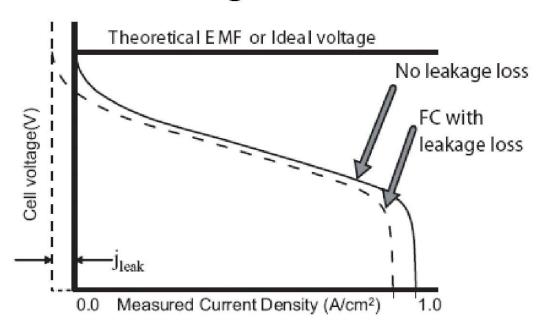

Losses in Fuel Cells

Fuel Cell Modeling

Basic Fuel Cell Model

$$V = E_{thermo} - (a_A + b_A \ln j) - (a_C + b_C \ln j) - (jASR_{ohmic}) - \left(c \ln \frac{j_L}{j_L - j}\right)$$

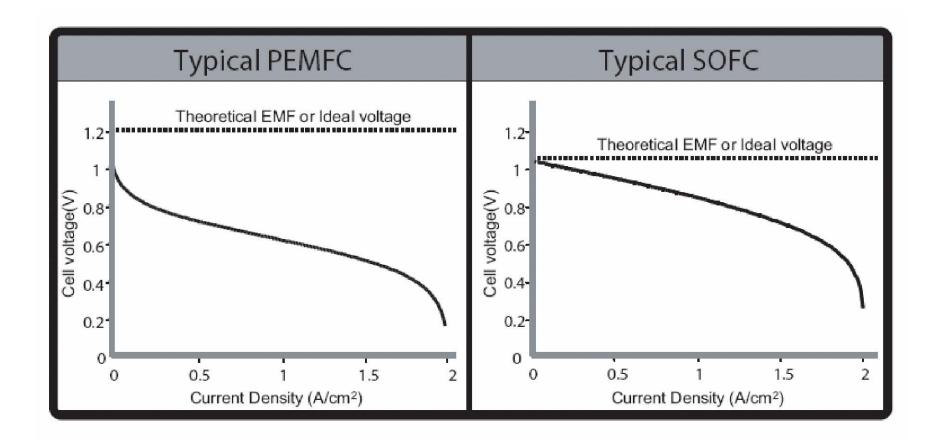

Basic Fuel Cell Model

$$V = E_{thermo} - (a_A + b_A \ln j) - (a_C + b_C \ln j) - (jASR_{ohmic}) - \left(c \ln \frac{j_L}{j_L - j}\right)$$

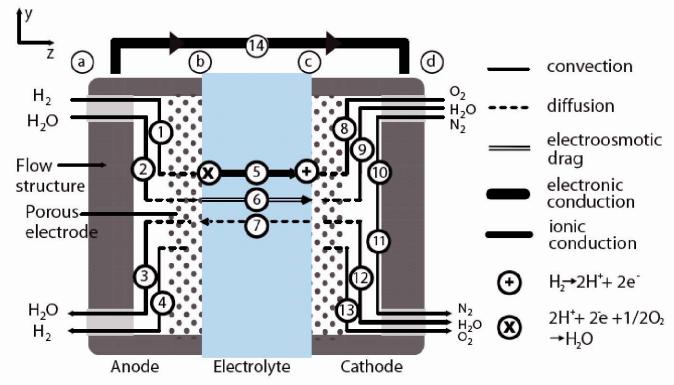
- η_{act} = (a_A+b_A ln j)+(a_C+b_C ln j): The activation losses from both the anode (A) and the cathode (C) based on the natural logarithm form of the Tafel Equation (equation 3.41).
- $\eta_{ohmic} = jASR_{ohmic}$: The ohmic resistance loss based on current density and area specific resistance (Equation 4.11).
- $\eta_{conc} = c \ln \frac{j_L}{j_L j}$: The combined fuel cell concentration loss based on equation 5.25, where c is an empirical constant.

Only valid for j>>j0

Leakage Current

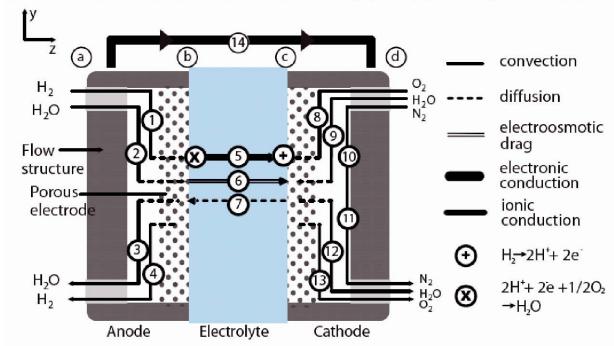

$$j_{gross} = j + j_{leak}$$

$$V = E_{thermo} - (a_A + b_A \ln (j + j_{leak})) - (a_C + b_C \ln (j + j_{leak}))$$
$$-(jASR_{ohmic}) - \left(c \ln \frac{j_L}{j_L - (j + j_{leak})}\right)$$


Typical Parameters

Parameter	Typical Value for PEMFC	Typical Value for SOFC
Temperature	350 K	1000 K
E_{thermo}	1.22 V	1.06 V
j_0 (H_2)	$0.10 \; {\rm A}/cm^2$	$10 \text{ A}/cm^2$
$j_0 (O_2)$	$10^{-4} \text{ A}/cm^2$	$0.10 \; \mathrm{A}/cm^2$
$\alpha (H_2)$	0.50	0.50
$\alpha (O_2)$	0.30	0.30
ASR_{ohmic}	$0.01~\Omega cm^2$	$0.04~\Omega cm^2$
j_{leak}	$10^{-2} \ A/cm^2$	$10^{-2} \ A/cm^2$
j_L	$2 \text{ A}/\text{cm}^2$	$2 \text{ A}/\text{cm}^2$
c	0.10 V	0.10 V

Typical High & Low Temperature Fuel Cells

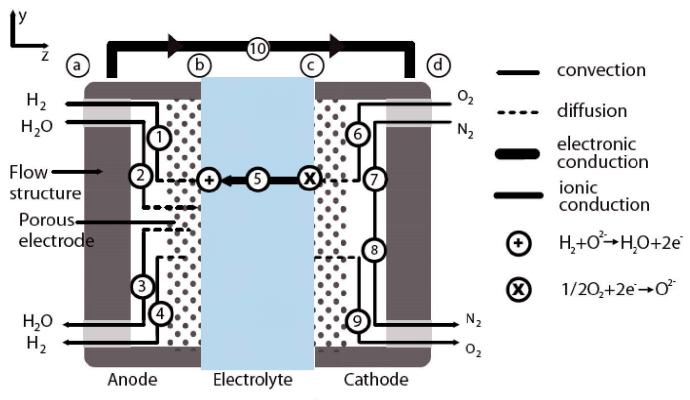

1-D Fuel Cell Model: PEMFC

(a) In a PEMFC, water (H_2O) and proton (H^+) transport through the electrolyte.

$$flux \ 14 = flux \ 5 = flux \ 1 - flux \ 4 = flux \ 8 - flux \ 13$$

$$\frac{j}{2F} = \frac{J_{H^+}}{2} = J_{H_2}^A = 2J_{O_2}^C = S_{H_2O}^C$$

1-D PEMFC Model: Water Flux


(a) In a PEMFC, water (H_2O) and proton (H^+) transport through the electrolyte.

