Flow Regime Map

*» Co-current Flow in a Near-Horizontal Tube
v Intermittent flow: Mishima and Ishii (1980)

g(pL — pG) (7.33)

Ug— UL = 0.487\/ (Dg — hy)
PG

— A larger U; — U, value leads to the development of intermittent flow.

v" For the transition from intermittent to bubbly flow

= Forces caused by turbulence >> buoyancy — prevent coalescence
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EXAMPLE 7.3. Water and air under atmospheric pressure and room temperature con-
ditions flow co-currently in a long horizontal pipe that is 5 cm in diameter, under
equilibrium conditions. The superficial velocities are j; = 0.1m/s and jg = 1.0 m/s.
Determine the two-phase flow regime in the pipe.

SOLUTION. The properties are similar to those calculated in Example 71. Since equi-
librium conditions apply, we need to find the equilibrium stratified flow parameters
first. The following equations are therefore solved simultaneously by trial and error:
(722),(723),(724),(725) with fj replaced with f,(726),and (727). Other equations

=

arejL = UL(l - ﬂ!),jc, = U{]&,ﬁ]: CgREG L= C]__REim, and

Reg = pcDcUc/1LG.

Rep = pLDLUL/pL.
27 — (y —siny)

D =

O T 2 —y +2sin(y/2)
y —siny

Dy = _

L Yy + 2sin(y /2)

pL=yD/2,

pc = (2m —y)D/2,
p1= Dsin(y /2)
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The iterative solution of these equations leads to

hy = 0.036m,
a = 0.227,

Us = 4.14m/s,

Up = 0.129m/s.

We can now examine the criterion of Mishima and Ishii, Eq. (733). The right-hand
side of the latter equation 1s found to be 5.21 m/s, which 1s clearly larger than Ug —
Up.. A regime transition out of stratified flow does not occur, and therefore the flow
pattern is stratified.

The right-hand side of Eq. (728) is calculated to be 0.165 m/s. Since Ug >
0.165 m/s, therefore the flow pattern is stratified wavy.

An alternative to Eq. (733) is Eq. (731). Instead of Eq. (731), however, we will
use the criterion of Eq. (732), which is essentially a curve fit to the results of Eq. (731)
for the critical conditions for horizontal flow. Thus,

: . 0.9 0.1 0.5
x=—28S  _po117. x, = (l _x) (ﬁ) (p—G) — 2.745.
PGJG + PLJL X ¥ PL

From Eq. (7.30), we get Fr = 0.0493. The right-hand side of Eq. (7.32) is calculated to
be 0.1388. We thus have the following condition, which implies that the flow regime
1s stratified:

1 2
Fr < ( ) )
0.65 + 'l.ll)ft[['-6
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< Two-phase flow in an inclined tube (Barnea, Taitel, and co-workers)

v" Unified model for all pipe angles
v" Bubbly-slug

= a stable bubbly flow becomes impossible if the rise velocity of Taylor bubbles is lower
than the velocity of regular bubbles

1/4
A X
%8 p] sin @

2

0.35,/gDsin6 + 0.54,/gD cos 6 < 1.53[
PL

0.35,/gD < 1.53[gApa/pi]/*  For vertical tube

v" Transition to the finely dispersed bubbly flow regime
dB < dcb and dB < dcr

3/5 0.4 1V2 3oL f ]-2
_ 12\( 2 25 dy =2 —- | ,dgy =2 M
iy =075 +415007) () e, da =2 ] = 2 T

dP 2 . _
£ = _(d_) j= ﬂ,ﬂ fm = 0.046(jD/vy) ™2
/i D
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< Two-phase flow in an inclined tube (Barnea, Taitel, and co-workers)

v" Disruption mechanism of annular flow regime
= The formation of lumps of liquid (likely to happen when liquid film is very thick)
= Film instability

v" Separated flow momentum equation

w 1 1 . 28
Tpf-|_1:lpI +— ) — Apgsinh =0 A=nD/4, ps=nD, p1=JTD\/C_\£, (M=1——F
A A \l-a « D
1 i 3005k 1 i
= — = 1 s w— Jwax

* fg,fw: single-phase models

= Then, a can be obtained.
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< Two-phase flow in an inclined tube (Barnea, Taitel, and co-workers)

v" Disruption mechanism of annular flow regime

= Disruption of the annular flow regime for mechanism (a)

1
l—a > 5(1 — o )max, (1 — @)max = 0.48

= For mechanism (b),

0 28
81-_" Z 5]_-7’ crit a% e O‘ fOI" 6F,C1"it o = _ F‘F
F
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< History
v" Ishii (1975)

v Revankar and Ishii, 1992; Kocamustafaogullari and Ishii, 1995; Millies et al., 1996;
Morel et al., 1999; Wu et al,, 1998; Kim et al., 2002; Hibiki and Ishii, 2001; Ishii et
al., 2002; Sun et al., 2004a, b; Ishii and Hibiki, 2011

< Application to TH codes
v VIPRE-02, thermal-hydraulics code
v" CULDESAC, a three-fluid model for vapor explosion analysis

% Still in development
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< Number density equation

v Distribution function

—

f(Vp, X, Up, t) = distribution function of particles of the dispersed phase [in particles/m®(m/s)?]

v" Total number of particles per unit mixture volume at time t and location x

VP‘max UP.x‘max UP.y.max UP.z,max

np(x,t) = / / [ ] f(Vp, X, Up, t)dVpdUp »dUp ,dUp .

