta z \rho_{L}(1-\alpha) g \sin \theta+F_{I} A \delta z-F_{V M} A \delta z
\end{gathered}
$$

$$
\frac{\partial \rho_{L} U_{L}(1-\alpha)}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{L} U_{L}^{2}(1-\alpha) A\right]_{+} \Gamma U_{I}=-(1-\alpha) \frac{\partial P}{\partial z}-\rho_{L}(1-\alpha) g \sin \theta-F_{w L}+F_{I}-F_{V M}
$$

One-Dimensional Separated Flow Model

* Momentum conservation equation
\checkmark Interfacial momentum transfer terms

$$
\begin{aligned}
& \frac{\partial \rho_{G} U_{G} \alpha}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left(\rho_{G} U_{G}^{2} \alpha A\right)-\Gamma U_{l}=-\alpha \frac{\partial P}{\partial z}-\rho_{G} \alpha g \sin \theta-F_{w G}-F_{l}+F_{V M} \\
& \frac{\partial \rho_{L} U_{L}(1-\alpha)}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{L} U_{L}^{2}(1-\alpha) A\right]+\Gamma U_{l}=-(1-\alpha) \frac{\partial P}{\partial z}-\rho_{L}(1-\alpha) g \sin \theta-F_{w L}+F_{l}-F_{V M}
\end{aligned}
$$

One-Dimensional Separated Flow Model

* Momentum conservation equation
\checkmark Closure relations
- Interface velocity

$$
U_{I}=\frac{1}{2}\left(U_{L}+U_{G}\right) \text { or } U_{I}=U_{\text {donor }} \quad U_{\text {donor }}=\left\lvert\, \begin{array}{cl}
U_{L} & \text { for evaporation } \\
U_{G} & \text { for condensation }
\end{array}\right.
$$

- Interfacial friction force (for stratified or annular flow)

$$
F_{I}=\tau_{I} a_{I} \quad \tau_{I}=f_{I} \frac{1}{2} \rho_{G}\left|U_{G}-U_{L}\right|\left(U_{G}-U_{L}\right) \quad f_{I}=0.005[1+75(1-\alpha)]
$$

- Interfacial drag force (for bubbly flow)

$$
F_{I}=F_{D} N \quad N=\alpha /\left(\pi d_{B}^{3} / 6\right) \quad F_{D}=C_{D} \rho_{L} \frac{\pi d_{B}^{2}}{4} \frac{1}{2}\left|U_{G}-U_{L}\right|\left(U_{G}-U_{L}\right)
$$

Bubble number density (\#/m³)

$$
N\left(\pi d_{B}^{3} / 6\right)=\frac{V_{\text {bubble }}}{V}=\alpha \quad N=\frac{\alpha}{\left(\pi d_{B}^{3} / 6\right)}
$$

One-Dimensional Separated Flow Model

- Momentum conservation equation

\checkmark Closure relations

- Interfacial drag/friction force: caused by velocity difference
- Virtual mass (added mass) force term: caused by acceleration difference

$$
\begin{aligned}
F_{V M} & =-C_{V M}\left[\frac{\partial U_{G}}{\partial t}+U_{G} \frac{\partial U_{G}}{\partial z}-\frac{\partial U_{L}}{\partial t}-U_{L} \frac{\partial U_{L}}{\partial z}\right] \\
C_{V M} & =C^{\prime} \alpha(1-\alpha) \bar{\rho} \quad \bar{\rho}=\alpha \rho_{G}+(1-\alpha) \rho_{L} \quad C^{\prime} \approx 1 \quad \text { Watanabe et al. (1990) }
\end{aligned}
$$

An accelerating or decelerating body must move some volume of surrounding fluid as it moves through it. Added mass is a common issue because the object and surrounding fluid cannot occupy the same physical space simultaneously.

One-Dimensional Separated Flow Model

Energy conservation equation

$\checkmark T_{I}$: Temperature at the interphase
$\checkmark q^{\prime \prime}{ }_{L I}, q^{\prime \prime}{ }_{G I}$: heat fluxes between liquid and ga and the interphase
\checkmark For gas phase,

$$
\begin{aligned}
\frac{\partial}{\partial t}\left[\rho_{G} \alpha\left(e_{G}-\frac{P}{\rho_{G}}\right) A \delta z\right] & =\left(\rho_{G} e_{G} U_{G} \alpha A\right)_{z}-\left(\rho_{G} e_{G} U_{G} \alpha A\right)_{z+\delta z} \\
& +\Gamma e_{G I} A \delta z-P \frac{\partial \alpha}{\partial t} A \delta z \\
& +p_{\text {heat }, G} q_{w}^{\prime \prime} \delta z-p_{I} q_{G I}^{\prime \prime} \delta z+\dot{q}_{v, G} \alpha A \delta z-\left(F_{I}-F_{V M}\right) U_{I} A \delta z
\end{aligned}
$$