$$flux\ 2 - flux\ 3 = flux\ 6 - flux\ 7 = flux\ 12 - flux\ 9 - flux\ 5$$
 anode membrane cathode

$$J_{H_2O}^A = J_{H_2O}^M = J_{H_2O}^C - \frac{j}{2F}$$
 $\alpha = \frac{J_{H_2O}^M}{\frac{j}{2F}}$

$$\frac{j}{2F} = \frac{J_{H^+}^M}{2} = J_{H_2}^A = 2J_{O_2}^C = \frac{J_{H_2O}^A}{\alpha} = \frac{J_{H_2O}^M}{\alpha} = \frac{J_{H_2O}^C}{1+\alpha}$$

1-D Fuel Cell Model: SOFC

(b) In a SOFC, oxygen $ions(O^{2-})$ transport through the electrolyte.

$$\frac{j}{2F} = J^M_{O^{2-}} = J^A_{H_2} = 2J^C_{O_2} = -J^A_{H_2O}$$

Full Model

Domains	Phenomena	Convection	Diffusion	Conduction	Electrochemical Reaction
Domains		$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l)	$^{(2)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l)	(3) _e -	, ,
	Flow Channels	$^{(1)}H_2, H_2O_{(g)}$	$^{(2)}H_2, H_2 O_{(g)}$	$^{(3)}e^{-}$	
Anode	Electrode	$^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(6)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l)	(3) _e -	
Thous	Moderodo	$^{(1)}H_2, H_2O_{(g)}$	$H_2, H_2 O_{(g)}$	(3)(5) e ⁻ ,O ²⁻	$^{(5)}H_2 + O^{2-} \rightarrow H_2O + 2e^-$
	Catalyst	$^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(5)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3)(5) _e -,H+	$^{(4)}\text{H}_2 \rightarrow 2\text{H}^+ + 2\text{e}^-$
	Cacayo	$^{(1)}H_2, H_2O_{(g)}$	$^{(5)}H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$H_2 + O^{2-} \longrightarrow H_2 O + 2e^-$
El	ectrolyte	•	$^{(6)}{ m H_2O}_{(l)}$	$^{(6)}H^+, H_2O_{(l)}^a$	
	ccurory to		15077 1	O^{2-}	ж.
	Catalyst	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(3)(5)}e^-,H^+$	$^{(6)}2H^{+}+\frac{1}{2}O_{2}+2e^{-}\rightarrow H_{2}O_{(l)}$
	Cauarysu	$^{(1)}N_2, O_2$	$^{(5)}N_2, O_2$	$^{(3)(5)}e^{-},O^{2-}$	$\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
Cathode	Electrode	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(6)}$ N ₂ ,O ₂ ,H ₂ O _(g) ,H ₂ O _(l)	(3) _e -	
Cathode	Diectiode	$^{(1)}N_2, O_2$	N_2, O_2	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3) _e -	
	riow Channels	$^{(1)}N_2, O_2$	$^{(2)}N_2, O_2$	$^{(3)}e^{-}$	*)

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

 $^{^{}a}$ To be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Phenomena		Convection	Diffusion	Conduction	Electrochemical
Domains		Convection	Convection Direction Con-		Reaction
	Flow Channels	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(2)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3) _e -	•
	1 10 W CHEMINEIS	$^{(1)}H_2, H_2O_{(g)}$	$^{(2)}H_2, H_2 O_{(g)}$	$^{(3)}e^{-}$	
Anode	Electrode	$^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(6)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3) _e -	
Anode	Electrode	$^{(1)}H_2, H_2O_{(g)}$	$H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}H_2 + O^{2-} \rightarrow H_2O + 2e^-$
	Catalyst	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3)(5) _e -,H+	$^{(4)}{ m H_2} ightarrow 2{ m H^+ \!\!\! + \!\!\! 2e^-}$
	Catatyst	$^{(1)}H_2, H_2O_{(g)}$	$^{(5)}H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
El	ectrolyte	**	(6)H ₂ O _(l)	$^{(6)}H^+, H_2O_{(l)}^a$	
	ectiony te		wide:	O^{2-}	
	Catalant	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3)(5)e ⁻ ,H ⁺	$^{(6)}2H^{+}+\frac{1}{2}O_{2}+2e^{-}\rightarrow H_{2}O_{(l)}$
	Catalyst	$^{(1)}N_2, O_2$	$^{(5)}N_2, O_2$	$^{(3)(5)}e^{-},O^{2-}$	$\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
Cathode	Electrode	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(6) $N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(3)}e^{-}$	
Cathode	Execuode	$^{(1)}N_2, O_2$	N_2, O_2	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3) _e -	
	riow Channels	$^{(1)}N_2, O_2$	$^{(2)}N_2, O_2$	$^{(3)}e^{-}$	*

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

1. Ignore convection in flow channels

^aTo be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Phenomena		Convection	Diffusion	Conduction	Electrochemical
Domains		Convection	Diffusion	Collidation	Reaction
	Flow Channels	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(2)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3) _e -	
	Flow Chainleis	$^{(1)}H_2, H_2O_{(g)}$	$^{(2)}H_2, H_2 O_{(g)}$	$^{(3)}e^{-}$	
Anode	Electrode	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(6)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3) _e -	
Anode	Electrode	$^{(1)}H_2, H_2O_{(g)}$	$H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
	Catalyst	$^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(5)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3)(5)e-,H+	$^{(4)}{ m H}_2 ightarrow 2{ m H}^+ \!\!\!\! + \!\!\!\! 2{ m e}^-$
	Catatyst	$^{(1)}H_2, H_2O_{(g)}$	$^{(5)}H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
El	ectrolyte	**	(6)H ₂ O _(l)	(6) H ⁺ , H ₂ O _(l) ^a	
	ectrory te		**************************************	O^{2-}	
	Catalyst	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(3)(5)}e^-,H^+$	$^{(6)}2H^{+}+\frac{1}{2}O_{2}+2e^{-}\rightarrow H_{2}O_{(l)}$
	Cataryst	$^{(1)}N_2, O_2$	$^{(5)}N_2, O_2$	$^{(3)(5)}e^{-}, O^{2-}$	$\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
Cathode	Electrode	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(6) $N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(3)}e^{-}$	
Camode	Electrode	$^{(1)}N_2, O_2$	N_2, O_2	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3) _e -	
	riow Channels	$^{(1)}N_2, O_2$	$^{(2)}N_2, O_2$	$^{(3)}e^{-}$	*

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

2. Ignore diffusion in in flow channels

^aTo be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Phenomena		Convection	Diffusion	Conduction	Electrochemical
Domains		Convection	n Direction Co		Reaction
	Flow Channels	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(2)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3) _e -	
	Flow Chamlers	$^{(1)}H_2, H_2O_{(g)}$	$^{(2)}H_2, H_2 O_{(g)}$	(3) e ⁻	
Anode	Electrode	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(6)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l)	(3) _e -	
Anode	Executode	$^{(1)}H_2, H_2O_{(g)}$	$H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
	Catalyst	$^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(5)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3)(5) _e -,H+	$^{(4)}{ m H}_2 ightarrow 2{ m H}^+\!\!+\!\!2{ m e}^-$
	Catatyst	$^{(1)}H_2, H_2O_{(g)}$	$^{(5)}H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
El	ectrolyte	**	(6)H ₂ O _(l)	$^{(6)}H^+, H_2O_{(l)}^a$	
	ectrory te		utary I	O^{2-}	*
	Catalyst	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3)(5)e-,H+	$^{(6)}2H^{+}+\frac{1}{2}O_{2}+2e^{-}\rightarrow H_{2}O_{(l)}$
	Catatyst	$^{(1)}N_2, O_2$	$^{(5)}N_2, O_2$	$^{(3)(5)}e^{-},O^{2-}$	$\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
Cathode	Electrode	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(6)}$ N ₂ ,O ₂ ,H ₂ O _(g) ,H ₂ O _(l)	(3) _e -	
Camode	Electrode	$^{(1)}N_2, O_2$	N_2, O_2	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3) _e -	
	Tiow Channels	$^{(1)}N_2, O_2$	$^{(2)}N_2, O_2$	$^{(3)}e^{-}$	*

