
Fuel Cell Types Overview

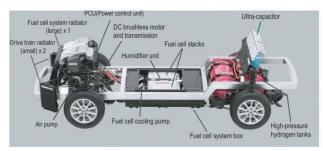
Fuel Cell Types

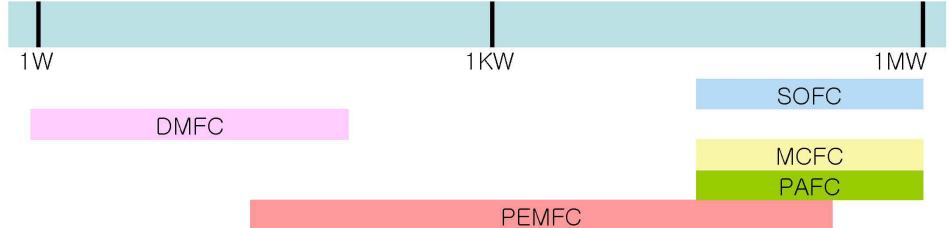
	PEMFC	PAFC	AFC	MCFC	SOFC	
Electrolyte	Polymer Membrane	Liquid H ₃ PO ₄ (Immobilized)	Liquid KOH (Immobilized)	Molten Carbonate	Ceramic	
Charge Carrier	H^+	H^+	OH-	CO32-	O ²⁻	
Operating Temperature	80 °C	200 °C	60-220 °С	650 °C	600-1000 °C	
Catalyst	Platinum	Platinum	num Platinum N		Perovskites (Ceramic)	
Cell Components	Carbon- based	Carbon-based	Carbon-based	Stainless- based	Ceramic- based	
Fuel Compatibility	H ₂ , Methanol	H ₂	H_2	H ₂ , CH ₄	H ₂ , CH ₄ , CO	

- Electrolyte determines the type of fuel cells and operation temperature.
 - Operation temperature significantly affects the use of other components such as catalyst.

Applications vs Power

휴대전원


가정용 발전


대형 발전

소형 운송수단

중 대형 운송수단

Mobile Application

Stationary Application

HOME POWER

A SHIFT IN POWER FROM THE GRID

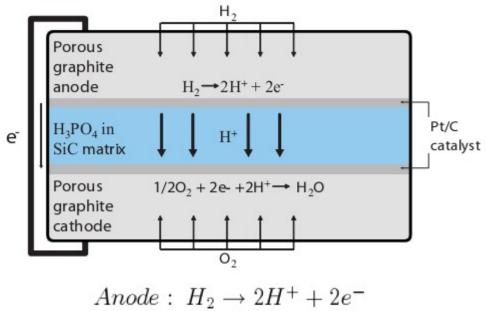
Provides electrical power plus useable heat

Utilizes existing natural gas infrastructure

Partial power or grid-independent power

INSTITUTIONAL, COMMERCIAL AND INDUSTRIAL POWER

HIGH-QUALITY RELIABLE POWER AND HEAT


High temperature fuel cells providing 100kW-2MW have been installed in buildings since the 1980's

24

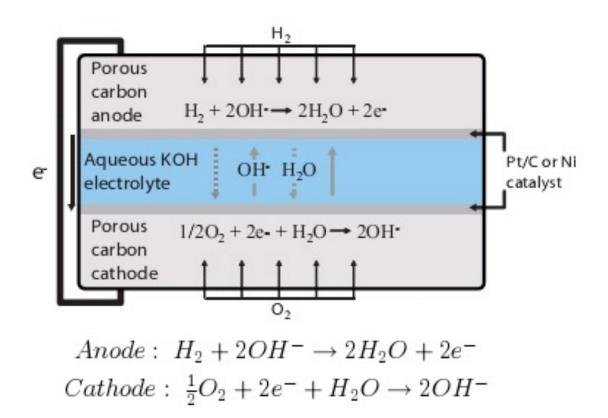
Transportation Application

PAFC

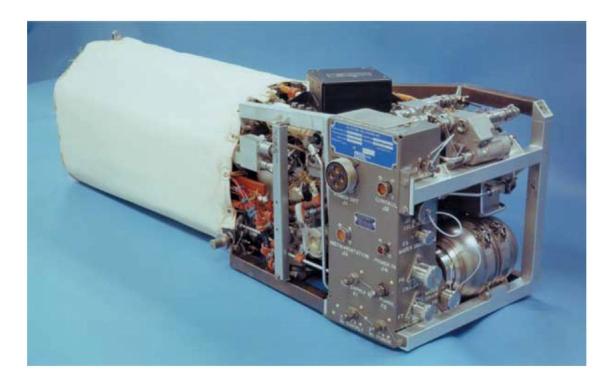
Cathode: $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$

- Low T operation: 200
- Pt/C catalyst
- Solidified liquid electrolyte

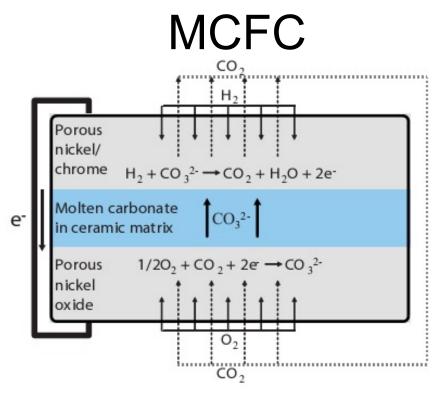
PAFC



400 kW PAFC (PureCell) by Doosan Fuel Cell (formerly Clear Edge Power Inc)


- Electrolyte evaporation
- CO, S poisoning
- Moderate success in commercialization (cost barrier, maintenance)
- Emergency power generation

AFC

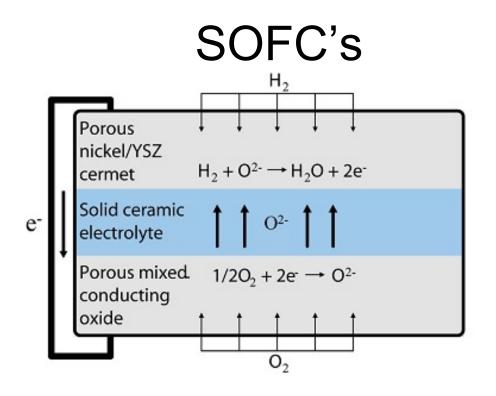


- Low T operation: 60~220
- Pt/C(Ni) catalyst
- Liquid electrolyte

AFC

- Carbon dioxide poisoning
- Pure hydrogen & air (oxygen) only
- Special applications such as space mission (Gemini project)

Anode: $H_2 + CO_3^{2-} \to CO_2 + H_2O + 2e^-$ Cathode: $\frac{1}{2}O_2 + CO_2 + 2e^- \to CO_3^{2-}$


- High T operation: 650C
- Ni catalyst
- Immobilized Li2CO3 electrolyte in LiOAlO2
- CO2 recycling

