8.4 General Remarks about Local Pressure Drops

< Flow disturbances: irreversible loss of fluid mechanical energy into heat
v' Bends, orifices, valves, flow area changes
v" Dissipation processes: complicated and multi-dimensional

v In 1D modelling, local and sudden pressure drops
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8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances

< Flow-area contraction followed by an expansion
v" Horizontal configuration, incompressible flow, no frictional loss, 1D flow, etc.
v" Area ratio (ratio between smaller and larger flow areas): o, = A2/A; and o4 = Ay/A;
v Mass continuity: Ui/U, = o)
v" Bernoulli equation

= |deal, reversible flow, no loss in the vicinity of the flow area change
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The irreversible pressure drop is difficult to find from theory.
We often rely on empirical correlations for its calculation.




8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances

% Single-Phase Flow Pressure Drop across a Sudden Expansion

v Irreversible pressure loss for a simple expansion

v" Momentum conservation
PlA; — PA) = pAUr(Uy — Uy) (P, — P,) = APy = pUios(o4 — 1)

v" Reversible mechanical energy equation
P+ E:OU] =Py + EPUZ (P —P)r = APrex = EpUl (05 —1)
v Irreversible pressure loss and loss coefficient

1 1
(Pr—P 1 =AP=(1- UA)ZEPUE AP = KipUrif

K: Loss coefficient

Koy = (1 — gA)Z Ures: average velocity in the smallest channel
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8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances

% Single-Phase Flow Pressure Drop across a Sudden contraction

v" Irreversible pressure loss for a simple contraction

1
| e

= Vena-contracta phenomena (point C)

— lrreversible losses between point C and 2 by sudden expansion

1 1
(P — Po)rR = APrex = E,c)lj’l‘-’:(cr;?i — 1) For expansion AP = Kipyéf K., = (1—0y4)>?
1 2 . I 5 1 2
APR con = E,(:.‘U2 (1 . UA) For contraction AP con = oonEPUz- Keon = o 1
C

= Contraction coefficient, C,

1— o4 o~ |042(1—04) foros <058
=1 8 —oa) + 05371 ol —04)?  foros > 058
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% For other pressure drops AP = K5 pUry




8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances

% Single-Phase Flow Pressure Drop across a Sudden contraction

Flow disturbance K
45° bend 0.35t0 0.45 I
90° bend 0.50 to 0.75 —
Regular 90° elbow K =149 Re 0% —
45° standard elbow 0.17 to 0.45 1
180° return bend, flanged 0.2 Ent " 1 it .
180° return bend, threaded 15 firance from a plenum into a pipe
Sharp edged 0.5
| | Slightly rounded 0.23
= my Well-rounded 0.04
- = Projecting pipe 0.78
Line flow, flanged tee 0.2 Exit from pipe into a plenum 1.0
Line flow, threaded tee 0.9 |
—
1) =
——
@ ULes is the mean velocity in the pipe.
Branch flow, flanged tee Lo b Frofm various sources, irfcludingp“r;hite (1999) and Munson er al. (1998).
Branch flow, threaded tee 2.0
Fully open gate valves 0.15
t-closed gate valve 0.26
Half-closed gate valve 21
2-closed gate valve 17
Open check valves 3.0
Fully open globe valve 6.4
Half-closed globe valve 9.5
Fully open ball valve 0.05
1-closed ball valve 5.5

2-closed ball valve 210




8.6 Two—Phase Flow Local Pressure Drops

< Two-phase multiplier

AP = &PL()(I)]_D = APG()(I-"G{) = APLCI)L = APG(DG (_g)ﬂ = (bé(_?i_f)fng (_Z_f)f,ﬁ: 4fGDLH($;G)z
< Sudden expansion (—aa—P)- ‘Dw(—Z—P) (—3—1))— fw%%%

v" Steady-state, uniform phasic velocity

v" Mass and momentum conservation !
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v" Momentum density
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v" For incompressible fluids and for a two-component mixture: x; =x;,anda; =
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8.6 Two—Phase Flow Local Pressure Drops

v" Reversible and irreversible pressure drop components

= Mechanical energy conservation for reversible flow

1
Pi{[aUc + (1 —a)UL]A}, + E{[,au:,i',‘f(l —a) + pcUGa A},

1
= P{laUc + (1 - )ULJA}, + 5{[pc UL — @) + pcUga]Al,

. plULd =) =Gi(1 —x1) pcUsa) = Gix;, GiA| = GLA, APRex =P — P
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= For homogeneous flow,

