Losses in Fuel Cells

Fuel Cell Charge Transport

Mass Transport

Convection dominant in flow channels

Diffusion dominant in electrode

Diffusion In Electrode

Limiting Current Density

$$j_L = nFD^{eff} \frac{c_R^0}{\delta}$$

Typical values for δ are around $100-300\mu m$ and D^{eff} are around $10^{-2}cm^2/s$. Therefore typical limiting current densities are on order of $1-10A/cm^2$. This

- To increase j

- 1. Ensuring a high c_R^0 (by designing good flow structures that evenly distribute reactants).
- 2. Ensuring that D^{eff} is large and δ is small (by carefully optimizing fuel cell operating conditions, electrode structure, and diffusion layer Q: Are 1 & 2 are easy?

Q: Does anode has larger j_1 ?

Diffusivity & Effective Diffusivity

Diffusivity from kinetic theory

$$p \cdot D_{ij} = a \left(\frac{T}{\sqrt{T_{ci}T_{cj}}}\right)^b (p_{ci}p_{cj})^{1/3} (T_{ci}T_{cj})^{5/12} \left(\frac{1}{M_i} + \frac{1}{M_j}\right)^{1/2}$$

Substance	Molecular Weight, M	$T_c(K)$	$p_c(\text{atm})$
H_2	2.016	33.3	12.80
Air	28.964	132.4	37.0
N_2	28.013	126.2	33.5
O_2	31.999	154.4	49.7
CO	28.010	132.9	34.5
CO_2	44.010	304.2	72.8
H_2O	18.015	647.3	217.5

Effective diffusivity

$$\begin{aligned} D_{ij}^{eff} &= \epsilon^{1.5} D_{ij} \\ D_{ij}^{eff} &= D_{ij} \frac{\epsilon}{\tau} \end{aligned} \qquad D_{ij}^{eff} &= \epsilon^{\tau} D_{ij} \end{aligned}$$

Nernst Effect

$$\begin{split} E &= E^0 - \frac{RT}{nF} \ln \frac{\prod a_{PRODUCTS}^{v_i}}{\prod a_{REACTANTS}^{v_i}} \\ \eta_{conc} &= E_{Nernst}^0 - E_{Nernst}^* \\ \eta_{conc} &= \left(E^0 - \frac{RT}{nF} \ln \frac{1}{c_R^0}\right) - \left(E^0 - \frac{RT}{nF} \ln \frac{1}{c_R^*}\right) \\ \eta_{conc} &= \frac{RT}{nF} \ln \frac{c_R^0}{c_R^*} \\ c_R^* &= c_R^0 - \frac{j\delta}{nFD^{eff}} \\ c_R^* &= \frac{j_L\delta}{nFD^{eff}} - \frac{j\delta}{nFD^{eff}} \\ c_R^* &= \frac{j_L}{nFD^{eff}} - \frac{j\delta}{nFD^{eff}} \\ \frac{c_R^0}{c_R^*} &= \frac{j_L}{j_L - j} \end{split}$$

$$\eta_{conc} = \frac{RT}{nF} \ln \frac{j_L}{j_L - j}$$

Concentration Effect

B-V for high current density

$$j = j_0^0 \left(\frac{c_R^*}{c_R^{0*}} e^{\left(\frac{\alpha n F \eta_{act}}{RT}\right)} \right)$$
$$\eta_{act} = \frac{RT}{\alpha n F} \ln \frac{j c_R^{0*}}{j_0^0 c_R^*}$$

$$\eta_{conc} = \eta_{act}^* - \eta_{act}^0$$

$$\eta_{conc} = \left(\frac{RT}{\alpha nF} \ln \frac{jc_R^{0*}}{j_0^0 c_R^*}\right) - \left(\frac{RT}{\alpha nF} \ln \frac{jc_R^{0*}}{j_0^0 c_R^0}\right)$$

$$\eta_{conc} = \frac{RT}{\alpha nF} \ln \frac{c_R^0}{c_R^*}$$

$$\eta_{conc} = \frac{RT}{\alpha nF} \ln \frac{j_L}{j_L - j}$$

Mass Transportation Loss

Adding two losses

$$\eta_{conc} = \frac{RT}{nF} \ln \frac{j_L}{j_L - j} + \frac{RT}{\alpha nF} \ln \frac{j_L}{j_L - j}$$
$$\eta_{conc} = (\frac{RT}{nF})(1 + \frac{1}{\alpha}) \ln \frac{j_L}{j_L - j}$$

