458.401 Process & Product Design

Engineering Economic Analysis

Time Value of Money (TVM)

Jong Min Lee
School of Chemical and Biological Engineering
Seoul National University

Definitions

- P Principal or Present Value (of an investment); 투자시점 가치
- F_n Future Value (of an investment); 미래가치
- *n* Years (or other time units) between P and F
- *i* Interest Rate (based on time interval of n) per annum

Basic premise: Money when invested earns money

\$1 today is worth more than \$1 in the future

Interest

- Simple Interest Annual Basis
 - Interest paid in any year = Pi_s
 - Pis Fraction of investment paid as interest per year
 - After n years, total interest paid = Pi_sn
 - Total investment is worth = P + Pi_sn
 - Total investment after 1 year $(n = 1) = P(1 + i_s)$
 - What is the drawback of simple interest?
- We can earn interest on earned interest

08 Eng. Economic Analysis

Compound Interest

- At time 0, we have P
- At the end of Year 1, we have $F_1 = P(1 + i)$
- At the end of Year 2, we have $F_2 = P(1 + i)^2$
-
- At the end of Year n, we have $F_n = P(1 + i)^n$ or $P = F_n/(1 + i)^n$

Example-01

How much would I need to invest at 8% p.a. to yield \$5,000 in 10 years?

Solution-01

$$i = 0.08, \ n = 10, \ F_{10} = 5,000$$

What if interest rate changes with time?

$$F_n = P \prod_{j=1}^n (1+i_j) = P(1+i_1)(1+i_2) \cdots (1+i_n)$$

08 Eng. Economic Analysis

Different Time Basis for Interest Calculations

- Relates to statement "Your loan is 6% p.a., compounded monthly"
- Define actual interest rate per compounding period as r
 - *i*_{nom} = Nominal annual interest rate (명목이율)
 - m = Number of compounding periods per year (일년에 몇 번 이 자 계산을 하는가. 월별 12, 분기별 4)

Different Time Basis for Interest Calculations

• *i*_{eff} = effective annual interest rate

$$r = \frac{i_{nom}}{m}$$

Look at condition after 1 year

$$F_1 = P(1 + i_{eff}) = P\left(1 + \frac{i_{nom}}{m}\right)^m$$

$$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m - 1$$

EFFECT(inom%,m)

08 Eng. Economic Analysis

Example-02

I invest \$1,000 at 10% p.a. compounded monthly. How much do I have in 1 year, 10 years?

Example 2 Cont.

- As m increases i_{eff} increases
- Is there a limit as m goes to infinity
 - Yes. Continuously compounded interest
 - Derivation: pp. 265-266
 - i_{eff} (continuous) = $e^{i_{nom}} 1$

08 Eng. Economic Analysis

Cash Flow Diagram (CFD)

- Represent timings and approximate magnitude of investment on a cad
 - x-axis is time and y-axis is magnitude
 - both positive and negative investments are possible
- In order to determine direction (sign) of cash flows, we must define what system is being considered.
- Disbursements = Outflow of money, "—"
- Receipts = Inflow of money, "+"
- Beginning of the first year: Traditionally defined as "Time 0"

Consider a Discrete Cash Flow Diagram

- Discrete refers to individual CFDs that are plotted
- Example
 - I borrow \$20K for a car and repay as a \$400 monthly payment for 5 years.

11

08 Eng. Economic Analysis

Cumulative CFD

Equivalence

Translating cash-flows over time into common units;

- 1. Present values of future payments
- 2. Future value of present payments
- 3. Present value of continuous uniform payments
- 4. Continuous payments equivalent to present payment

13

Interests, Type and Interconversion

- Simple Interest vs. Compounding Interest
- Single Payment Factor (F/P and P/F)
- Standard Factor Notation (F/P, i, n)
 - 이자율이 i이고 기간이 n일 때 P를 F로 바꿈.
- Excel Functions, FV(i%,n,,P), PV(i%,n,,F)
- Uniform Series (Annuity): P/A, A/P

Annuities (연금)

Uniform series of equally spaced, equal value cash flows

Note: The first payment is at the beginning of year 1 not at t = 0

08 Eng. Economic Analysis

Annuities

What is future value F_n ?

$$F_n = A(1+i)^{n-1} + A(1+i)^{n-2} + \dots + A$$

Geometric progression

$$F_n = S_n = A\left[\frac{(1+i)^n - 1}{i}\right]$$

Discount Factors (P/A)

Just a shorthand symbol for a formula in *i* and *n*

$$P = \frac{F}{(1+i)^n} \Rightarrow \left(\frac{P}{F}, i, n\right) = \frac{1}{(1+i)^n}$$

$$P = F\left(\frac{P}{F}, i, n\right) = F\left(\frac{1}{(1+i)^n}\right)$$

See Table 9.1

$$\Rightarrow A \rightarrow P \Rightarrow \left(\frac{P}{A}, i, n\right) = \frac{(1+i)^n - 1}{i(1+i)^n}$$