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

3. Ignore electronic resistances

^aTo be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Phenomena Domains		Convection	Diffusion	Conduction	Electrochemical Reaction
	Flow Channels	$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(1)}$ H ₂ ,H ₂ O _(g)	$^{(2)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(2)}$ H ₂ ,H ₂ O _(g)	(3) _e - (3) _e -	
Anode	Electrode	$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(1)}$ H ₂ ,H ₂ O _(g)	$^{(6)}$ H ₂ , H ₂ O _(g) , H ₂ O _(l) H_2 , H_2 O _(g)	$^{(3)}e^{-}$ $^{(3)(5)}e^{-},O^{2-}$	$^{(5)}H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
	Catalyst	$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(1)}$ H ₂ ,H ₂ O _(g)	$^{(5)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(5)}$ H ₂ ,H ₂ O _(g)	(3)(5)e ⁻ ,H ⁺ (3)(5)e ⁻ ,O ²⁻	$^{(4)}\text{H}_2 \rightarrow 2\text{H}^+ + 2\text{e}^- \\ H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
El	ectrolyte		(6)H ₂ O _(l)	$O^{(6)}H^+, H_2O_{(l)}^a$ O^{2-}	
	Catalyst	${}^{(1)}\mathrm{N}_2, \mathrm{O}_2, \mathrm{H}_2\mathrm{O}_{(g)}, \mathrm{H}_2\mathrm{O}_{(l)} \atop {}^{(1)}N_2, O_2}$	$^{(5)}$ N ₂ ,O ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(5)}$ N ₂ ,O ₂	$^{(3)(5)}e^-,H^+$ $^{(3)(5)}e^-,O^{2-}$	$^{(6)}2H^{+}+_{2}^{1}O_{2}+2e^{-}\rightarrow H_{2}O_{(l)}$ $_{2}^{1}O_{2}+2e^{-}\rightarrow O^{2-}$
Cathode	Electrode	${}^{(1)}\mathrm{N}_2, \mathrm{O}_2, \mathrm{H}_2\mathrm{O}_{(g)}, \mathrm{H}_2\mathrm{O}_{(l)} \\ {}^{(1)}N_2, O_2$	$^{(6)}$ N ₂ ,O ₂ ,H ₂ O _(g) ,H ₂ O _(l) N_2 ,O ₂	$^{(3)}e^{-}$ $^{(3)(5)}e^{-},O^{2-}$	$\stackrel{(5)}{{}^{1}_{2}}O_{2} + 2e^{-} \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$ $^{(1)}N_2,O_2$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$ $^{(2)}N_2,O_2$	(3) _e - (3) _e -	

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

4. Ignore anodic reaction loss

^aTo be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Phenomena Domains		Convection	Diffusion	Conduction	Electrochemical Reaction
	Flow Channels	$^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(2)}H_2, H_2O_{(g)}, H_2O_{(l)}$	(3) _e -	
		$^{(1)}H_2, H_2O_{(g)}$ $^{(1)}H_2, H_2O_{(g)}, H_2O_{(l)}$	$^{(2)}H_2, H_2 O_{(g)}$ $^{(6)}H_2, H_2 O_{(g)}, H_2 O_{(l)}$	(3) e ⁻	
Anode	Electrode	$^{(1)}H_2, H_2O_{(g)}$	$H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$^{(5)}H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
	Catalyst	$^{(1)}H_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}\text{H}_2,\text{H}_2\text{O}_{(g)},\overset{\circ}{\text{H}}_2\text{O}_{(l)}$	(3)(5) _e -,H+	$^{(4)}\text{H}_2 \to 2\text{H}^+ + 2\text{e}^-$
		$^{(1)}H_2, H_2O_{(g)}$	$^{(5)}H_2, H_2 O_{(g)}$	$^{(3)(5)}e^{-},O^{2-}$	$H_2 + O^{2-} \to H_2 O + 2e^-$
El	ectrolyte		$^{(6)}{ m H_2O}_{(l)}$	(6) H ⁺ , H ₂ O _(l) a	
		*)	×	O^{2-}	
	Catalyst	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	$^{(5)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3)(5)e-,H+	$^{(6)}2H^{+}+\frac{1}{2}O_{2}+2e^{-}\rightarrow H_{2}O_{(l)}$
	Cacaryse	$^{(1)}N_2, O_2$	$^{(5)}N_2, O_2$	$^{(3)(5)}e^{-},O^{2-}$	$\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
Cathode	Electrode	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(6) $N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3) _e -	*
Cathode	Diechode	$^{(1)}N_2, O_2$	N_2, O_2	$^{(3)(5)}e^{-}, O^{2-}$	$^{(5)}\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$	(3) _e -	
	riow Chamnels	$^{(1)}N_2, O_2$	$^{(2)}N_2, O_2$	$^{(3)}e^{-}$	

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

5. Thin catalyst layer (Ignore transport loss)

^aTo be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Phenomena Domains		Convection	Diffusion Conduction		Electrochemical Reaction
	Flow Channels	$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(1)}$ H ₂ ,H ₂ O _(g)	$^{(2)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(2)}$ H ₂ ,H ₂ O _(g)	(3) _e - (3) _e -	
Anode	Electrode	$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(1)}$ H ₂ ,H ₂ O _(g)	$^{(6)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(6)}$ H ₂ ,H ₂ O _(g)	$^{(3)}e^{-}$ $^{(3)(5)}e^{-},O^{2-}$	$^{(5)}H_2 + O^{2-} \rightarrow H_2 O + 2e^-$
	Catalyst	$^{(1)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(1)}$ H ₂ ,H ₂ O _(g)	$^{(5)}$ H ₂ ,H ₂ O _(g) ,H ₂ O _(l) $^{(5)}$ H ₂ ,H ₂ O _(g)	$^{(3)(5)}e^{-},H^{+}$ $^{(3)(5)}e^{-},O^{2-}$	$^{(4)}\text{H}_2 \rightarrow 2\text{H}^+ + 2\text{e}^-$ $H_2 + O^{2-} \rightarrow H_2 O + 2\text{e}^-$
El	ectrolyte	* *	(6)H ₂ O _(l)	$O^{(6)}$ H ⁺ ,H ₂ O _(l) ^{a} O^{2-}	
	Catalyst	$^{(1)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$ $^{(1)}N_2,O_2$	$^{(5)}\mathrm{N}_{2},\!\mathrm{O}_{2},\!\mathrm{H}_{2}\mathrm{O}_{(g)},\!\mathrm{H}_{2}\mathrm{O}_{(l)}$ $^{(5)}N_{2},O_{2}$	$^{(3)(5)}e^-,H^+$ $^{(3)(5)}e^-,O^{2-}$	$^{(6)}2H^{+}+_{\frac{1}{2}}O_{2}+2e^{-} \rightarrow H_{2}O_{(l)}$ $_{\frac{1}{2}}O_{2}+2e^{-} \rightarrow O^{2-}$
Cathode	Electrode	${}^{(1)}\mathrm{N}_2, \mathrm{O}_2, \mathrm{H}_2\mathrm{O}_{(g)}, \mathrm{H}_2\mathrm{O}_{(l)} \\ {}^{(1)}N_2, O_2$	$N_2, O_2, H_2O_{(g)}, H_2O_{(l)}$ N_2, O_2	$^{(3)}e^{-}$ $^{(3)(5)}e^{-},O^{2-}$	$\stackrel{(5)}{{}^{1}_{2}}O_{2} + 2e^{-} \rightarrow O^{2-}$
	Flow Channels	$^{(1)}N_2,O_2,H_2O_{(g)}$ $^{(1)}N_2,O_2$	$^{(2)}N_2,O_2,H_2O_{(g)},H_2O_{(l)}$ $^{(2)}N_2,O_2$	(3) _e - (3) _e -	* .