MCFC

2.5 MW MCFC power plant by POSCO Energy (in partnership with FuelCell Energy Inc.)

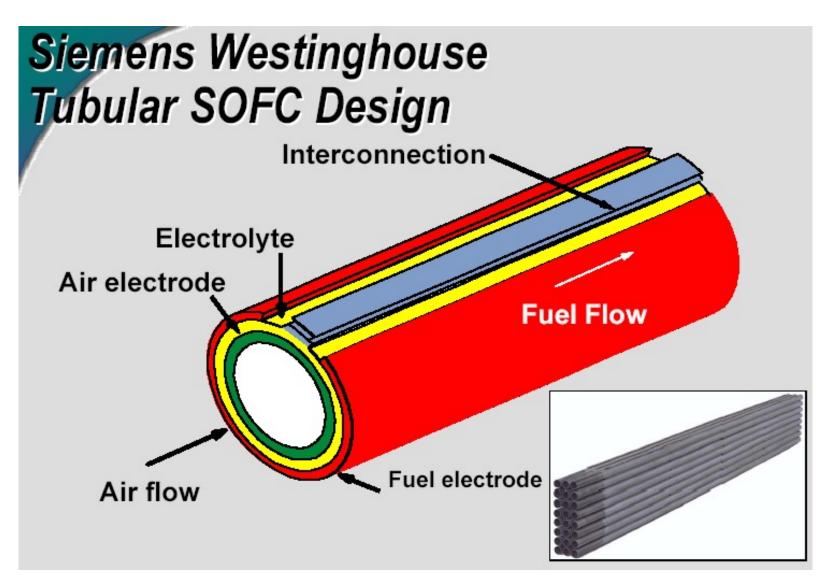
- Stationary power generator
- Demonstration upto MW
- Well demonstrated technology
- High efficiency (50%> for CHP system)
- No CO issues (CO as fuel)
- Difficult to increase power density

Anode:
$$H_2 + O^{2-} \rightarrow H_2O + 2e^-$$

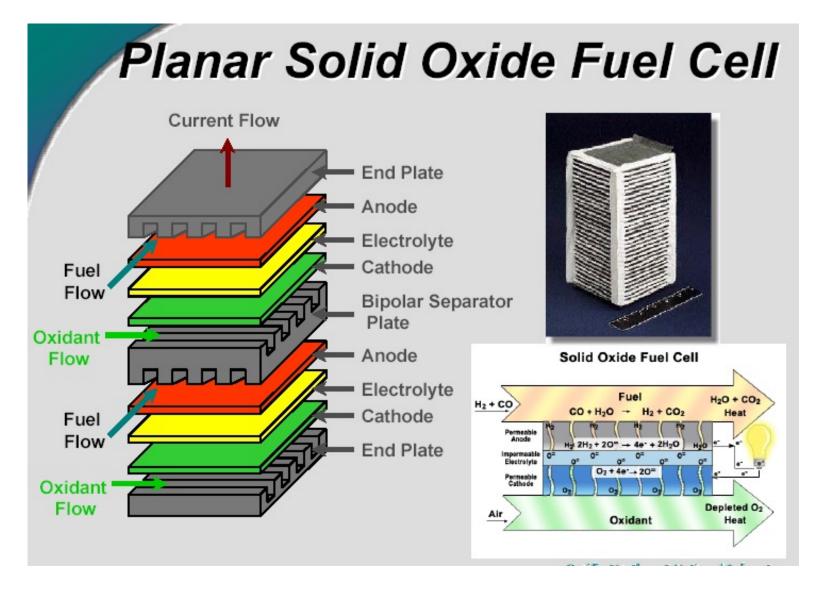
Cathode: $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$

- High T operation: 600~1000C
- Ceramic electrolyte: YSZ, SDZ, SDC, GDC, LSGM...
- Anode: Ni/YSZ
- Cathode: LSM, LSC, LSF, LSCF

SOFC's

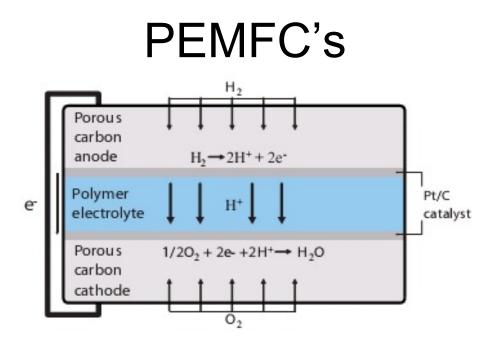

200kW Bloombox by Bloom Energy

- Stationary power generator
- Demonstration upto MW
- Fuel flexibility
- High efficiency (50%> for CHP system)
- Relatively high power density
- Relatively expensive components/fabrication



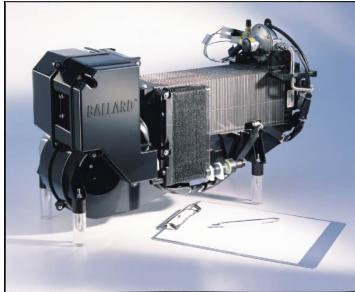
1 kW Ceres Power SOFC

SOFC's



SOFC's

Design Comparison

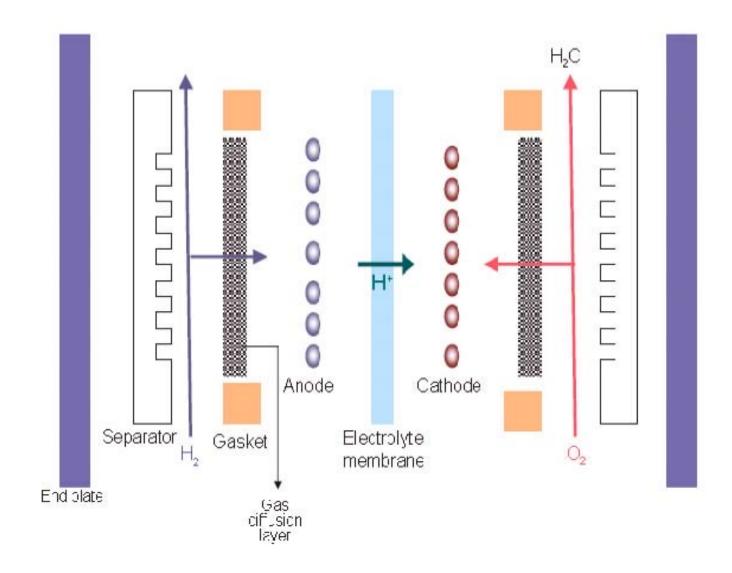

	Tubular Cells	Planar Cells
Specific Power (W/cm ²)	Low (0.2-0.3)	High (0.6-2.0)
Volumetric Power (W/cm ³)	Low	High
Manufacturing Cost(\$/kW)	High	Low
High Temperature Seals	Not necessary	Required

Anode:
$$H_2 \rightarrow 2H^+ + 2e^-$$

Cathode: $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$

- Low T operation: 30~130C
- Pt/C catalyst
- Polymer membrane: Sulfonated PTFE(Nafion, Dow, Membrane-S, Gore..), PBI(Celanese), PEEK, Polymide...
- Carbon cloth (paper) electrode

PEMFC's

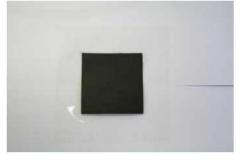


PCU(Power control unit) Fuel cell system radiator (large) x 1 Drive train radiator (small) x 2 Humidifier unit Fuel cell stacks Humidifier unit Fuel cell stacks Humidifier unit Fuel cell system box Humidifier unit Fuel cell system box Humidifier unit Fuel cell system box