GZ
API,ex = 2—1(1 - 0.31)[1 ‘+’x(PL/pG - 1)]
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v Wang etal (20100 sp _Ap 4@ -2)049) Bd= (n=pc)gD?

(WeBd)2(1x)°-3 1 we_ G°D
Q= e =y €=
Rerg x Fr08 O Ph 506 < G < 5642kg/m?-s; 0.002 < x < 0.99; 0.057 < a5 < 0.607
e\ Fr G 0.84 < D < 19mm; 0.095 < Bd < 92; 10.3 < Fr < 9.19 x 10°
Q= O'Z(Z) pgD 100 < We < 8.3 x 10%4.35 x 10 < Repg < 4.95 x 10°.
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8.6 Two—Phase Flow Local Pressure Drops

+»» Sudden contraction

- -1
_ o) e (1 2 1 -0 2
AP =P — P, =G5 {2 — (C2 O'A)—I—E(ICC)} p—_pL(l_a)+pGa
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v" Strong mixing is caused by the contraction — homogeneous flow assumption

1G> 2
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v" Total pressure drop

AR::c:-n = APLO,con(D]_D.{:ona

1G? 2
AP con — — -1 1-— 2
Lo, 2 oL |:(CC ) + ( O'A):|

b9 =1+x(pL/pg —1).



8.6 Two—Phase Flow Local Pressure Drops

% For various geometry
v" Orifices

02
Pro = [1+x(oL/pc — 1)]0'8[1 +x (pLMG — 1):| -
PGHL

v" Spacer grids in rod bundles

0.8 3.50L "
@9 =[1+x(oL/pG —1)] |:1 +x ( P 1)]

v" Return bends
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8.6 Two—Phase Flow Local Pressure Drops

EXAMPLE 8.2. Calculate the total pressure drop in the system shown in Fig. 8.8 , for
air-water mixture flow with the following specifications: pipe diameter D = 3.7 cm,
liquid mass flux Gy = 1500 kg/m?-s, gas mass flux Gg = 130 kg/m? s, temperature
T = 25°C, and average pressure P = 10 bars. Assume that the piping system lies in
a horizontal plane.

SOLUTION. For properties we get pp = 997.5kg/m?, pg = 11.7kg/m?, up = 8.93 x
104 kg/m-s,and pug = 1.85 x 10~ kg/m-s.

For the bend, we can use the correlation of Chisholm, Egs. (8.96)—(8.98). For the
90° bend, let us use Ky = 0.75.Noting that G, = 1500 kg/m2 -sand Gg = 130 kg/m2 .S,
we get

2
AP vena = K %ﬂ — 845.9N/m?, 0

PL
1 2 300 cm

A

Gs 2
APs pong = Ko=—2 = 542.1 Nim?,
2 pG

X — [APL.bend
AFG.vend

With R = 0.3 m and D = 0.037 m, Eq. (8.98) gives C; = 1.29. Equation (8.82) leads
to C = 12.04. The flow quality is

1/2
] = 1.249.