Table 6.2: Description of a full PEMFC (or SOFC in italics) model. Six key assumptions, numbered (1-6) in parentheses, lead to the simplified model shown in table 6.3.

6. Single phase assumption (no liquid water)

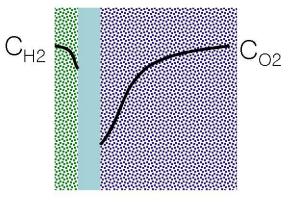
^aTo be precise, this water transport phenomenon is due to electro-osmotic drag (See chapter 4). For convenience, it has been categorized as conduction due to its close relationship with proton conduction.

Simplified Model

Damaina	Reactions	Convection	Diffusion	Conduction	Electrochemical
Domains	Domains				Reaction
	Flow Channels				
Anode	Electrode		$\mathrm{H}_2,\mathrm{H}_2\mathrm{O}_{(g)}$		
1111040			H_2 , $H_2O_{(g)}$		
	Catalyst				
	Catalyst				$H_2 + O^{2-} \rightarrow H_2 O_{(g)} + 2e^-$
Œ	ectrolyte		$\mathrm{H}_2\mathrm{O}_{(g)}$	$H^{+}, H_{2}O_{(g)}$	
	eccurory se			O ²⁻	
	Catalyst				$2H^{+} + \frac{1}{2}O_{2} + 2e^{-} \rightarrow H_{2}O_{(g)}$ $\frac{1}{2}O_{2} + 2e^{-} \rightarrow O^{2-}$
	Catalyst				$\frac{1}{2}O_2 + 2e^- \to O^{2-}$
Cathode	Electrode		N_2 , O_2 , $H_2O_{(g)}$	1.*	
Cathode	Diecolode		N_2 , O_2	*	•
	Flow Channels				

Table 6.3: Description of a simplified PEMFC (or SOFC in italics) model. The items to be modeled in this table are described by governing equations which are developed in next section.

Model Validity For SOFCs


Anode supported

 C_{H2} C_{O2}

Electrolyte supported

C_{O2}

Cathode supported

Governing Equations: Electrode

Diffusion model

Binary diffusion
$$J_i = -D_{ij} \frac{dc_i}{dx}$$
 $J_j = -D_{ji} \frac{dc_j}{dz}$ $D_{ij} = D_{ji}$.

Maxwell-Stefan
$$\frac{dx_i}{dz} = RT \sum_{j \neq i} \frac{x_i J_j - x_j J_i}{PD_{ij}^{eff}}$$

For simplicity, we use

$$J_i = \frac{-pD_{ij}^{eff}}{RT} \frac{dx_i}{dz}$$

Governing Equations: Electrolyte

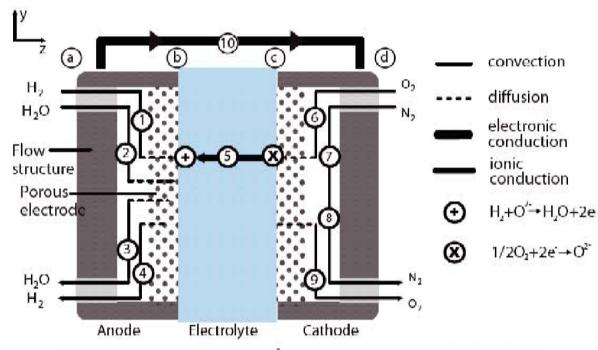
$$\eta_{ohmic} = j(ASR_{ohmic}) = j(\frac{t^M}{\sigma})$$

$$\sigma = \frac{Ae^{\frac{\Delta G_{act}}{RT}}}{T}$$

PEMFC

$$J_{H_2O}^M = 2n_{drag} \frac{j}{2F} \frac{\lambda}{22} - \frac{\rho_{dry}}{M_m} D_\lambda \frac{d\lambda}{dz}$$

Governing Equations: Catalyst


Simplified B-V

$$j = j_0^0 \left(\frac{c_R^*}{c_R^{0*}} e^{\left(\frac{\alpha n F \eta_{act}}{RT}\right)} \right)$$

$$\eta_{cathode} = \frac{RT}{4\alpha F} \ln \frac{jc_{O_2}^0}{j_0 c_{O_2}}$$

For ideal gas

$$\eta_{cathode} = \frac{RT}{4\alpha F} \ln \frac{j}{j_0} p^C x_{O_2}$$

(b) In a SOFC, oxygen $ions(O^{2-})$ transport through the electrolyte.

Anode

$$\begin{split} J_{H_2}^A &= \frac{-p^A D_{H_2,H_2O}^{eff}}{RT} \frac{dx_{H_2}}{dz} \\ J_{H_2O}^A &= \frac{-p^A D_{H_2,H_2O}^{eff}}{RT} \frac{dx_{H_2O}}{dz} \end{split}$$

$$x_{H_2}|_b = x_{H_2}|_a \quad t^A \frac{jRT}{2I'p^A D_{H_2,H_2O}^{eff}}$$

$$x_{H_2O}|_b = x_{H_2O}|_a + t^A \frac{jRT}{2I'p^A D_{H_2,H_2O}^{eff}}$$

Cathode

$$x_{O_2}|_c = x_{O_2}|_d - t^C \frac{jRT}{4Fp^C D_{O_2,N_2}^{eff}}$$

Cathodic overvotalge

$$\eta_{ohmic} = jR = j\frac{t^M}{sigma} = j\frac{t^MT}{Ae^{\frac{\Delta G_{act}}{RT}}}$$

Ohmic overvoltage

$$\eta_{cathode} = \frac{RT}{4\alpha F} \ln \left[\frac{j}{j_0 p^C \left(x_{O_2}|_d - t^C \frac{jRT}{4Fp^C D_{O_2, N_2}^{eff}} \right)} \right]$$

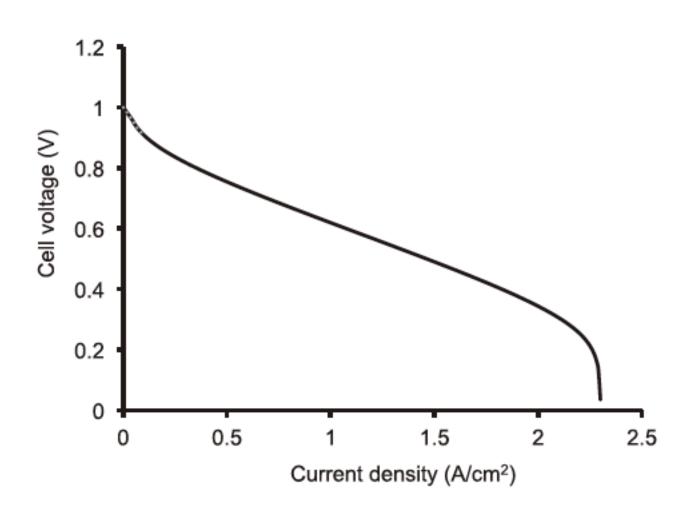
Overall

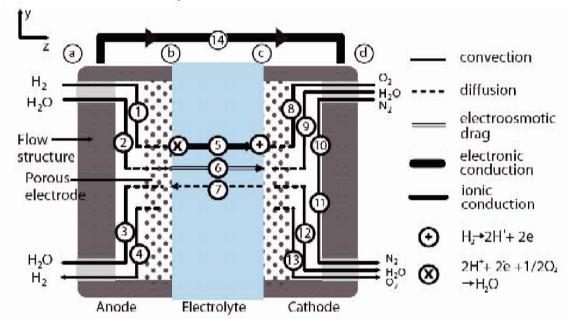
$$V = E_{thermo} - \eta_{ohmic} - \eta_{cathode}$$

$$= E_{thermo} - j \frac{t^M T}{Ae^{\frac{\Delta G_{act}}{RT}}} - \frac{RT}{4\alpha F} \ln \left[\frac{j}{j_0 p^C \left(x_{O_2}|_d - t^C \frac{jRT}{4Fp^C D_{O_2, N_2}^{eff}} \right)} \right]$$