Honda fuel cell car platform

- 1.5kW portable PEMFC system by Ballard
 - Highest power density
 - Fast start-up
 - Low operating temperature makes it suitable for portable market.
 - Poor CO & S tolerence
 - Water management issue

연료전지 구성: 단위 전지

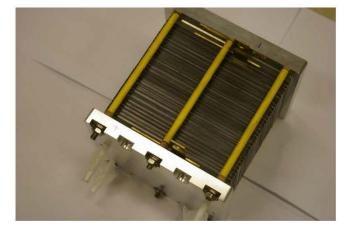

-Pressure Plate & Current Collector

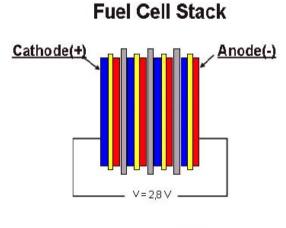
- Pressure Plate
- Insulator
- Current Collector

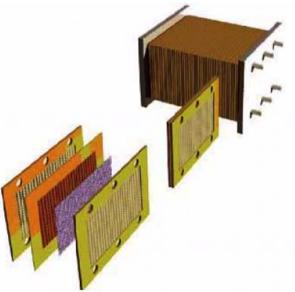
<u>-Gasket</u>

Spacer

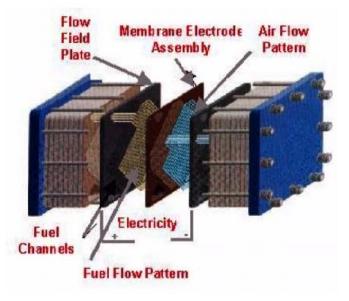
- <u>MEA</u>


- Gas Diffusion Layers
- Catalyst Layers
- Membrane

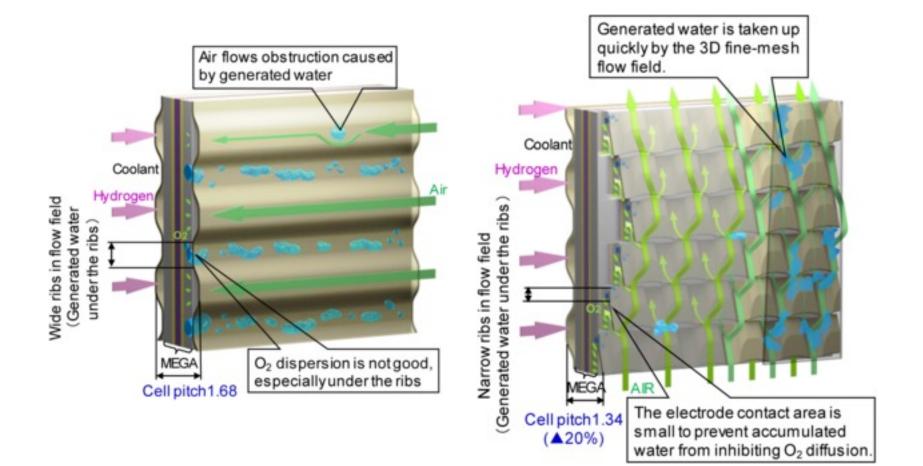

- Separator

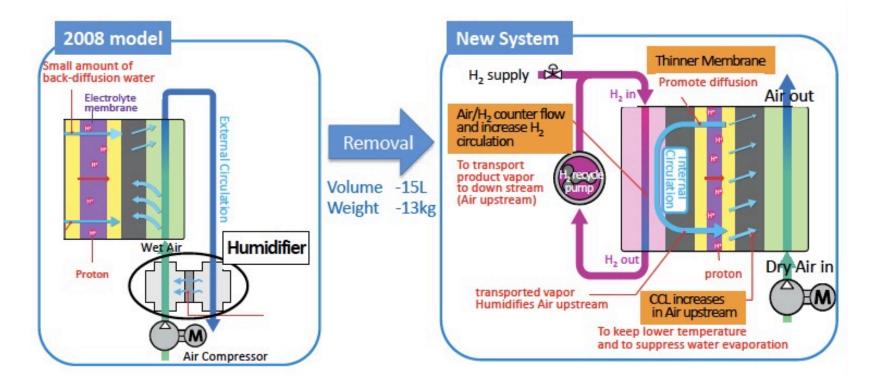

• Carbon Plate or etc.