Gg
x = ———=100797.
G + GL
Equation (8.98) then gives C, = 1.29. Using this value, we can then solve Eq. (8.97),
leading to C = 12.04. Equation (8.96) can now be applied to get 1y = 11.2. The total

pressure drop in the bend will then be




8.6 Two—Phase Flow Local Pressure Drops

APyeng = PLoAPL) bend = CDLOKU% (G + Ga)® = 11196 N/m>.
PL

We now need to calculate the pressure drop in the straight segment of the pipe. Let
us use the method of Chisholm et al., Eq. (8.28),

GgD

Reg = =2.6x 10°,
HG

Re; = GLD _ 6510,
ML

Clearly, both phases are turbulent; therefore C = 20 should be used in Eq. (8.28). The
Martinelli parameter can be found from Eq. (8.27),leading to X= 1.44. Application
of Eq. (8.28) then gives ®? = 15.35. The pressure drop in the straight segment can

be found by writing

fi =0.316 Re;"* = 0.020

and so
L Gi

= 2.81 x 10* N/m?2.
2.0L

APstralght - (I)LAPL - (b‘;:fL

The total pressure drop will thus be

APtot APbend + AR.slr:;n;._:,ht = 3.93 x 104 me




8.6 Two—Phase Flow Local Pressure Drops

EXAMPLE 8.3. Ammonia with a mass flow rate of 35 g/s, a quality of 2% and a tem-
perature of —25 °C flows in a horizontal tube with 6 mm inner diameter. The tube
has a surface roughness of 1.5 um. Find the frictional pressure gradient. Also, a gate
valve is installed on the tube. The valve has a flow diameter that is equal to the inner
diameter of the tube, and is half open. Calculate the pressure loss caused by the gate
valve, using the HEM assumption.

SOLUTION. We deal with a saturated mixture of liquid and vapor ammonia at —25 °C.
The saturation pressure of ammonia at this temperature is 1.504 bars. Other relevant
properties are

pr = 671.7kg/m?-s

pe = 1.287kg/m?-s

g = 2.289 x 10~4kg/m-s
le = 8.295 x 10~6 kg/m-s
h, = 1.345 x 10° J/kg.

We now calculate the mass flux and the homogeneous void fraction.
X . Pglh
1.0—x  pr(1—ay)
A =n1D?*/4 = 7(0.006m)?/4 = 2.827 x 107> m?
G =m/A = (35 x107kg)/(2.827 x 107> m?) = 1238 kg/m”-s.

= o, = 0.914

To find the frictional pressure gradient, let us use the method of Beattie and Whalley
(1982)




8.6 Two—Phase Flow Local Pressure Drops

1
pp = ————— = 58.84kg/m’ s
x/pg +

L3

prp = appg + pue(1 — ) (1 +2.5a,) = 7.215 x 107> kg/m-s
GDy

TP

Rerp = = 1.029 x 10°.

Following the recommendation of Beattie and Whalley (1982) we will apply the Cole-
brook equation (Eq. (8.23)), noting that

ep/D = (1.5 x 107°m)/(0.006 m) = 2.5 x 10~
Iterative solution of Eq. (8.23) then gives
f =0.0159.
The frictional pressure gradient can now be found

Ve 11G2 1 1 (1238 ke/m?-s)*
(——) _pLlle :0.0191( )-( gm’ s)
0z). ' D2 pmw 0.006m ) 2 58 84kg/m?-s

= 4.147 x 10* N/m°>.

We now calculate the pressure drop across the valve. The all-liquid velocity through
the valve, when it is fully open, will be

1238 kg/m?-s

U = =
=G/t = e T kgm

= 1.843 m/s.




8.6 Two—Phase Flow Local Pressure Drops

This is the reference velocity that should be used for calculating the pressure drop
across the valve. From Table 8.1 the loss coefficient for the half-open gate valve is
2.1. Assuming homogeneous flow, the pressure drop across the valve (which is the
same as the pressure loss if we assume that phase density variations across the valve
remain unchanged) can be found as

1 1
APy = szfuf%) =21 (5) (671.7 kg/m) (1.843 m/s)* = 2395 N/m?

®g = 1.0+ x (pr/pg — 1.0) = 1.0 + (0.02) [(671.7/1.287) — 1] = 11.42
APvalve = q)foAPfo =2.73 x 103 N-,"I'Il2




