458.401 Process & Product Design

Estimation of Manufacturing Costs

Jong Min Lee School of Chemical and Biological Engineering Seoul National University

Estimation of Manufacturing Costs

- Direct Costs
 - Vary with _____ but not necessarily directly proportional
- Fixed Costs
 - Do not vary with _____ but relate "directly" to production function
- General Expenses
 - Functions to which operations must contribute overhead burden

Direct Costs

- Raw Materials (RM)
- Waste Treatment (WT)
- Utilities (UT)
- Operating Labor (OL)
- Supervisory and Clerical Labor

- Maintenance and Repairs
- Operating Supplies
- Laboratory Charges
- Patents and Royalties

07 Estimation of Manufacturing Costs

Fixed Costs

- Depreciation cover as a separate topic in Chapter 9
- Local taxes and insurance
- Plant overhead costs

General Expenses

- Administration costs
- Distribution and selling costs
- Research and development

07 Estimation of Manufacturing Costs

Manufacturing Costs

- Table 8.1
 - Description of items
- Table 8.2
 - Factors for estimating costs
- We relate (historically) the relationship between items in Table 8.1 to direct costs A (RM - raw materials), B (WT waste treatment), C (UT - utilities), D (OL - operating labor), and FCI (fixed capital investment) of plant

Manufacturing Costs - Examples

- Maintenance and repairs
 - 2 10 % FCI (Fixed Capital Inv. C_{TM} or C_{GR})
 - Proportional to size of plant
- Supervisory and clerical labor
 - 10 25 % Col
 - Proportional to op. lab
- Depreciation
 - some % of FCI

Use (from Table 8.2

Note: using the mid-point values from Table 8.2 is a non-biased way of estimating COM but actual COM may be quite different depending on the plant and industry sector

07 Estimation of Manufacturing Costs

Manufacturing Costs

COM =
$$0.280FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{WT} + C_{RM})$$
 (8.1)
with depreciation as 10% FCI

$$COM_d = 0.180FCI + 2.73C_{OL} + 1.23(C_{UT} + C_{WT} + C_{RM})$$
 (8.2)

COM without depreciation – we use this since we calculate depreciation more accurately in Chapter 9

How Do We Get...

- FCI Chapter 7 C_{TM} or C_{GR}
- Col

Look at these separately

07 Estimation of Manufacturing Costs

Cost of Operating Labor

$$N_{OL} = (6.29 + 31.7P^2 + 0.23N_{np})^{0.5}$$

NoL: the # of operators per shift

P: particulate processing steps

N_{np}: non-particulate processing steps - compression, heating/ cooling, mixing, separation, and reaction

Important note – Above equation based on data from chemical plants and refineries where number of particle processing steps is low. For units with more than 2 solids processing steps ignore middle term and add 1 operator per solids step

Example - acetone process

Operating Labor - Acetone Facility

Equipment	Number of	N _{np}
Compressors	0	
Exchangers	8	
Fired Heaters	1	
Pumps	5	
Reactors	1	
Towers	3	
Vessels	4	
Total		13

Pumps and vessels are not counted in evaluating N_{np}

07 Estimation of Manufacturing Costs

Operating Labor - Acetone Facility

$$N_{OL} = [6.29 + (31.7)(0)^2 + (0.23)(13)]^{0.5} = 3.05$$

Number of operators required for one operator per shift = 4.5

- = (49 wks/yr)(5 shifts/operator/wk)
- = 245 shifts/year/operator

Total shifts per year = (365)(3 shifts per day) = 1095 shifts/year

1095/245 = _____ operators (for a single shift)

Operating Labor - Acetone Facility

Total Operators = $(3.05)(4.5) = 13.75 \rightarrow 14$

Salary = \$59,580/yr (2010 Gulf-Coast average)

 $C_{OL} = (59,580)(14) = $834K$

13

07 Estimation of Manufacturing Costs

Cost of Raw Materials, Utilities, and Waste Treatment

Stream factor (SF) = (# of days plant operates per year) / 365

- **Flowrates**
 - Get these from PFD use stream factor
- Costs
 - Utilities and waste treatment Table 8.3 See Section 8.6 for utilities estimation
 - Common chemicals Table 8.4, Chemical Market Reporter, http://www.icis.com/StaticPages/a-e.htm#top

Stream Factor

- Operating hours per year divided by total hours per year
 - Typical 8000 operating hours
 - 0.9 0.96 typical 8000/8760 = 0.913
- Flows on PFD are kmol/operating hour not kmol/hour why?