VP,min UP,x,min UP.y.min UP.z.min
v Assumption for simplicity: f= f(Vp, X,1)

O v (f) + 2 (dVP) ZS + Sph

ot oVp / \

Source and sink terms: collapse, breakup, coalescence Source term from phase change

VP.mux
VP max 3 - 1 — - —
™ qVy T V.plhm) = YR+ Ry Upm= — f Vo, %.0)0p(Vo, 5. 0)dVe

Vi min
P, HP

VP. min
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% Interfacial area transport equation

3 . d dv on 7
8—{+v.(fUP)+ T ( P) ZS + Sph 3—:+V~(”PUP.m) =D R+ Ry

v Multiplying the particle surface area, and integrating the product over the entire
distribution function 7

VP.mux
dayf 2 da
—L 4w aU = L) | — + V-(aUs) — f S+ Spn |ApdVp
o (apUr) = 3(0:)[3 (@Ug) — Opn | + Z; ph | ApdVp
VP,min J
Concept of Boltzmann Transport Equation Qpn - total volumetric gas generation rate from phase change

per unit mixture volume

Transport Equation of Number Density Distribution Function

Ap: the average surface area of the fluid particles that have

volume Vp
Multi-Size Group Model One-Group & Two-Group AT
V max =+ X =+
OCoalescence, Breakup 10X, 1) = V max
o (Ve X, 0 Ap(Ve)dVe

OPhase Change
OSystem Effect
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< Simplification of Interfacial area transport equation
v Major challenge: complexity of the source and sink terms

v" Bubbly flow for simplification

Vem VP max
f Y SjdVp =) R, f Y SjApdVe =) R;AAp
VP min J J Ve min I J

v Assumptions
= The coalescence of two equal-volume bubbles leads to a single bubble
= Breakup of a bubble leads to two-equal volume bubbles

= The bubbles resulting from nucleation have a diameter of dg,. at birth

CA 3 Ado — —0.413Ap for coalescence,
np = — . "7 10.2604p for breakup,
v = %(dSm/dC){ dsm = a_f (Sauter mean diameter),
I

6Vp \/3
dec = ( —) (volume-equivalent diameter).
a
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< Simplification of Interfacial area transport equation

1"'l:',mmc
"

da; - 2 (a]\ [ O - :
a7 + V-(ajlr) = 5 (E) |:§ + V(aUg) — Qph] + f (ZI: Sj + Sph)Apde

1'{P‘min

' "

daj o ay | do - : 1 (a)’ 2
rTy + V.(a;Uy) = 3., |:§ + V.i(aUg) — QPh:| + %(a_f) Zj:RI + mdg Rpn

% One-group IATE
v" Spherical and uniform bubble size
v" Uniform nucleation bubble size
v" Nucleation-generated bubbles that are much smaller than regular bubbles
v oden =ds Y =1/36m
v" Area averaging

— ﬁ i —
Oy = 99 Fere
@)
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< Based on steady-state adiabatic air-water experiments in vertical channel

v" Break-up by turbulent eddies
Cr1 = 0.085,

npl; We,, We,, We, = 6.0 (critical Weber number)
RTI = CT] EXp | — We 1-— We

We = prdpul /o (bubble Weber number).

= u,: the root mean square of turbulent velocity fluctuations

u, =\ Au? ~ 1.3813dy>

v" Collision-induced coalescence

2 dZ /3 1/3 . .
RRC — _CRE nPu[ . 1 _ exp C amaxa CRE — 0.004, amax — 0.75.
B al — a'P) b — 'l c=30

v" Coalescence by wake entrainment & phase change

Rwg = C\J\,rECU3 2 d%,|UG — Uy | Cwge = 0.002. QPh = ngRPc



|IATE (dynamic flow regime model)

% Two-group IATE
v" Five groups

= spherical, distorted, cap, Taylor, and irregular-shaped characteristic of the churn-
turbulent regime

v Two groups

= Spherical or distorted-spherical

= Larger bubbles: cap bubbles, Taylor bubbles, and irregular-shaped bubbles
v Boundary between distorted bubbles and cap bubbles