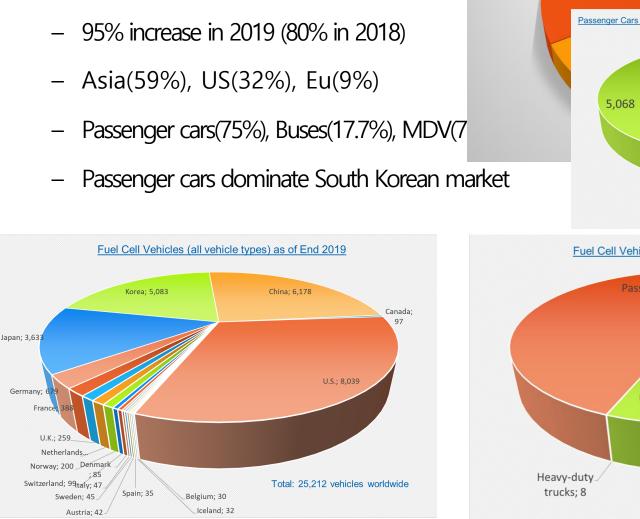


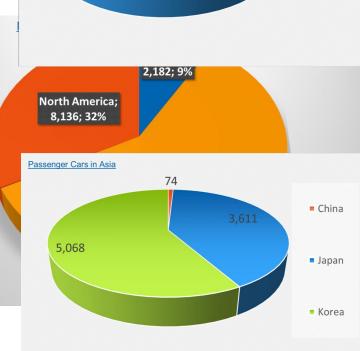
PEMFC Stack

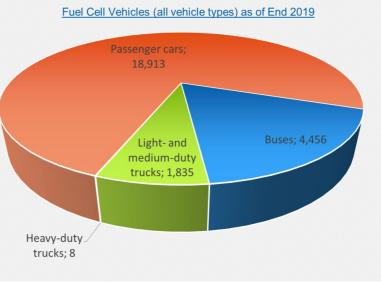


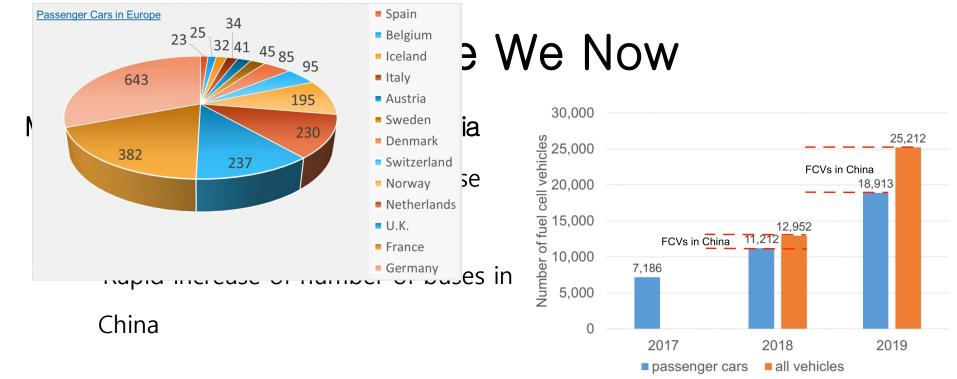


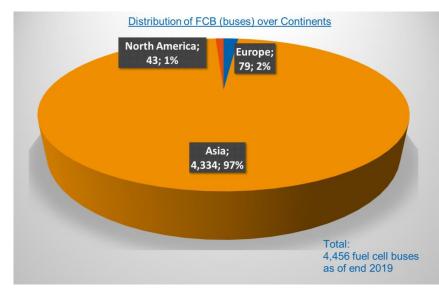
Toyota Metal Mesh Flow Field

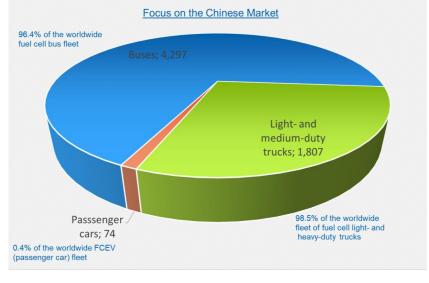

Toyota Metal Mesh Flow Field




- 박막전해질로 역확산을 통한 물공급
- Counter flow에 의한 물 교환 (수소과급율 증가)
- 양극층 두께 증가




Fuel Cell Vehicle stock exceeded 25,212 as

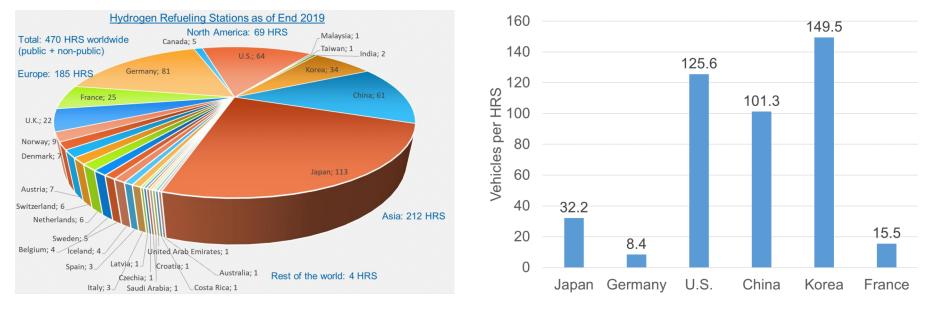


^{'20 IEA} 26

Where Are We Now

Typical FCV specifications

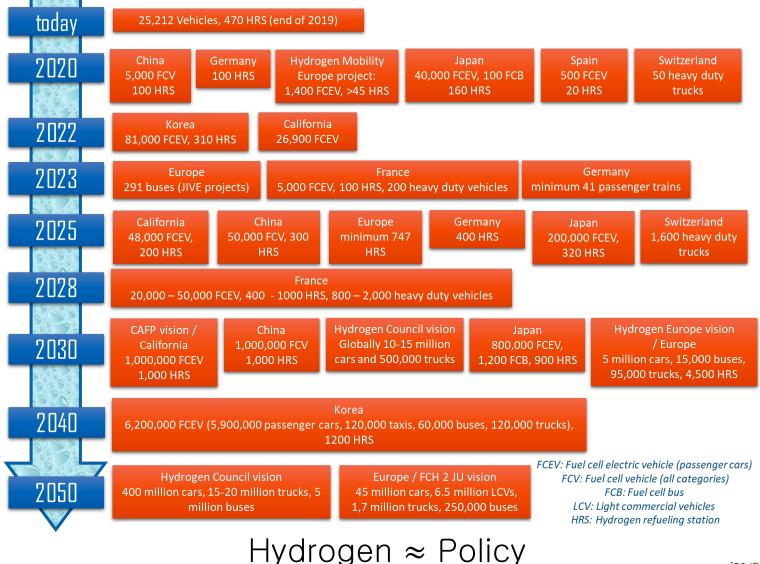
IEA Technology Collaboration Programme Advanced Fuel Cells


Fuel con- sumption / Driving range	0.76 kg/100 km com- bined 0.80 kg/100 km extra urban 0.69 kg/100 km urban	666 km WLTP 756 km NEDC	650 km NEDC	1 kg / 100 km hydrogen 478 km NEDC hybrid mode (50 km battery only)
Tank system	700 bar nominal work- ing pressure 5.7 wt.% tank storage density approx. 5 kg fuel tank capacity Two tanks: 60 l front tank, 62.4 l rear tank	6.33 kg hydrogen 156.6 l overall capacity, 3 tanks, each 52.2 l	700 bar 5.46 kg hydrogen 141 I overall capacity, 2 tanks, 24 I and 117 I	700 bar 4.4 kg hydrogen
Weight	1,850 kg curb weight 2,180 kg gross vehicle weight	2,340 kg gross vehicle weight 1,814 – 1,873 kg curb weight	1,875 kg curb weight	
Exterior	4,890 mm overall length 1,815 mm overall width 1,535 mm overall height 0.29 drag coefficient	4,670 mm overall length 1,860 mm overall width 1,630 mm overall height 2,790 mm wheelbase 0.329 drag coefficient	4,915 mm overall length 1,875 mm overall width 1,480 mm overall height 2,750 mm wheelbase	4,671 mm overall length 2,096 mm overall width 1,653 mm overall height 2,873 mm wheelbase

^{'20 IEA} 27

470 HRS in the world as of end 2019 (23% increase vs 15% in 2018)

- Asia(212), Europe()185, North America(69)
- Japan(113), Germany(81), US(64), China(61 with mobil Advanced Fuel 34), France(25) (South Korea is worst in FCV/station)
- 350 bar (for buses) or 700 bar (for passenger cars) for 10 year operation



IEA Technology Collaboration P

Everybody's Ambitious

Announced Targets, Visions and Projections

China Deployment Examples

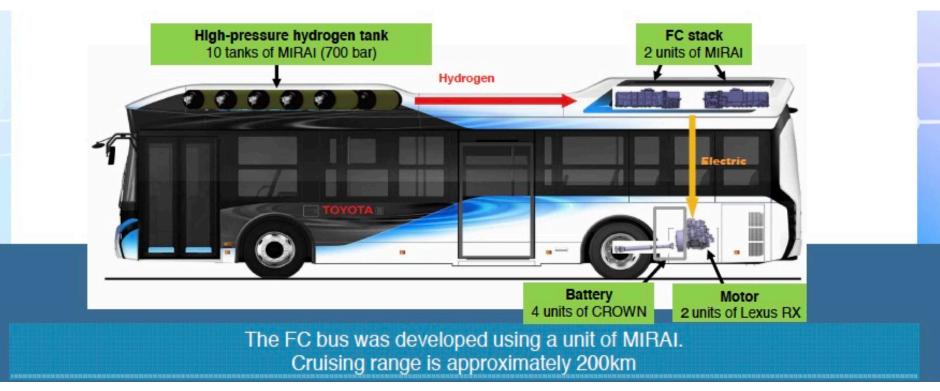
Japanese Deployment Plan

Japan has a reasonable plan of infrastructure-first approach.