For j=500mA/cm²

Physical properties	Values
Thermodynamic voltage, E_{thermo} (V)	1.0
Temperature, $T(K)$	1073
Hydrogen inlet mole fraction, $x_{H_2} _{\alpha}$	0.95
Oxygen inlet mole fraction, $x_{O_2} _d$	0.21
Cathode pressure, $p^{C}(atm)$	1
Anode pressure, $p^A(atm)$	1
Effective Hydrogen (or water) diffusivity, $D_{H_2,H_2,O}^{eff}(m^2/s)$	1×10^{-4}
Effective Oxygen diffusivity. $D_{O_2,N_2}^{eff}(m^2/s)$	2×10^{-8}
Transfer coefficient, α	0.5
Exchange current density, $j_0(A/cm^2)$	0.1
Electrolyte constant, $\Lambda(K/\Omega m)$	0.001
Electrolyte Activation energy, $\Delta G_{act}(k.I/mol)$	100
Electrolyte thickness, $t^{M}(\mu \mathbf{m})$	10
Anode thickness, $t^A(\mu m)$	50
Cathode thickness $t^{C}(\mu m)$	800
Gas constant, R(J/mol K)	8.314
Faraday constant, F(C/mol)	96485


$$\begin{split} \eta_{ohmic} &= 0.1 A/cm^2 \frac{0.00001 m \cdot 1073 K}{0.001 S \cdot K/m \ e^{\frac{100000 k J/mol}{8.314 J/mol \cdot K \ 1073 K}}} \\ &= 0.1 A/cm^2 \times 1.45 \cdot 10^{-4} \Omega m^2 = 0.145 V \end{split}$$


$$\eta_{cathodic} - \frac{8.314 \frac{J}{mol \ K} 1073 K}{4 \cdot 0.5 \cdot 96485 \frac{C}{mol}} \ln \left[\frac{0.5 \frac{A}{cm^2}}{0.1 \frac{A}{cm^2} \cdot 1atm} \times \right]$$

$$\frac{1}{\left(0.21 - 0.0008m \frac{0.5 \frac{A}{cm^2} 8.314 \frac{J}{mol \ K} 1073K}{4.96485 \frac{C}{mol} 101325 Pa.0.00002 \frac{m^2}{s}}\right)} \right]$$

$$= 0.147V$$

$$V = 1.0V - 0.145V - 0.147V = 0.708V$$

(a) In a PEMFC, water(H_2O) and proton(H^{\perp}) transport through the electrolyte.

Anode

$$J_{H_2}^A = \frac{-p^A D_{H_2, H_2O}^{eff}}{RT} \frac{dx_{H_2}}{dz}$$
$$J_{H_2O}^A = \frac{-p^A D_{H_2, H_2O}^{eff}}{RT} \frac{dx_{H_2O}}{dz}$$

$$x_{H_2}|_b = x_{H_2}|_a - t^A \frac{jRT}{2Fp^A D_{H_2,H_2O}^{eff}}$$

$$x_{H_2O}|_b = x_{H_2O}|_a - t^A \frac{\alpha^* jRT}{2Fp^A D_{H_2,H_2O}^{eff}}$$

Cathode

$$x_{O_2}|_c = x_{O_2}|_d \quad t^C \frac{jRT}{4Fp^C D_{O_2, H_2O}^{eff}}$$
$$x_{H_2O}|_c = x_{H_2O}|_d + t^C \frac{(1+\alpha^*)jRT}{2Fp^C D_{O_2, H_2O}^{eff}}$$

Nafion model from Chapter 4 with constant water diffusivity

$$\lambda(z) = \frac{11\alpha^*}{n_{drag}^{SAT}} + C \exp\left[\frac{jM_m n_{drag}^{SAT}}{22F\rho_{dry}D_{\lambda}}z\right] = \frac{11\alpha^*}{2.5}$$

$$+C \exp\left[\frac{j[A/cm^2] \times 1.0kg/mol \times 2.5}{22 \times 96500C/mol \times 0.00197kg/cm^3 \times D_{\lambda}[cm^2/s]}z\right]$$

$$= 4.4\alpha^* + C \exp\left(\frac{0.000598 \cdot j[A/cm^2] \cdot z[cm]}{D_{\lambda}[cm^2/s]}\right)$$
(6)

$$\lambda|_{b} = \lambda(0) = 4.4\alpha^{*} + C$$

$$\lambda|_{c} = \lambda(t^{M}) = 4.4\alpha^{*} + C \exp(\frac{0.000598 \cdot j[A/cm^{2}] \cdot t^{M}[cm]}{D_{\lambda}[cm^{2}/s]})$$

Linearized water contents at Nafion surface

$$\lambda = 14 a_W \quad \text{for} \quad 0 < a_W \le 1$$

$$\lambda = 12.6 + 1.4 a_W \quad \text{for} \quad 1 < a_W \le 3$$

using
$$a_W|_b = \frac{p^C x_{H_2O}|_b}{p_{SAT}}$$
,

$$\lambda|_{b} = 14a_{W}|_{b} = 14\frac{p^{C}}{p_{SAT}} \left(x_{H_{2}O}|_{a} - t^{A} \frac{\alpha^{*}jRT}{2Fp^{A}D_{H_{2},H_{2}O}^{eff}} \right)$$

$$\lambda|_{c} = 12.6 + 1.4a_{W}|_{c} = 12.6 + 1.4\frac{p^{C}}{p_{SAT}} \left(x_{H_{2}O}|_{d} + t^{C} \frac{(1 + \alpha^{*})jRT}{2Fp^{C}D_{O_{2},H_{2}O}^{eff}} \right)$$

Physical properties	Values
Thermodynamic voltage, $E_{thermo}(V)$	1.0
Operating current density, $j(A/cm^2)$	0.5
Temperature, $T(K)$	343
Vapor saturation pressure, $p_{SAT}(atm)$	0.307
Hydrogen mole fraction, x_{H_2}	0.9
Oxygen mole fraction, x_{O_2}	0.19
Cathode water mole fraction, x_{H_2O}	0.1
Cathode pressure, $p^{C}(atm)$	3
Anode pressure, $p^{A}(atm)$	3
Effective hydrogen (or water) diffusivity, $D_{H_2,H_2O}^{eff}(cm^2/s)$ Effective oxygen (or water) diffusivity, $D_{O_2,H_2O}^{eff}(cm^2/s)$	0.149
Effective oxygen (or water) diffusivity, $D_{O_2,H_2O}^{eff}(cm^2/s)$	0.0295
Water diffusivity in Nafion [®] , $D_{\lambda}(cm^2/s)$	3.81×10^{-6}
Transfer coefficient, α	0.5
Exchange current density, $j_0(A/cm^2)$	0.0001
Electrolyte thickness, $t^{M}(\mu m)$	125
Anode thickness, $t^A(\mu m)$	350
Cathode thickness $t^{C}(\mu m)$	350
Gas constant, R(J/mol K)	8.314
Faraday constant, F(C/mol)	96485