T (0}
Ve = —dp . d~c:4\/
6 s g(pL — p;)
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% Two-group IATE

day — 2 d 2 ﬂ” Jo — .
I.1 I sC I.1 1
— 4+ V. (a 11U = |z — + V. (iU —
9 (@ 11Ur1) [3 X( A 11) :| 1 [ a7 (1Ug 1) Qph.l]

+ Zfiﬁjxl + Pph,1
J

daf L 2af, [ L
s v . L U —_ _ s v . U .
Py + V- (ag,Ur2) 3, [ o + V- (2Ug2) Qph,2:|
ds-:: 2“?1 8“1 X :
‘ V- U —
+X(d5m*]) ” [Bt + V- (a1Ug.1) — Oph.1

+ Z¢j.2 + gbph,Zr
J

< Two momentum conservation equations or one momentum equation for
mixture of Group 1 and Group?2
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% Flow regime check using Barnea (1985
v" Draw the regime transition lines on the j, — j; map
v Check the change of the lines with the angles
v Plot the NEOUR-R data in the j; — j; map

v" Discuss
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Abstract—Data on flow pattern transitions are presented for upward gas-liquid flow in pipes at inclination
angles from 0-90°, Mathematical models previously presented for vertical and horizontal configurations are
now extended to cover the full range of pipe inclinations.

INTRODUCTION
Most of the data reported on flow pattern transitions
have dealt with either horizontal or vertical tubes with
only limited results reported for inclined pipes. Several
brave -

tal to vertical was recently investigated by Barnca et al.
(1982a, b).

The present work reports new data on flow pattern
transitions for upwnd flow of air-water in pipes

only one for
inclined pipes while others have exper-

havingi 90°. Flow pattern models

iments only over limited range of inclination angles.

Singh and Griffith (1970) investigated slug flow of
air and water at small upward inclination angles and
developed simple correlations for pressure drop and
holdup. Slug flow in inclined pipes was also treated by
Bonnecase er al. (1971) who reported data for
air-water at angles ranging over +10° from the
horizontal. Beggs and Brill (1973) developed a model
for the prediction of pressurc drop and holdup in
inclined pipes based on the use of holdup correlations.
for horizontal flow to which a correction factor for the
inclination angle is applied. Although data was taken
systematically in the full range of +90° i

for hori: and slightly in-
clined pipes (Taitel and Dukler, 1976) and vertical
upward flow (Taitc] et al, 1980) arc cxtcnded and
modified to p models for
the flow pattern transition boundaries over the entire
inclination range.

EXPERIMENTAL RESULTS
The cxperimental apparatus consisted of air and
water supply systems and test sections made of (wo
transparent Plexiglass tubes with i.d. of 2.5 and 5.1 em.
respectively. The tubes which were 10m long were
supported on a steel frame capable of varying the angle

angles, no flow pattern maps were reported. Gould et
al. (1974) published flow pattern maps for pipes which
were horizontal, vertical and inclined at 45°. They
concluded that the location of the transition bound-
aries for the dispersed bubble and annular flow pattern
do not vary significantly with inclination.
Experimentally determined flow pattern maps for
air-water in a 4.54 cm diameter pipe at angles from
vertical upward to vertical downwards were recently
reported by Spedding and quwn (1980).

of i in the full range from
horizontal to vertical. The flow patterns were de-
termined by visual observation and by oscilloscope
display using conductivity probes as suggested by
Barnea et al. (1980b).

The effect of the lnclln!uon angle on the flow
pattern il was by vary-
ing the incli le in small steps in f0°
to 90°. The flow pattern data are presented in Figs
1-16.

Small inati from the have a major

located for each
inclination angle for which daua were reported.

Weisman and Kang (1981) present data for
air-water and air-glycerol systems in slightly mchned
pipes and for freon-freon vapor systems at
angles of 30°, 45° and 90°. Empirical corrclations were
proposed for the transitions to o the annular, dispersed
bubble and between the intermittent and bubble flow
patterns.

Experimental measurements of flow patterns in
slightly inclined pipes were reported by Barnea et al.
(1980a). The effect of angle on the patterns for
downward flow at inclinations ranging from horizon-

effect on the transition from stratified to intermittent
or annular pattern. Such inclinations cause intermit-
tent flow to take place over a much wider range of flow
rates (Figs 3-16). The stratified-intermittent transition
is very sensitive to the angle of inclination. Even for
upward slopes of less than 1° the regime of stratified
flow shrinks into a small dome shaped region (sec Figs
3 and 4). The stratified-smooth pattern is not observed
except for angles of less than 0.25° For values of
Uy, > 0,001 stratified flow is not observed at all at
angles greater than about 20°.

For these small angles the intermittent-annular
transition passes to the left of the dome (see Figs 3-8).