G

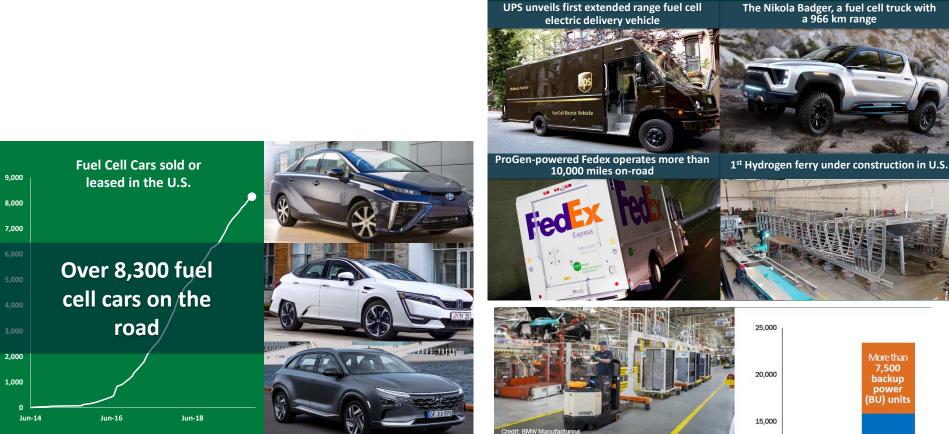
N

		2016 (Result)	2030(Target)	
Sas	soline Vehicle	65.15%	30~50%	
le	xt Generation Vehicle	34.85%	50~70%	
	Hybrid Vehicle	30.76%	30~40%	
	Electric Vehicle Plug-in Hybrid Vehicle	0.37% 0.22%	20~30%	
	Fuel Cell Vehicle	0.02%	~3%	
	Clean Diesel Vehicle	3.46%	5~10%	


Two 700 atm-H2 FC bus es in Tokyo, 2017 (100 b y 2020)

38 FC Forklifts in 2 017 '17 NEDO 31

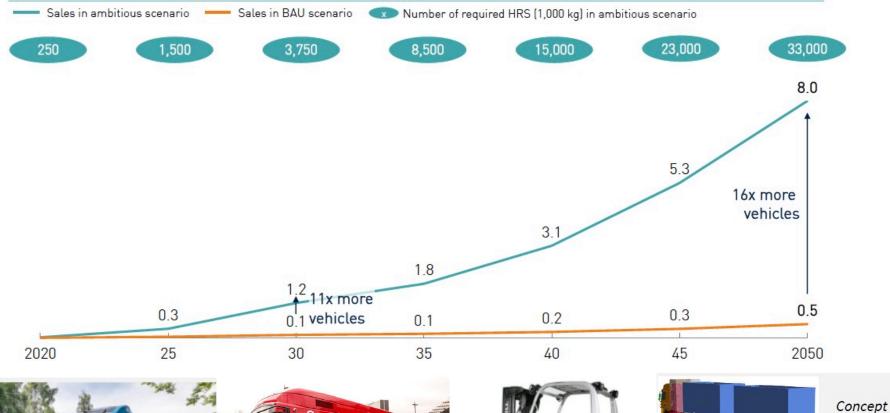
Toyota Bus Example


Two Toyoda FC bus under operation since 2017 in Tokyo.

Technology and supply chain sharing is the key advantage.

US Deployment

UPS unveils first extended range fuel cell


Credit: Fuel Cell Energy

More than 7,500 backup power (BU) units 10,000 More than 16,000 forklifts 5,000 Total: 900 BU units 700 forklifts Supported by Supported by prior industry **DOE funds** 33 '20 DOE

EU Deployment Plan

Sales number of vehicles in road transport (2050)

m vehicles

Fuel Cel

Alstom iLint FCH train

^{'19 FCH} 34

for a 27t rigid FC truck by VDL

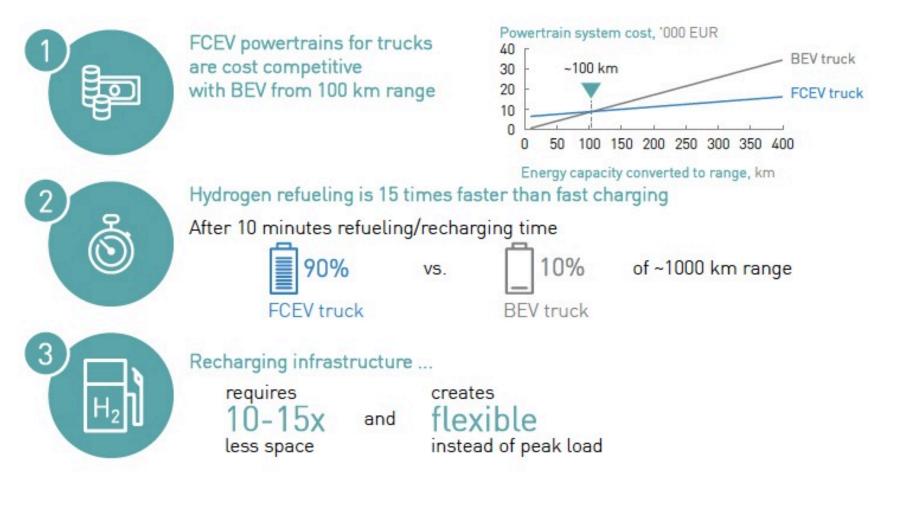
FC alobal deployment expectation

Low, medium and high volume scenarios

			2024			2030		
Application	Comments	Units	L	М	н	L	М	н
FCEV	Passenger cars and light commercial vehicles (LCV)	millions	0.33	0.90	1.8	1.6	5.5	10
FC Buses		thousands	16	24	35	61	120	190
HGV		thousands	3.0	3.8	10	20	37	80
FC Forklifts		thousands	48	67	93	85	140	230
Trains and light rail		units	87	190	490	420	1,200	2,400
Maritime and inland boats		units	16	38	110	75	240	520
HRS		thousands	0.76	1.9	3.9	3.5	11	20
Micro CHP	1-5 kW _e	millions	0.75	1.4	1.7	2.3	4.8	7.0
Commercial CHP	5-100 kWe	thousands	4.7	7.3	26	31	72	200
Large CHP	>100 kW _e	thousands	7.3	14	27	17	45	97
Back-up power and gensets		thousands	42	60	75	85	150	230
Electrolysers	Not applicable as stack sizes vary significantly							

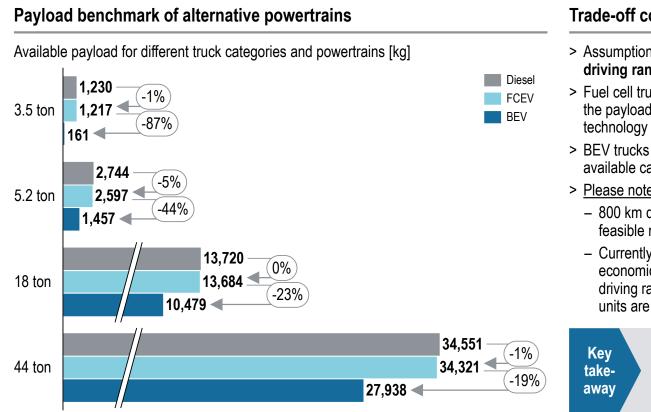
'19 E4tech, FCH 35

EU Deployment Plan


The path towards a European hydrogen eco-system step by step :

From now to 2024, we will support the **installation of at least 6GW of renewable hydrogen electrolysers in the EU**, and the production of **up to 1 million tonnes** of renewable hydrogen. From 2025 to 2030, hydrogen needs to **become an intrinsic part of our integrated energy system**, with at least 40GW of renewable hydrogen electrolysers and the production of **up to 10 million tonnes** of renewable hydrogen in the EU. From 2030 onwards, renewable hydrogen will be deployed at a large scale across all hard-to-decarbonise sectors.