$$\lambda|_{b} = 14 \frac{3atm}{0.307atm} \left(0.1 - 0.00035m \frac{\alpha^{*} \cdot 0.5 \frac{A}{0.0001m^{2}} \cdot 8.314 \frac{J}{molK} \cdot 343K}{2 \cdot 96485 \frac{C}{mol} \cdot 3 \times 101325Pa \cdot 0.149 \frac{0.0001m^{2}}{s}} \right) \\
= 13.68 - 0.781\alpha^{*} \qquad (6.47)$$

$$\lambda|_{c} = 12.6 + 1.4 \frac{3atm}{0.307atm} \left(0.1 + 0.00035m \frac{(1 + \alpha^{*})0.5 \frac{A}{0.0001m^{2}} \cdot 8.314 \frac{J}{molK} \cdot 343K}{2 \cdot 96485 \frac{C}{mol} \cdot 3 \times 101325Pa \cdot 0.0295 \frac{0.0001m^{2}}{s}} \right) \\
= 14.36 + 0.394\alpha^{*} \qquad (6.48)$$

$$\lambda|_{b} = \lambda(0) = 4.4\alpha^{*} + C$$

$$\lambda|_{c} = 4.4\alpha^{*} + C \exp(\frac{0.000598 \cdot 0.5A/cm^{2} \cdot 0.0125cm}{3.81 \times 10^{-6}})$$

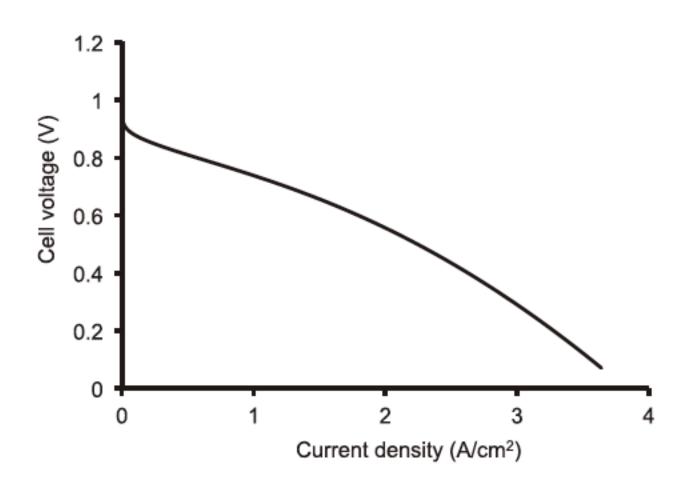
$$= 4.4\alpha^{*} + 2.667C$$

$$\alpha = 2.25 \text{ and } C = 2.0.$$

$$\sigma(z) = \left[0.005193(4.4\alpha + C\exp(\frac{0.000598 \cdot 0.5 \cdot 0.5}{3.81 \times 10^{-6}}z)) - 0.00326\right]$$

$$\times \exp\left[1268\left(\frac{1}{303} - \frac{1}{343}\right)\right]$$

$$= 0.0784 + 0.0169\exp(78.48z)$$


$$R_m = \int_0^{t_m} \frac{dz}{\sigma(z)} = \int_0^{0.0125} \frac{dz}{0.0784 + 0.0169 \exp(78.48z)}$$
$$= 0.117\Omega cm^2$$

$$\eta_{ohmic} = j \times R_m = 0.5(A/cm^2) \times 0.117(\Omega cm^2) = 0.0585V$$

$$\eta_{cathode} = \frac{RT}{4\alpha F} \ln \left[\frac{j}{j_0 p^C \left(x_{O_2}|_d - t^C \frac{jRT}{4Fp^C D_{O_2, N_2}^{eff}} \right)} \right]$$

$$\eta_{cathodic} = \frac{8.314 \frac{J}{mol \ K} 343 K}{4 \cdot 0.5 \cdot 96485 \frac{C}{mol}} \ln \left[\frac{0.5 \frac{A}{cm^2}}{0.0001 \frac{A}{cm^2} \cdot 3atm} \right. \times$$

$$\frac{1}{\left(0.19 - 0.00035m \frac{0.5 \frac{A}{cm^2} 8.314 \frac{J}{mol \ K} 343K}{4.96485 \frac{C}{mol} 3.101325 Pa.0.0295 \times 10^{-4} \frac{m^2}{s}}\right)} = 0.134V$$

Stoichiometric number

$$\lambda_{H_2} = \frac{J_{H_2,inlet}}{J_{H_2}^A}$$

$$\lambda_{O_2} = \frac{J_{O_2,inlet}}{J_{O_2}^C}$$

$$x_{O_2}|_d = \frac{J_{O_2,outlet}^C}{J_{O_2,outlet}^C + J_{N_2,outlet}^C}$$

$$J_{O_2,outlet}^C = J_{O_2,inlet}^C - J_{O_2}^C = J_{O_2,inlet}^C - \frac{j}{4F} \qquad J_{O_2,inlet}^C = \lambda_{O_2} J_{O_2}^C$$

$$J_{O_2,inlet}^C = \lambda_{O_2} J_{O_2}^C$$

$$J_{O_2,outlet}^C = (\lambda_{O_2} - 1)J_{O_2}^C = (\lambda_{O_2} - 1)\frac{j}{4F}$$

$$J_{N_2,outlet}^C = J_{N_2,inlet}^C = \omega J_{O_2,inlet}^C = \omega \lambda_{O_2} J_{O_2}^C = \omega \lambda_{O_2} \frac{j}{4F}$$

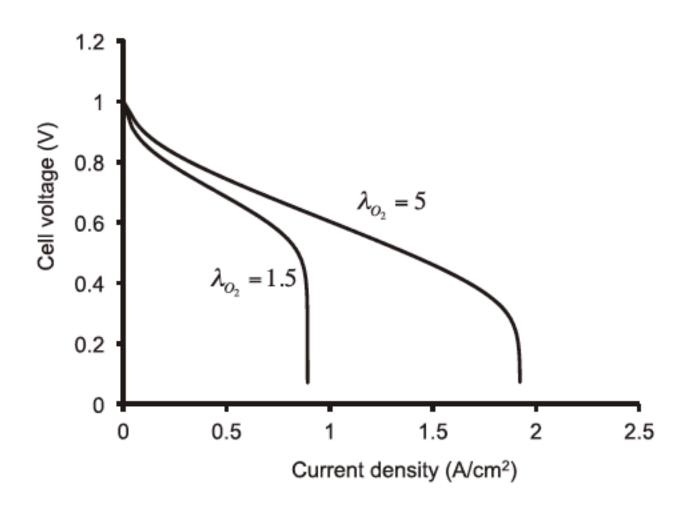
$$\omega = 0.79/0.21 = 3.76$$

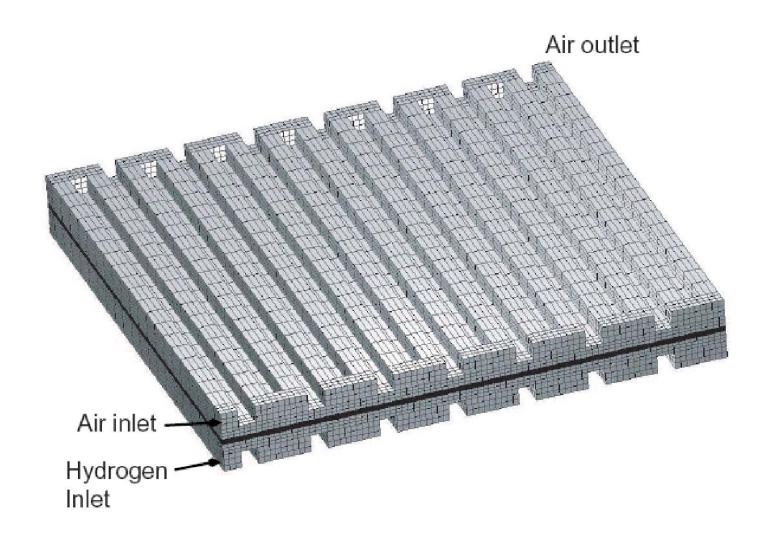
$$x_{O_2}|_d = \frac{(\lambda_{O_2} - 1)\frac{j}{4F}}{(\lambda_{O_2} - 1)\frac{j}{4F} + \omega \lambda_{O_2}\frac{j}{4F}}$$
$$= \frac{\lambda_{O_2} - 1}{(1 + \omega)\lambda_{O_2} - 1}$$