07 Estimation of Manufacturing Costs

Utilities - Fuel and Electricity

- Fuel for Fired Heaters
 - PFD gives process load (energy balance) but total flow is more due to efficiency: 70 - 90% from Table 11.11 - item 13.
 - Fuel costs may vary wildly Figure 8.1
- Electricity for pumps and compressors Figure 8.7
 - Shaft power fluid power / efficiency
 - Power to drive shaft power / drive efficiency
- PFD usually gives shaft power but be careful

Utilities - Steam

- Pressure levels
 - Low (30 90 psi)
 - Medium (150 250 psi)
 - High (525 680 psi)
- Available saturated but sometimes superheated
- Large chemical complexes generate high-pressure steam and use excess pressure to generate electricity - Figure 8.6
- Steam can be used as a drive medium for compressors and pumps
 - Thermodynamic efficiency: Table 8.5
 - Drive efficiency: Figure 8.7

07 Estimation of Manufacturing Costs

Utilities - Condensate Return and Boiler Feed Water

*just use steam costs

07 Estimation of Manufacturing Costs

If Steam Lost in Process

07 Estimation of Manufacturing Costs

Steam Generated in Process

*just take credit for (steam - bfw) unless steam is lost in process

Example 8.9

Estimate the quantities and yearly costs of the appropriate utilities for the following pieces of equipment on the HDA PFD (Fig. 1.5) Assume the stream factor of 0.95.

E-101: Duty is 15.19 GJ/h

Cost of HPS = \$5.66/GJ

 $\Delta H_{vap} = 1699.3 \text{ kJ/kg}$

Table 1.7

 \rightarrow m_{steam} = 2.48 kg/s

Yearly Cost

= (15.19 GJ/h)(\$5.66/GJ)(24)(365)(0.95) = \$715,500/yr

07 Estimation of Manufacturing Costs

Utilities - Cooling Water

- Make-up based on ∆T (40-30)!
- Should charge cw based on energy used
 - Table 8.3
- Does not matter (much) if cw returned at 40°C or 45°C same energy
- 45°C is absolute max due to fouling

23

07 Estimation of Manufacturing Costs

Example 8.3

Estimate the utility cost for producing a circulating cooling water stream using a mechanical draft cooling tower. Consider a basis of 1 GJ/h of energy removal from the process units. Flow of cooling water required to remove this energy = m kg/h

Energy Balance

$$\dot{m}C_p\Delta T = 1 \times 10^9 = \dot{m}\left(4180\left[\frac{J}{kg}\right]\right)(40 - 30)$$
 $\dot{m} = 23,923 \text{ kg/h}$

Amount of water evaporated from tower, W_{tower}

$$W_{tower} = \frac{\text{Heat Load}}{\Delta H_{vap}} = \underbrace{\frac{1 \times 10^9}{2417 \times 10^3}}_{\text{@ ()°C}} = \underbrace{413.7 \text{ kg/h}}_{\text{)°C}}$$
)%

Example 8.3 (Continued)

Windage loss: 0.1~0.3%

We use 0.3%

Water blowdown: maximum allowable salt conc. factor, s assumed to be 5

$$s = \frac{\text{conc. salts in cooling water loop}}{\text{conc. salts in makeup water}} = \frac{s_{loop}}{s_{in}}$$

$$W_{MU} = W_{tower} + W_{wind} + W_{BD}$$

$$s_{in}W_{MU} = s_{loop}W_{wind} + s_{loop}W_{BD}$$

$$W_{BD} = 0.133\%, \ W_{MU} = 2.163\% = 517 \ kg/h$$

25

07 Estimation of Manufacturing Costs

Example 8.3 (Continued)

Pressure drop: pump

15 psi (pipe losses) + 5 psi (exchanger losses) + 10 psi (control valve loss) + 8.7 psi (static head - 20 ft above pump inlet) = 38.7 psi = 266.7 kPa

Pump power =
$$\frac{1}{\epsilon}\dot{V}\Delta P = \frac{1}{0.75} \frac{23,923}{(1000)(3600)} (266.7) = 2.36 \text{ kW}$$

Power for fan

required surface area in the tower = 0.5 ft²/gpm

fan horse power per square foot of tower area = 0.041 hp/ft²

Power for fan =
$$\frac{(23,923)(2.2048)}{(60)(8.337)}(0.5)(0.0041) = 1.61 \text{ kW}$$

Example 8.3 (Continued)

Cost of cooling water = cost of electricity + cost of chemicals for makeup water + cost of makeup water

```
electricity cost = $0.0674/kWh
process water cost = $0.176/1000 \text{ kg}
cost of chemicals (from Nalco Water) = $0.0347/1000 kg
```

Cooling water cost = (0.0674)(2.36+1.61) + (517.3)(0.176)/1000 + (517.3)(0.0347)/1000 = \$0.378/h = \$0.378/GJ

07 Estimation of Manufacturing Costs

Utilities - Refrigerated Water

- Same as previous slide in that energy costs are not ΔT dependent - but cost based on 5°C supply temperature
- Other refrigerants are possible and cost 1 as Temperature
- Generation of refrigeration requires a refrigeration cycle
- Figure 8.4 shows cost of refrigeration as a function of temperature

Refrigeration Cycles

Figure 8.3 Process Flow Diagram for a Simple Refrigeration Cycle

29