Why So Ambitious?


Example of a fuel cell heavy truck

Why So Ambitious?

A viable option for 0-emission heavy-duty/long-haul trucking from a payload perspective

Trade-off between alternative powertrains and payload acc. to US DOE

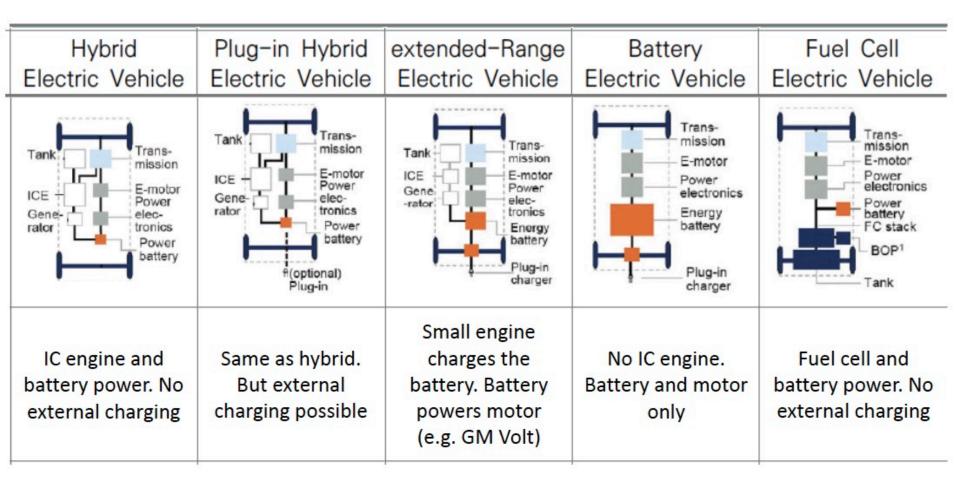
Trade-off considerations

- > Assumption: payload considered at 800 km driving range
- > Fuel cell trucks only compromise up to 5% of the payload of the incumbent diesel
- > BEV trucks offer between 19 and 87% less available cargo payload
- > Please note:
 - 800 km driving range is at the upper limit of feasible mileage per day
 - Currently available batteries are economically not fit to match a 800 km driving range. Size and weight of necessary units are show stoppers

FCEV trucks are an attractive option to replace regional and long distance diesel trucks from an payload point of view

'17 FCH

38


Why So Ambitious?

Year 2040: FCEV minus BEV-X Total Cost of Ownership

FCEVs : Lower cost for large size classes and longer driving range

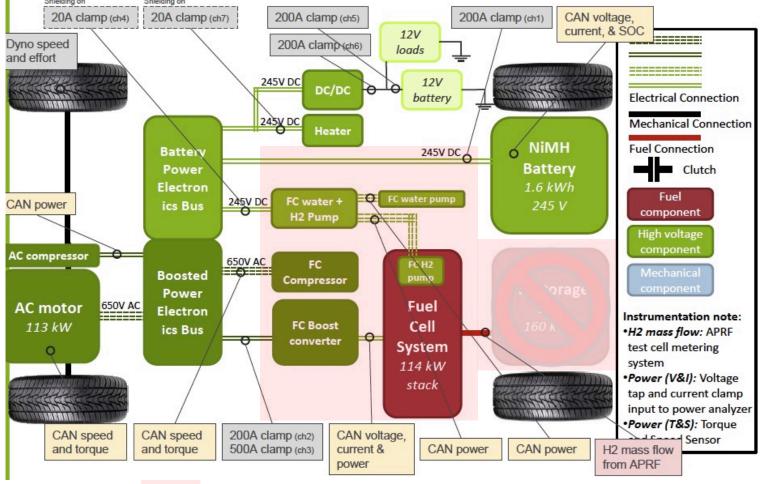
	Green shows where FCEVs are more cost effective						
	50 mi.	100 mi.	150 mi.	200 mi.	250 mi.	300 mi.	350 mi.
Two-seaters	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Minicompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.10	-\$0.13
Subcompacts	\$0.05	\$0.02	-\$0.01	-\$0.04	-\$0.07	-\$0.11	-\$0.14
Compacts	\$0.04	\$0.01	-\$0.02	-\$0.05	-\$0.09	-\$0.12	-\$0.15
Midsize Cars	\$0.05	\$0.01	-\$0.03	-\$0.06	-\$0.10	-\$0.13	-\$0.17
Large Cars	\$0.04	\$0.01	-\$0.02	-\$0.06	-\$0.09	-\$0.12	-\$0.16
Small Station Wagons	\$0.05	\$0.01	-\$0.03	-\$0.07	-\$0.11	-\$0.15	-\$0.19
Pass Van	\$0.03	-\$0.01	-\$0.06	-\$0.11	-\$0.15	-\$0.20	-\$0.24
SUV	\$0.03	-\$0.02	-\$0.08	-\$0.14	-\$0.19	-\$0.25	-\$0.30
Std Pickup	\$0.14	\$0.11	\$0.07	\$0.04	\$0.01	-\$0.03	-\$0.06
Small Pickup	\$0.06	\$0.02	-\$0.02	-\$0.07	-\$0.11	-\$0.15	-\$0.19

Electric Vehicles

FCEC shares >60% system with BEV

But, FCEV \neq BEV FCEV = ???

Fuel Cell Vehicle System

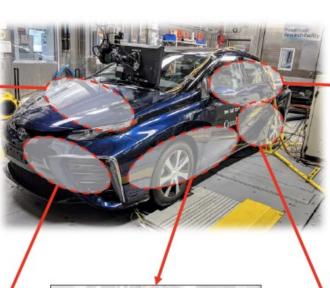

composed of membrane, catalyst, GDL and bipolar plate Hydrogen and air supply, thermal management and water management

Inverter, power electronics and motor (sharable with BEV) Compressed hydrogen storage and safety controller

Toyota MIRAI Architecture

Over 60% of FCEV system is shareable with BEV.

This does NOT mean the rest are simple.



: Fuel cell system, M-BOP and hydrogen tank

Toyota MIRAI component layout

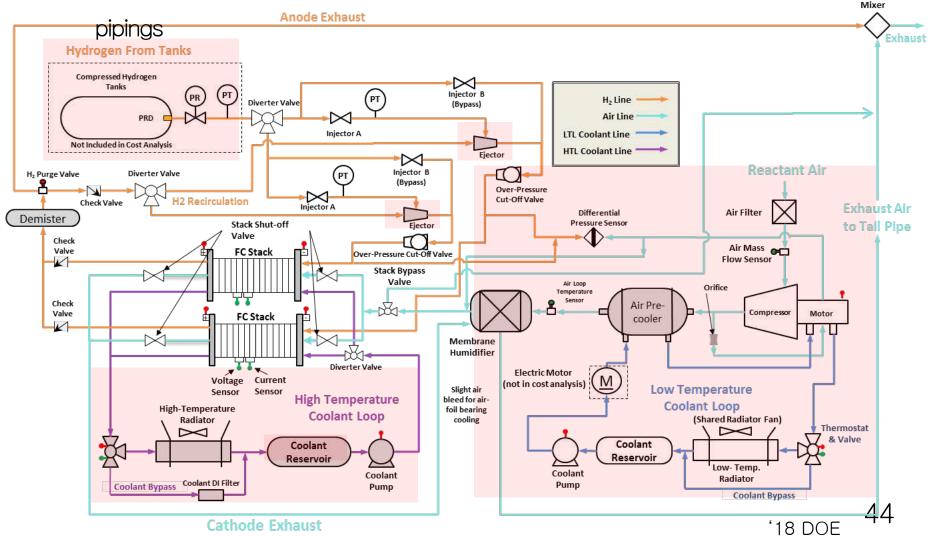
Power Electronics

The high voltage power distribution system is under the hood along with the inverters for the motors.