08 Eng. Economic Analysis

Discount Factors

$$P/A = F/A \times P/F$$

$$\left(\frac{F}{A}, i, n\right) = \frac{(1+i)^n - 1}{i}$$

$$\left(\frac{P}{F}, i, n\right) = \frac{1}{(1+i)^n}$$

therefore

$$\left(\frac{P}{A}, i, n\right) = \frac{(1+i)^n - 1}{i(1+i)^n}$$

Table 9.1 has six versions of these

Three are reciprocals of the other three

Commonly Used Factors for Cash Flow Diagram Calculations

Conversion	Symbol	Common Name	Formula
P to F	(F/P, i, n)	Single Payment Compound Amount Factor	$(1+i)^n$
F to P	(P/F, i, n)	Single Payment Present Worth Factor	$\frac{1}{(1+i)^n}$
A to F	(F/A, i, n)	Uniform Series Compound Amount Factor, Future Worth of Annuity	$\frac{(1+i)^n - 1}{i}$
F to A	(A/F, i, n)	Sinking Fund Factor	$\frac{i}{(1+i)^n - 1}$
P to A	(A/P, i, n)	Capital Recovery Factor (CRF)	$\frac{i(1+i)^n}{(1+i)^n - 1}$
A to P	(P/A, i, n)	Uniform Series Present Worth Factor, Present Worth of Annuity	$\frac{(1+i)^n - 1}{i(1+i)^n}$

19

Calculations with Cash Flow Diagrams

- Invest 5K, 1K, 2K at end of Years 0, 1, 3 and take 3K at end of Year 4
- Note that annuity payments are all at the end of the year

08 Eng. Economic Analysis

Example-03

How much in account at end of Year 7 if i = 8% p.a.?

Solution-03

$$F_7 = \$9,097.84$$

Example-04

What would investment be at Year 0 to get this amount at Year 7?

Solution-04

08 Eng. Economic Analysis

Example-05

What should my annual monthly car payment be if interest rate is 8% p.a. compounded monthly? Compare at n = 60

Solution-05

A = \$405.53 Interest paid = \$4,331.80

08 Eng. Economic Analysis

You buy a house where you finance \$200K at 6% p.a. interest, compounded monthly. What is your monthly payment, and how much interest do you pay over the lifetime of the loan for a 15-year and a 30-year mortgage in current dollars?

Solution-06

For a 15-year mortgage

\$1687.71/month, total of \$303,788 paid, \$103,788 interest

For a 30-year mortgage

\$1199.10/month, total of \$431,676 paid, \$231,676 interest

24

Example-07

You invest \$5,000/year (the maximum, for now) in a Roth IRA, starting at age 25 for 40 years. Assuming a return of 8% p.a., how much will you have at age 65 in future dollars?

Example-08

Repeat the previous calculation, assuming that you do not start investing until age 35 or age 45.

08 Eng. Economic Analysis

Depreciation

- Total Capital Investment = Fixed Capital + Working Capital
 - Fixed Capital: All costs associated with new construction, but land cannot be depreciated
 - Working Capital: Float of material to start operations cannot depreciate
- **Definitions**
 - Salvage Value, S
 - Value of FCI_L at end of project
 - ightharpoonup Often = 0
 - Life of Equipment
 - n: set by IRS
 - Not related to actual equipment life
 - Total Capital for Depreciation
 - ▶ FCI_L S

S는 공장의 수명이 다한 후 (예, 30 년)의 잔존가치가 아닌 회계 처리 규정 (미국 IRS)에 의한 장부상의 잔존가치(book value)이다.

 $FCI_L = TIC - WC - Land$

4 Basic Methods for Depreciation

- Straight Line
- Sum of Years Digits (SOYD)
- Double Declining Balance (DDB)
- Modified Accelerated Cost Recovery System (MACRS)

27

1 Straight Line

2 Sum of Years Digits (SOYD)

$$d_k^{SOYD} = \frac{\left[(n+1-k)(FCI_L - S)\right]}{\left(\frac{1}{2}n(n+1)\right)}$$
SOYD

3 Double Declining Balance (DDB)

$$d_k^{DDB} = \frac{2}{n} \left[FCI_L - \sum_{j=0}^{k-1} d_j \right]$$

Book Value at k-1

(4) MACRS

Current IRS-approved method

Year	Depreciation Percentage
1	20.00
2	32.00
3	19.20
4	11.52
5	11.52
6	5.76

See Chapter 9
Based on combination
of DDB and SL

08 Eng. Economic Analysis

29

Example-09

The fixed capital investment (excluding the cost of land) of a new project is estimated to be \$150.0 million, and the salvage value of the plant is \$10.0 million. Assuming a seven-year equipment life, estimate the yearly depreciation allowances.