Pictorial View

Pictorial View

A Very³ Tricky Example

PEMFC with or without temperature control

Convection

Viscosity

Temperature effect

$\mu \qquad T > n$	Gas	$\mu_0(10^{-6} (\text{kg/m} \cdot \text{s}))$	$T_0(\mathbf{K})$	n	\mathbf{S}
$- \approx (\frac{1}{2})^{n}$ or	Air	17.16	273	0.666	111
$\mu_0 \qquad T_0$	CO_2	13.7	273	0.79	222
	CO	16.57	273	0.71	136
	N_2	16.63	273	0.67	107
$T \rightarrow T + S$	O_2	19.19	273	0.69	139
$\frac{\mu}{1} \approx \left(\frac{1}{1}\right)^{1.5} \frac{10 + 5}{10 + 5}$	H_2	8.411	273	0.68	97
$\mu_0 \stackrel{\sim}{}^{} T_0 \stackrel{\prime}{}^{} T + S$	$H_2O(vapor)$	11.2	350	1.15	1064

Mixture

$$\mu_{mix} = \sum_{i=1}^{N} \frac{x_i \mu_i}{\sum_{j=1}^{N} x_j \Phi_{ij}} \qquad \Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j}\right)^{-1/2} \left[1 + \left(\frac{\mu_i}{\mu_j}\right)^{1/2} \left(\frac{M_i}{M_j}\right)^{1/4}\right]^2$$

Viscosity: Example

Example 5.1 Consider a fuel cell operating at $80^{\circ}C$. In the cathode, humidified air at 1 atm is supplied with a water vapor mole fraction of 0.2. If the fuel cell employs circular channels with a diameter of 1 mm, find the maximum tolerable air velocity that still ensures laminar flow.

$$\mu_{N_2}|_{80^\circ C} = \mu_0 \left(\frac{T}{T_0}\right)^n = 16.63 \left(\frac{353.15}{273}\right)^{0.67} = 19.76 \times 10^{-6} \ kg/m \cdot s \quad (5.37)$$

Similarly, we can obtain $\mu_{O_2}|_{80^{\circ}C} = 22.92 \times 10^{-6} \ kg/m \cdot s$ and $\mu_{H_2O}|_{80^{\circ}C} = 11.32 \times 10^{-6} \ kg/m \cdot .$

Species	Mole fraction, x_i	Molecular	Viscosity,
		Weight, M_i	$\mu_i(10^{-6}kg/m\cdot s)$
1. N_2	0.8×0.79=0.632	28.02	19.76
2. O_2	$0.8 \times 0.21 = 0.168$	32.00	22.92
3. H_2O	0.200	18.02	11.32

Viscosity: Example

Species i	Species j	M_i/M_j	μ_i/μ_j	Φ_{ij}	$x_j \Phi_{ij}$	$\sum_{j=1}^{3} x_j \Phi_{ij}$
1. N ₂	1. N_2	1.000	1.000	1.000	0.632	
	2. O_2	0.876	0.862	0.930	0.156	1.059
	3. H_2O	1.555	1.746	1.356	0.271	
2. O ₂	1. N_2	1.142	1.160	1.079	0.682	
	2. O_2	1.000	1.000	1.000	0.168	1.146
	3. H_2O	1.776	2.025	1.482	0.296	
3. H ₂ O	1. N_2	0.643	0.573	0.776	0.491	
	2. O ₂	0.563	0.494	0.732	0.123	0.814
	3. H_2O	1.000	1.000	1.000	0.200	

$$\mu_{mix} = \left(\frac{0.632 \times 19.76}{1.059} + \frac{0.168 \times 22.92}{1.146} + \frac{0.200 \times 11.32}{0.814}\right) \times 10^{-6}$$
$$= 17.93 \times 10^{-6} \ kg/m \cdot s$$

Viscosity: Example

$$M_{mix} = \sum_{i=1}^{N} x_i M_i = 0.632 \times 28.02 + 0.168 \times 32.00 + 0.200 \times 18.02 = 26.69 \ g/mol$$

$$\rho = \frac{p}{\frac{R}{M_{mix}}} = \frac{101325 \ Fa}{\frac{8.314J/mol \cdot K}{0.02669kg/mol} \ (273.15 + 80)T} = 0.921 \ kg/m^3$$

Roughly, laminar flow holds for Re $\sim~2000,~thus:$

$$V max = \frac{Re^{max} \ \mu_{mix}}{\rho \ L} = \frac{2000 \times (17.93 \times 10^{-6} \ kg/m \cdot s)}{(0.921 \ kg/m^3) \times (0.001 \ m)} = 38.03 \ m/s \tag{5.39}$$

This is very fast flow considering the channel is only 1 mm in diameter.

In general, flow in fuel cell is laminar.