The air cooled NiMH battery pack is packaged in the trunk similar to most Toyota Hybrid vehicles.

The electric drive motor and the air compressor are packaged in-line between the front wheels.

The fuel cell stack along with the boost converter is under the center of the vehicle.



The two hydrogen tanks are under the trunk and the rear passenger seats. These tanks are disabled for the testing.

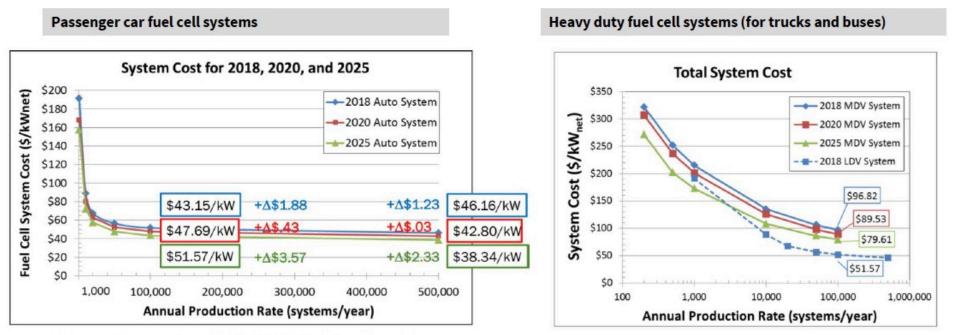
Heavy Duty Vehicle FC System

Fuel cell vehicles use new and conventional components.

- Hydrogen tank, humidifier, radiators, pumps, compressor, injectors, ejectors, valves,

Well to Wheel Efficiency

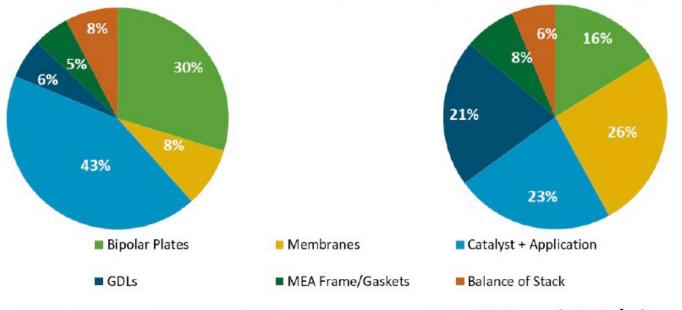
Vehiele Ture	Well to	o Tank	Tank to Well	Overall Efficiency	
Vehicle Type	Production	Delivery	Use		
FCEV	23~69% H2 productio n method de pendent	54~80% Loss during H2 compress ion & transportatio n	36~45% FCEV system Loss	4~25%	
BEV	35~60% Electricity pro duction meth od	81~84.6% Transmission loss	65~82% EV system lo ss	18~42%	
ICEV	82~87% Fuel producti on loss	~99% Transportatio n loss	17~21% ICEV loss	14~18%	


FC Vehicle Supply Chain

FC System Cost Analysis

FC technology is mature enough.

Mass production is the key factor.



*Cost results shown for both 100,000 & 500,000 systems/year

FCEV Challenges

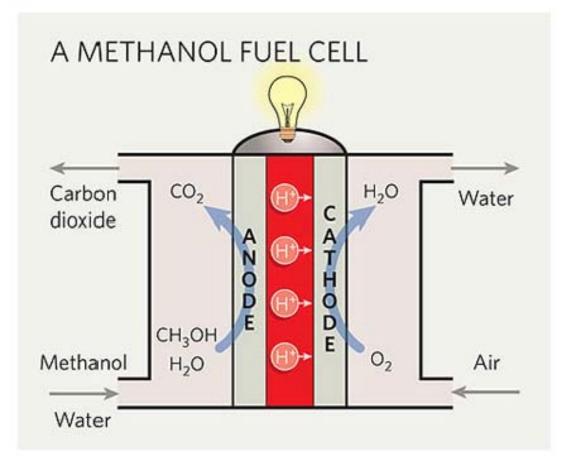
Major cost components - examples

Manufacturing volume and scale is important

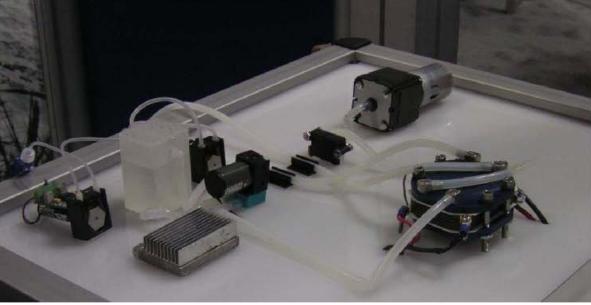
Cost by Component – DOE Independent peer-reviewed analysis

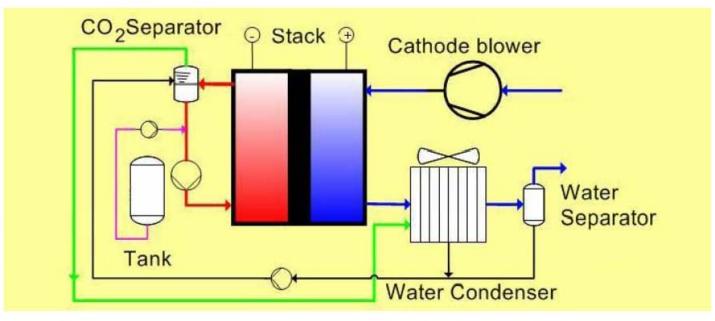
High- Volume (500,000/yr) Challenges: Catalyst and Bipolar Plates

Low- Volume (1,000/yr) Challenges: Membrane, GDL, Catalyst


FCEV Challenges

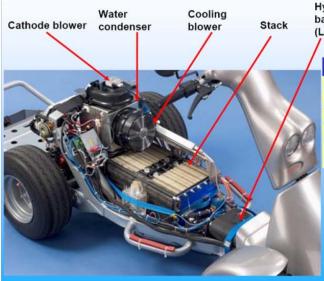
E4techvolume scenario for 80kWe and >500,000 production