$$
\frac{\partial}{\partial t}\left[\rho_{G} \alpha\left(e_{G}-\frac{P}{\rho_{G}}\right)\right]+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{G} e_{G} U_{G} \alpha A\right]-\Gamma e_{G I}+P \frac{\partial \alpha}{\partial t}
$$

$$
-\frac{p_{\text {heat }, G} q_{w}^{\prime}}{A}+\frac{p_{I} q_{G I}^{\prime}}{A}-\dot{q}_{v, G} \alpha+\left(F_{I}-F_{V M}\right) U_{I}=0
$$

One-Dimensional Separated Flow Model

* Energy conservation equation
\checkmark For gas phase,

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left[\rho_{G} \alpha\left(e_{G}-\frac{P}{\rho_{G}}\right)\right]+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{G} e_{G} U_{G} \alpha A\right]-\Gamma e_{G I}+P \frac{\partial \alpha}{\partial t} \\
-\frac{p_{\text {heat }, G} q_{w}^{\prime \prime}}{A}+\frac{p_{I} q_{G I}^{\prime \prime}}{A}-\dot{q}_{v, G} \alpha+\left(F_{I}-F_{V M}\right) U_{I}=0
\end{array}
$$

\checkmark For liquid phase,

$$
\begin{array}{r}
\frac{\partial}{\partial t}\left[\rho_{L}(1-\alpha)\left(e_{L}-\frac{P}{\rho_{L}}\right)\right]+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{L} e_{L} U_{L}(1-\alpha) A\right]+\Gamma e_{L I}-P \frac{\partial \alpha}{\partial t} \\
-\frac{p_{\text {heat }, L} q_{w}^{\prime \prime}}{A}-\frac{p_{I} q_{L I}}{A}-\dot{q}_{v, L}(1-\alpha)-\left(F_{I}-F_{V M}\right) U_{I}=0
\end{array}
$$

One-Dimensional Separated Flow Model

Energy conservation equation

\checkmark Closure relations

- T_{I} : Temperature at the interphase

$$
T_{I}=T_{s a t}(P)
$$

- Energy balance at the interphase

$$
m_{I}^{\prime \prime}\left(h_{L}+\frac{1}{2} U_{L I}^{2}\right)_{I}-q_{L I}^{\prime \prime}=m_{I}^{\prime \prime}\left(h_{G}+\frac{1}{2} U_{G I}^{2}\right)_{I}-q_{G I}^{\prime \prime}
$$

- Interphase sensible heat transfer

$$
q_{G I}^{\prime \prime}=H_{G I}\left(T_{G}-T_{I}\right) \quad q_{L I}^{\prime \prime}=H_{L I}\left(T_{I}-T_{L}\right)
$$

$H_{k I} \quad$ Interfacial heat transfer coefficient for k -phase

- Then, the phase changer rate reduces to

$$
m_{I}^{\prime \prime}=\frac{H_{G I}\left(T_{G}-T_{I}\right)-H_{L I}\left(T_{I}-T_{L}\right)}{h_{f g}}
$$

One-Dimensional Separated Flow Model

- Summary

\checkmark Unknowns: $U_{L}, U_{G}, h_{L}, h_{G}, P$, and α
\checkmark Six conservation equations \Rightarrow six equation model (two-fluid model)

- Nine equation model \Rightarrow two-phase three-field model

$$
\begin{aligned}
& \frac{\partial \rho_{G} \alpha}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left(\rho_{G} U_{G} \alpha A\right)=\Gamma \\
& \frac{\partial \rho_{G} U_{G} \alpha}{\partial t}+\frac{1}{A} \frac{\partial}{\partial z}\left(\rho_{G} U_{G}^{2} \alpha A\right)-\Gamma U_{I}=-\alpha \frac{\partial P}{\partial z}-\rho_{G} \alpha g \sin \theta-F_{w G}-F_{I}+F_{V M} \\
& \frac{\partial}{\partial t}\left[\rho_{G} \alpha\left(e_{G}-\frac{P}{\rho_{G}}\right)\right]+\frac{1}{A} \frac{\partial}{\partial z}\left[\rho_{G} e_{G} U_{G} \alpha A\right]-\Gamma e_{G I}+P \frac{\partial \alpha}{\partial t} \\
& -\frac{p_{\text {heat, } G} q_{w}^{\prime \prime}}{A}+\frac{p_{I} q_{G I}^{\prime \prime}}{A}-\dot{q}_{v, G} \alpha+\left(F_{I}-F_{V M}\right) U_{I}=0
\end{aligned}
$$