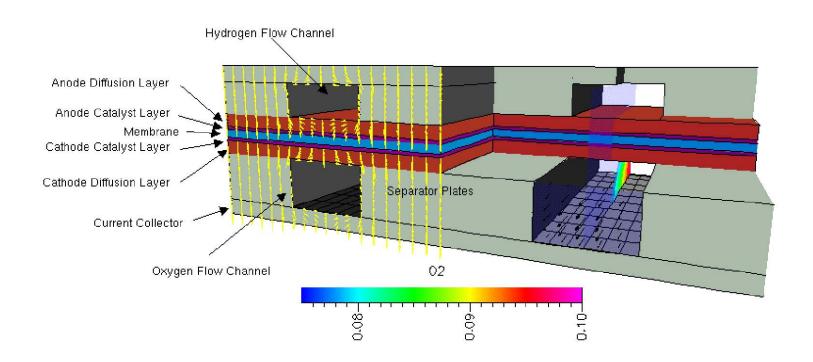
$$\eta_{cathode} = \frac{RT}{4\alpha F} \ln \left[\frac{j}{j_0 p^C \left(x_{O_2}|_d - t^C \frac{jRT}{4Fp^C D_{O_2, N_2}^{eff}} \right)} \right]$$

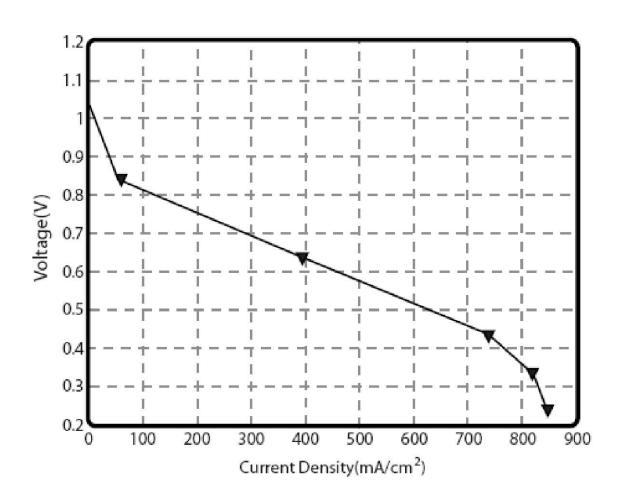
$$\begin{split} V &= E_{thermo} - \eta_{ohmic} - \eta_{cathode} \\ &= E_{thermo} - j \frac{t^M T}{Ae^{\frac{\Delta G_{act}}{RT}}} \\ &- \frac{RT}{4\alpha F} \ln \left[\frac{j}{j_0 p^C \left(\frac{\lambda_{O_2} - 1}{(1 + \omega)\lambda_{O_2} - 1} - t^C \frac{jRT}{4F p^C D_{O_2, N_2}^{eff}} \right)} \right] \end{split}$$

Example 3: 1-D SOFC


 $\lambda_{O_2} = 1.2 \text{ and j} = 500 mA/cm^2$


$$\begin{split} \eta_{cathodic} &= \frac{8.314 \frac{J}{mol~K} 1073 K}{4 \cdot 0.5 \cdot 96485 \frac{C}{mol}} \ln \left[\frac{0.5 \frac{A}{cm^2}}{0.1 \frac{A}{cm^2} \cdot 1 atm} \times \right. \\ &\left. \frac{1}{\left(\frac{1.2 - 1}{(1 + 3.76)1.2 - 1} - 0.0008 m \frac{0.5 \frac{A}{cm^2} 8.314 \frac{J}{mol~K} 1073 K}{4 \cdot 96485 \frac{C}{mol} 101325 Pa \cdot 0.00002 \frac{m^2}{s}} \right) \right] \\ &= 0.219 V \end{split}$$


$$V = 1.0V - 0.145V - 0.219V = 0.636V$$


Compare with cathodic overpotential of 0.147V in example 1

Example 3: 1-D SOFC

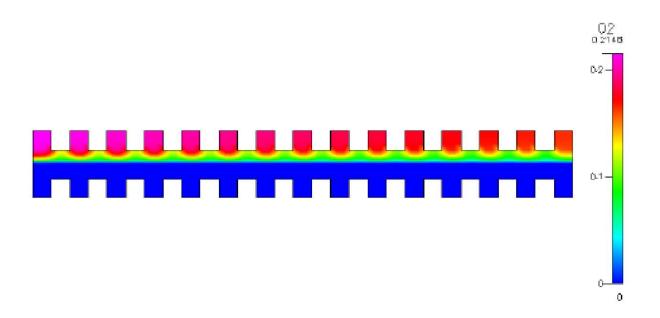


Figure 6.7: Oxygen concentration in the cathode at 0.8V overvoltage. This cross-sectional cut across the center of the serpentine pattern illustrates how the oxygen concentration in the flow channel slowly decreases from inlet to outlet.

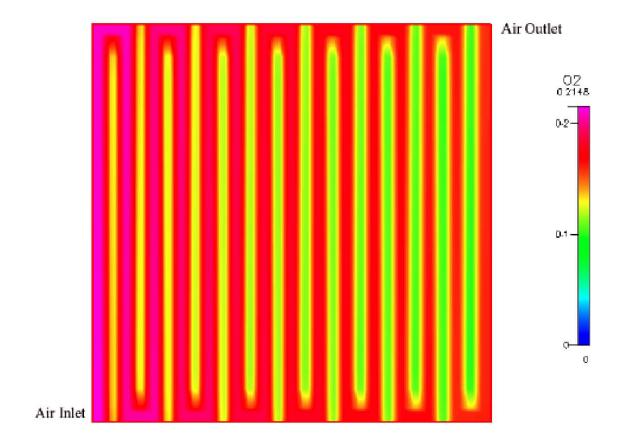


Figure 6.8: Oxygen concentration in the cathode at 0.8 V overvoltage. The plan-view figure shows the oxygen concentration profile across the cathode surface. Low oxygen concentration is observed under the channel ribs due to the blockage of oxygen flux.