	2024			2030		
	Low	Medium	High	Low	Medium	High
System cost	€ 11,000	€ 8.600	€ 7,700	€ 8,800	€ 7,000	€ 6,400
System integration	€ 290	€ 260	€ 250	€ 270	€ 240	€230
Storage system (Type IV)	€ 3,800	€ 3,100	€2,800	€ 3,100	€ 2,600	€ 2,400
BOP	€ 2,600	€ 1,900	€1,700	€ 2,000	€ 1,500	€ 1,300
Projected stack cost	€ 4,300	€ 3,300	€ 3,000	€ 3,400	€ 2,700	€ 2,400
Balance of stack	€ 100	€93	€ 89	€94	€ 85	€ 82
Bipolar plates (BPP)	€ 440	€ 400	€ 380	€ 400	€ 360	€ 350
Membrane electrode assemblies (MEA)	€ 2,800	€ 2,100	€1,800	€ 2,200	€ 1,700	€ 1,500
Membrane	€ 560	€ 410	€ 360	€ 430	€ 320	€280
Catalyst	€ 1,300	€ 1,000	€ 950	€ 1,100	€ 880	€ 810
Gas diffusion layer (GDL)	€ 370	€ 190	€140	€210	€ 110	€83


'20 FCH

DMFC's

Simple Liquid DMFC System



DMFC's

Hybridization battery (Li-lon)

DMFC System

 Power density:
 22 W/I

 Energy density:
 110 Wh/kg

 Cruising range:
 120 km

 Methanol:
 6.5 I

 η_{system}:
 25 %

former lead acid system

DMFC Electrode Reaction Steps

Anode Reaction

CH ₃ OH + s ₁ *	$\rightarrow CH_3OH_{(ad)1}$
CH ₃ OH _{(ad)1}	→ CO _{(ad)1} + 4 H ⁺ + 4 e ⁻
$H_2O + s_2^*$	$\rightarrow OH_{(ad)2} + H^+ + e^-$
CO _{(ad)1} + OH _{(ad)2}	$ \rightarrow_{rds} CO_2 + H^+ + e^- + s_1^* + s_2^* $
CH₃OH + H₂O	→ CO ₂ + 6 H ⁺ + 6 e ⁻

<u>Cathode Reaction</u> 3/2 O₂ + 6 H⁺ + 6 e⁻ → 3 H₂O

Problems with Nafion DMFC

Methanol crossover from anode to cathode

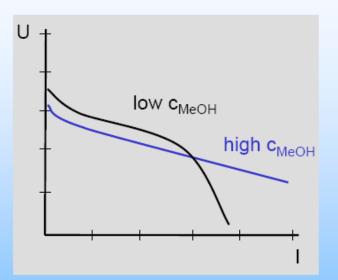
- Dilution (5-15% in water)
- Electro-osmotic drag of water
- Reduces fuel utilization
- Competing reactions at the cathode
- Polarizes the cathode (poisons catalytic sites for O₂)
- Reduces overall cell potential

Poor oxidation kinetics

- Anode polarization dominates cell performance
- Need for good anode catalyst

Reduce or eliminate precious metal catalysts

Best performance : 0.4 Ω /cm² at 130 °C using 3 atm. O₂ at cathode

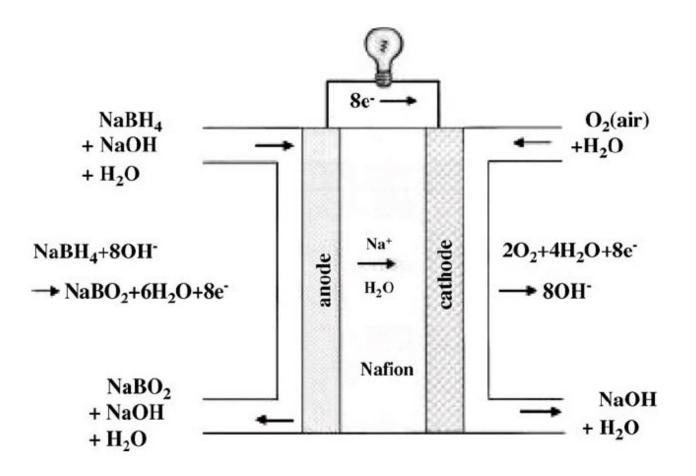

Methanol Concentration Control

High methanol concentration

- low anode overpotential
- high methanol permeation
- high cathode overpotential (mixed potential)

Low methanol concentration

- high anode overpotential
- low methanol permeation
- lower cathode overpotential


The methanol concentration is always a compromise between cathode and anode impact. It mainly depends on:

- current density
- temperature
- air flow rate

Direct Formic Acid Fuel Cells

$$\begin{aligned} HCOOH \rightarrow CO_2 + 2H^+ + 2e^- & (1) \\ HCOOH + Pt^0 \rightarrow Pt - CO + H_2O & (2) \\ Pt^0 + H_2O \rightarrow Pt - OH + H^+ + e^- & (3) \\ Pt - CO + Pt - OH \rightarrow 2Pt^0 + CO_2 + H^+e^- & (4) \\ Overall : HCOOH \Rightarrow CO_2 + 2H^+ + 2e^- & (5) \end{aligned}$$

Borohydride Fuel Cells

Borohydride Fuel Cells

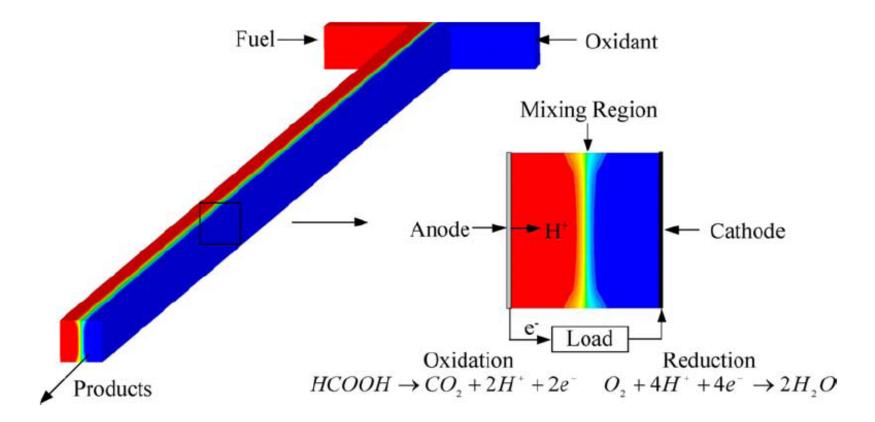
Anode (negative electrode):

 $NaBH_4 + 8OH^- \rightarrow NaBO_2 + 6H_2O + 8e^-, \quad E^o = 1.24 V$ (4)

Cathode (positive electrode):

$$2O_2 + 4H_2O + 8e^- \rightarrow 8OH^-, E^o = 0.40 V$$
 (5)
Overall:

 $NaBH_4 + 2O_2 \rightarrow NaBO_2 + 2H_2O, \quad E^o = 1.64 V \tag{6}$


Borohydride Fuel Cells

 $NaBH_4 + 6OH^- \rightarrow NaBO_2 + 4H_2O + H_2 + 6e^-,$ $E^o = -1.38 V$

Cathode (positive electrode):

 $\frac{3}{2}O_2 + 3H_2O + 6e^- \to 6OH^-, \quad E^o = 0.40 \text{ V}$ Overall: NaBH₄ + $\frac{3}{2}O_2 \to \text{NaBO}_2 + H_2O + H_2, \quad E^o = 1.78 \text{ V}$

Membraneless Fuel Cells