Solution-05

$$FCI_L = \$150 \times 10^6$$
 $S = \$10.0 \times 10^6$ $n = 7$

year 2

$$d_2^{SL} = (\$150 \times 10^6 - \$10 \times 10^6)/7 = \$20 \times 10^6$$
$$d_2^{SOYD} = (7 + 1 - 2)(\$150 \times 10^6 - \$10 \times 10^6)/28 = \$30 \times 10^6$$

$$d_2^{DDB} = (2/7)(\$150 \times 10^6 - \$42.86 \times 10^6) = \$30.6 \times 10^6$$

Table E9.21

Year (k)	d_k^{SL}	d_k^{SOYD}	d_k^{DDB}	Book Value $FCI_L - Sd_k^{DDB}$
0				(15 - 0) = 15
1	$\frac{(15-1)}{7} = 2$	$\frac{(7+1-1)(15-1)}{28} = 3.5$	$\frac{(2)(15)}{7} = 4.29$	(15 - 4.29) = 10.71
2	$\frac{(15-1)}{7}=2$	$\frac{(7+1-2)(15-1)}{28} = 3.0$	$\frac{(2)(10.71)}{7} = 3.06$	(10.71 - 3.06) = 7.65
3	$\frac{(15-1)}{7}=2$	$\frac{(7+1-3)(15-1)}{28} = 2.5$	$\frac{(2)(7.65)}{7} = 2.19$	(7.65 - 2.19) = 5.46
4	$\frac{(15-1)}{7} = 2$	$\frac{(7+1-4)(15-1)}{28} = 2.0$	$\frac{(2)(5.46)}{7} = 1.56$	(5.46 - 1.56) = 3.90
5	$\frac{(15-1)}{7}=2$	$\frac{(7+1-5)(15-1)}{28} = 1.5$	$\frac{(2)(3.90)}{7} = 1.11$	(3.90 - 1.11) = 2.79
6	$\frac{(15-1)}{7}=2$	$\frac{(7+1-6)(15-1)}{28} = 1.0$	$\frac{(2)(2.79)}{7} = 0.80$	(2.79 - 0.80) = 1.99
7	$\frac{(15-1)}{7} = 2$	$\frac{(7+1-7)(15-1)}{28} = 0.5$	1.99 - 1.0 = 0.99	(1.99 - 0.99) = 1.00
Total	14.0	14.0	14.0	1.0 = S

The depreciation allowance in the final year of the DDB method is adjusted to give a final book value equal to the salvage value

31

08 Eng. Economic Analysis

- uses a double declining balance method and
- switches to a straight-line method when the straight line method yields a greater depreciation allowance for that year, then using a half-a year convention
- In the first year, the depreciation is only half of that for full year. Likewise, in the last year of depreciation, the depreciation is again for one-half-year convention

MACRS: Basic Methods

time remaining

k	dk (DDB)	dk (SL)		
1	0.4(100)(0.5) = 20			
2	0.4(100-20) = 32	(100-20)/4.5 = 17.78		
3	0.4(100-52) = 19.2	(100-52)/3.5 = 13.71		
4	0.4(100-71.2) = 11.52	(100-71.2)/2.5 = 11.52		
5	0.4(100-82.72) = 6.91	(100-82.72)/1.5 = 11.52		
6		(0.5)(100-94.24)/0.5 = 5.76		

08 Eng. Economic Analysis

Taxation, Cash Flow, and Profit

- Tables 9.3 9.4
- Sales Revenue = R
- Expenses = COM_d + d_k
- Income Tax = (R COM_d d_k)t
- After Tax (net) Profit = (R COM_d d_k)(1 t); 세후수익 (감가상각 은 세금 대상이 아님)
- After Tax Cash Flow = After-Tax Profit + Depreciation = (R - COM_d - d_k)(1 - t) + d_k (회계상 감가상각은 세금 낸 후 돌아옴)
- Cash Flow at the end of project life = Above + Recovery of WC + Salvage Value (Working Capital은 운영하기 위한 초기 비용 이므로 회수)

Inflation

\$ Net Worth Now vs. \$ Next Year

$$CEPCI(j + n) = (1 + f)^n CEPCI(j)$$

f = average inflation rate between years j and n

Example

$$(1+f)^{10} = \frac{402}{359}$$
 $f = \left(\frac{402}{359}\right)^{0.1} - 1 = 0.0114 \text{ or } 1.14\%$

08 Eng. Economic Analysis

Inflation

- Effect of inflation on interest rate f affects the purchasing power of the \$
- Look at the purchasing power of future worth, then

$$F' = \frac{F}{(1+f)^n}$$

If this future worth was obtained by investing at a rate i, then the inflation adjusted interest rate, i' is given by

$$F' = \frac{F}{(1+f)^n} = P\frac{(1+i)^n}{(1+f)^n} = P\left(\frac{1+i}{1+f}\right)^n = P(1+i')^n$$

$$i' = \frac{1+i}{1+f} - 1 \approx i - f$$