Pressure Drop In Flow Channels

 $D_h = \frac{4A}{P} = \frac{4 \times cross \ section \ area}{perimeter}$

Convective Mass Transport

$$J_{C,i} = h_m(\rho_{i,s} - \bar{\rho}_i)$$

$$h_m = Sh \frac{D_{ij}}{D_h}$$

		α^*							
Cross section		0.2	0.4	0.7	1.0	2.0	2.5	5.0	10.0
<u>ر</u> ه	Sh_D		4.36						
ᡃᠮᢩᢣᢪ	Sh_F		3.66						
2h	Sh_D	4.80	3.67	3.08	2.97	3.38	3.67	4.80	5.86
[┲] ╋╇╋╋	Sh_F	5.74	4.47	3.75	3.61	4.12	4.47	5.74	6.79
	Sh_D	0.83	1.42	2.02	2.44	3.19	3.39	3.91	4.27
₩	Sh_F	0.96	1.60	2.26	2.71	3.54	3.78	4.41	4.85

- 1. The catalyst layer is infinitely thin.¹
- 2. Water exists only in the vapor form.
- 3. Diffusive mass transport dominates in the diffusion layer. Furthermore, only y-direction diffusion in considered.
- 4. Convection dominates in the flow channel.
- 5. Flow velocity in the channel is constant.

$$\begin{split} \hat{J}_{O_2}|_{x=X,y=C}^{rxn} &= M_{O_2} \frac{j(X)}{4F} \\ \hat{J}_{O_2}|_{x=X,y=E}^{diff} &= -D_{O_2}^{eff} \frac{\rho_{O_2}|_{x=X,y=C} - \rho_{O_2}|_{x=X,y=E}}{H_E} \\ \hat{J}_{O_2}|_{x=X,y=E}^{conv} &= -h_m \left(\rho_{O_2}|_{x=X,y=E} - \bar{\rho}_{O_2}|_{x=X,y=channel}\right) \\ \hat{J}_{O_2}|_{x=X,y=C}^{rxn} &= \hat{J}_{O_2}|_{x=X,y=E}^{diff} &= \hat{J}_{O_2}|_{x=X,y=E}^{conv} \end{split}$$

$$\hat{J}_{O_2}|_{x=X,y=E}^{conv} = M_{O_2} \frac{j(X)}{4F}$$

$$\rho_{O_2}|_{x=X,y=C} = \rho_{O_2}|_{x=X,y=E} - M_{O_2} \frac{j(X)}{4F} \frac{H_E}{D_{O_2}^{eff}}$$

$$\rho_{O_2}|_{x=X,y=E} = \bar{\rho}_{O_2}|_{x=X,y=channel} - M_{O_2} \frac{j(X)}{4F} \frac{1}{h_m}$$

$$\begin{aligned} u_{in}H_C\bar{\rho}_{O_2}|_{x=0,y=channel} - u_{in}H_C\bar{\rho}_{O_2}|_{x=X,y=channel} &= \int_0^{\infty} \left(\hat{J}_{O_2}|_{y=E}^{conv}\right) d\mathbf{\tilde{x}}.60\\ Amount of \ gas & Amount \ \ g$$

$$\int_{0}^{X} \left(\hat{J}_{O_2} |_{y=E}^{conv} \right) dx = \int_{0}^{X} \frac{M_{O_2} j(x)}{4F} dx$$

$$\begin{split} \rho_{O_2}|_{x=X,y=C} &= \bar{\rho}_{O_2}|_{x=0,y=channel} - \frac{M_{O_2}}{4F} \left(\frac{j(X)}{h_m} + \frac{H_E j(X)}{D_{O_2}^{eff}} + \int_0^X \frac{j(x)}{u_{in}H_C} dx\right) \\ \rho_{O_2}|_{x=X,y=C} &= \bar{\rho}_{O_2}|_{x=0,y=channel} - M_{O_2} \frac{j}{4F} \left(\frac{1}{h_m} + \frac{H_E}{D_{O_2}^{eff}} + \frac{X}{u_{in}H_C}\right) \end{split}$$

A More Realistic Alternative Solution

$$\rho_{O_2}|_{x=X,y=C} = \bar{\rho}_{O_2}|_{x=0,y=channel} - \frac{M_{O_2}}{4F} \left(\frac{j(X)}{h_m} + \frac{H_E j(X)}{D_{O_2}^{eff}} + \int_0^X \frac{j(x)}{u_{in}H_C} dx\right)$$

A More Realistic Alternative Solution

If constant Voltage instead of constant current is assumed

$$j = j_0^0 \frac{c_R^*}{c_R^{0*}} e^{\alpha n F \eta / RT}$$
$$\frac{dc(x)}{dx} = -Bj(x) = -Bj_0^0 \frac{c(x)}{c^0} e^{\alpha n F \eta / RT} = ac(x)$$
$$c(x) = Ae^{-ax}$$
$$c(0) = c_{in} = A$$
$$j(x) = Ke^{-ax}$$

- •Current drop Exponentially
- Concentration also drop exponentially

•HW 5.10

Flow Channel Design

- High electrical conductivity
- High corrosion resistance
- High chemical compatibility
- High thermal conductivity
- High gas tightness
- High mechanical strength
- Low weight and volume
- Ease of manufacturability
- Cost effectiveness

PEMFC Flow Channel Design

PEMFC Flow Channel Design

Toyota Metal Mesh Flow Field