Category	Equations
1. Mass conservation	$\frac{\partial}{\partial t}(\epsilon \rho) + \nabla \cdot (\epsilon \rho \mathbf{U}) = 0$
2. Momentum conservation	$\frac{\partial}{\partial t}(\epsilon \rho \mathbf{U}) + \nabla \cdot (\epsilon \rho \mathbf{U} \mathbf{U}) = -\epsilon \nabla p + \nabla \cdot (\epsilon \zeta) + \frac{\epsilon^2 \mu \mathbf{U}}{\kappa}$
3. Species conservation	$\frac{\partial}{\partial t}(\epsilon \rho X_i) + \nabla \cdot (\epsilon \rho \mathbf{U} X_i) = \nabla \cdot \mathbf{J}_i + S_i$
4. Charge conservation	$\nabla \cdot \mathbf{i}_{elec} = -\nabla \cdot \mathbf{i}_{ion}$

1. Mass conservation

$$\begin{array}{lll} \frac{\partial}{\partial t}(\epsilon\rho) & + & \nabla\cdot(\epsilon\rho\mathbf{U}) & = 0 \\ rate\ of\ mass\ change & net\ rate\ of\ mass\ change \\ per\ unit\ volume & per\ unit\ volume\ by\ convection \end{array}$$

2. Momentum conservation

$$\frac{\partial}{\partial t}(\epsilon \rho \mathbf{U}) + \nabla \cdot (\epsilon \rho \mathbf{U} \mathbf{U}) = -\epsilon \nabla p + \nabla \cdot (\epsilon \zeta) + \frac{\epsilon^2 \mu \mathbf{U}}{\kappa}$$
rate of net rate of

momentum momentum change

change per unit volume by

per unit convection pressure viscous pore

volume friction structure

3. Species conservation

$$\frac{\partial}{\partial t}(\epsilon \rho X_i) + \nabla \cdot (\epsilon \rho \mathbf{U} X_i) = \nabla \cdot \mathbf{J}_i + S_i \quad (\mathbf{E}_i)$$

$$rate \ of \ a \ species \qquad net \ rate \ of$$

$$mass \ change \qquad a \ species \ mass \ change$$

$$per \ unit \ volume \qquad per \ unit \ volume \ by$$

$$convection \qquad diffusion \ electrochemical$$

$$reaction$$

$$S_i = M_i \frac{j}{n_i F}$$

$$J_{i} = \rho D_{eff,j} \nabla X_{i} + \frac{\rho Y_{i}}{M} D_{eff,i} \nabla M - \rho M \sum_{j} D_{eff,j} \nabla Y_{j} - \rho \nabla M \sum_{j} D_{eff,j} Y_{j}$$

4. Charge conservation

$$\nabla \cdot \mathbf{i} = 0$$

$$\nabla \cdot \mathbf{i}_{elec} + \nabla \cdot \mathbf{i}_{ion} = 0$$

$$-\nabla \cdot \mathbf{i}_{ion} = \nabla \cdot \mathbf{i}_{elec} = j$$

$$\nabla \cdot (\sigma_{ion} \nabla \Phi_{ion}) = -\nabla \cdot (\sigma_{elec} \nabla \Phi_{elec}) = j$$

$$j = j_0 \exp\{\frac{n_i \alpha F}{RT} (\Phi_{ion} - \Phi_{elec})\} \frac{c_i}{c_i^0}$$

5. Energy conservation

$$\frac{\partial}{\partial t} (\varepsilon \rho h) + \nabla \bullet (\varepsilon \rho \mathbf{U} h) = \nabla \bullet \mathbf{q} + \varepsilon \mathbf{\tau} : \nabla \mathbf{U} + \varepsilon \frac{\mathrm{d}p}{\mathrm{d}t} - j_T \eta + \frac{\mathbf{i} \bullet \mathbf{i}}{\sigma} + \dot{S}_h$$

$$\mathbf{q} = k_{eff} \nabla T + \sum_{k=gas} \mathbf{J}_k h_k$$

Comments on Two Phase Model

Mass

$$\nabla(\rho \mathbf{u}) = 0 \tag{1}$$

Momentum

$$\frac{1}{\varepsilon^2} \nabla (\rho \mathbf{u} \mathbf{u}) = - \nabla p + \nabla \tau + S_{\mathbf{u}}$$
 [2]

Species

$$\nabla(\gamma_{i} \mathbf{u} C_{i}) = \nabla\left(\sum_{k} D_{i,k}^{\text{eff}} \nabla C_{i,k}\right) - \nabla\left(\sum_{k} \frac{C_{i,k}}{\rho_{k}} \mathbf{j}_{k}\right) + \mathcal{S}_{i} \quad [3]$$

Proton transport

$$\nabla(\kappa^{\text{eff}} \nabla \phi_a) + S_a = 0$$
 [4]

Electron transport

$$\nabla(\sigma^{\text{eff}} \nabla \phi_s) + S_s = 0$$
 [5]

$$s = \frac{V_1}{V_p} \qquad \qquad D_g^{k,\text{eff}} = [\epsilon(1-s)]^{1.5} D_g^k$$

$$D_{g}^{k,\text{eff}} = [\epsilon(1-s)]^{1.5} D_{g}^{k}$$

$$\gamma_{c} = \begin{cases} \frac{\rho}{C^{H_{2}O}} \left(\frac{\lambda_{1}}{M^{H_{2}O}} + \frac{\lambda_{g}}{\rho_{g}} C_{sat} \right) & \text{for water} \\ \frac{\rho \lambda_{g}}{\rho_{g}(1 - s)} & \text{for other species} \end{cases}$$

Molar concentration

$$C_{i} = C_{i,1}s + C_{i,g}(1-s)$$
 [7]

Density

$$\rho = \rho_1 s + \rho_\sigma (1 - s) \tag{8}$$

Relative permeabilities

$$k_{\rm rl} = s^3$$
 [9a]

$$k_{\rm rg} = (1 - s)^3 \tag{9b}$$

Kinematic viscosity

$$\nu = \left(\frac{k_{\rm fl}}{\nu_{\rm l}} + \frac{k_{\rm rg}}{\nu_{\rm g}}\right)^{-1}$$
 [10]

Relative mobilities

$$\lambda_1 = \frac{k_{\text{fl}}}{\nu_1} \nu \tag{11a}$$

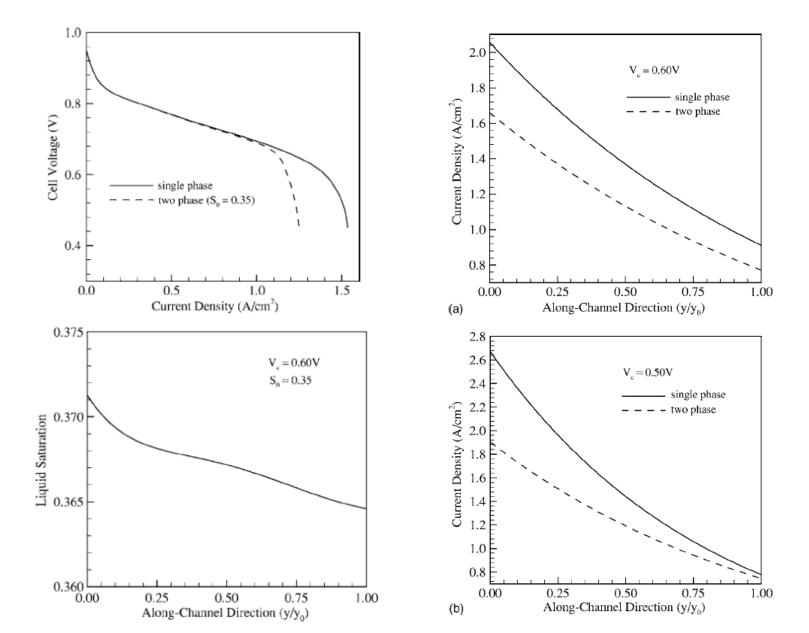
$$\lambda_g = 1 - \lambda_1$$
 [11b]

The advection correction factor in Eq. 3 can be derived as 13

$$\gamma_{i} = \frac{\rho(\lambda_{1}C_{i,1}/\rho_{1} + \lambda_{g}C_{i,g}/\rho_{g})}{C_{i}}$$
[12]

The mass flux, jk, can be expressed as

$$\mathbf{j}_1 = -\mathbf{j}_g = \frac{K\lambda_1\lambda_g}{\nu} \nabla p_c$$
 [13]


where the capillary pressure, p_c , is defined as

$$p_{\rm c} = p_{\rm g} - p_{\rm 1}$$
 [14]

The capillary pressure can be further expressed as

$$p_{\rm c} = \left(\frac{\varepsilon}{K}\right)^{1/2} \sigma \cos \theta_{\rm c} J(s)$$
 [15]

Comments on Two Phase Model

