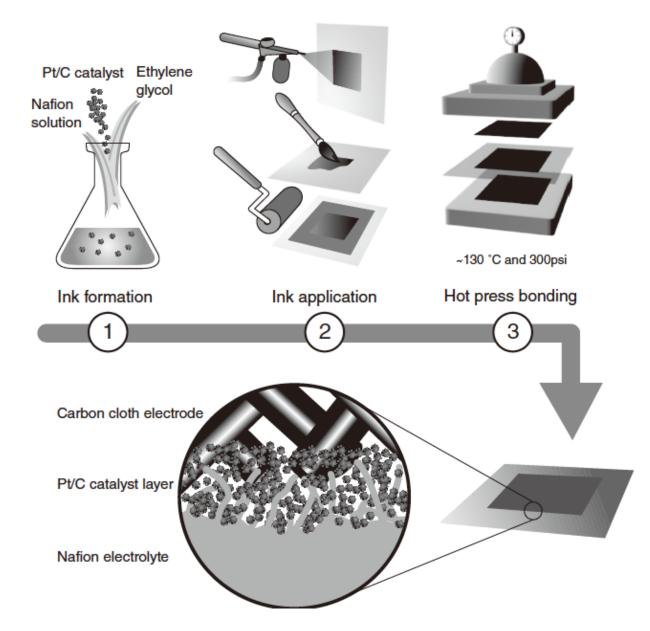

Fuel Cell Materials

- Perfluorinated Polymers (e.g., Nafion)
- Sulfonated Hydrocarbon Polymers (e.g., Polyeth eretherketone = PEEK)
 - Diverse and less expensive
 - Improve high-temperature hydration
 - Easy recycling
 - Less stable
 - Lower ionic conducrivity


- Phosphoric Acid Doped Polybenzimidazole (PBI)
 - Doped with with a strong acid (H_3PO_4)
 - No liquid water required
 - Stable up to 200C
 - Free-acid vehicle mechanism
 - 100 times less expensive than Nafion
 - Durability issues related to acid leaching, membrane oxidation, slow cathode kinetics under phosphoric acid
 - Pt/C ink formulation

- Polymer–Inorganic Composite Membranes
 - Nanoparticles/microparticles in Nafion
 - Water retention by hydroscopic oxide (e.g., SiO₂ or TiO₂)
 - Proton-conducting materials such as phosphates (e.g., zirconiu m phosphates) and heteropolyacids (e.g., phosphotungstic acid and silicotungstic acid)
 - Operation over 100C
 - Still need humidification
 - Low conductivity
 - Weak mechanical integrity

- Solid-Acid Membranes
 - H₂SO₄, H₃PO₄, K₂SO₄ -> CsHSO₄, CsH₂PO₄
 - Phase transition for rotational diffusion transfer mechanism (>10 $^{-2}\ \text{S}{\cdot}\text{cm}$)
 - Operation at 100C~200C
 - Poor mechanical properties and ductility
 - Water solubility
 - Thermal expansion

PEMFC ELECTRODE/CATALYST MATERIALS

Catalyst

- Nanoscale (2–3 nm) metal particles (electroless plating)
- High-surface-area carbon powder support (such Vulcan X C-72)High catalytic activity
- High surface area/high density of triple-phase boundaries
- Percolating electrical and ionic conductivity
- High stability/corrosion resistance
- Excellent poison/impurity tolerance
- Minimal degradation
- Low cost (if possible!)

Anode Catalyst

Pt/C catalyst

- ultrasmall (2-3 nm) Pt particles on carbon powder
- 0.05 mg Pt/cm²
- 50 kW fuel cell stack: 2.5 g of Pt at the anode \sim \$100
- Platinum Alloys (for Direct Alcohol Fuel Cells)
- Pt alloy
 - Alcohol oxidation
 - CO poisoning on Pt
 - Methanol oxidation: Ru(best), Sn, W, or Re.
 - Ru generates OH_{ads} to oxidize CO
 - PtRu + W or Mo for methanol
 - Pt-Sn alloys for ethanol: very slow kinetics

Cathode Catalyst

Pt/C catalyst

- ultrasmall (2-3 nm) Pt particles on carbon powder
- Request at least 0.4 mg Pt/cm²
- Too small particle reduce activity
 - Oh_{ads} inhibition
- •Pt alloy
 - 25~75% Pt in Pt-Ni, Pt-Cr, Pt-Co, Pt-Mn, Pt-Fe, Pt-Ti
 - Pt₃Cr, Pt₃Co: 2–4 times ORR enhancement
 - Harder to deploy as small particle on carbon supports
 - Leached-out Co, Cr, Fe, Ni, Ti poison the PEMFC
 - Leaching-out, accelerated degradation, corrosion, and deactivat ion.

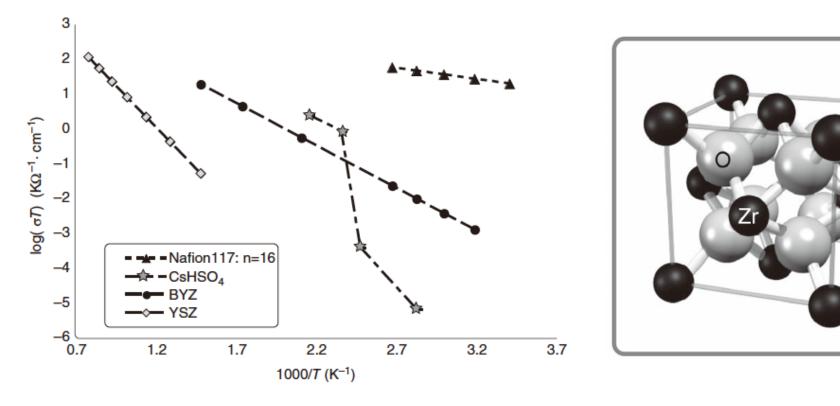
Cathode Catalyst

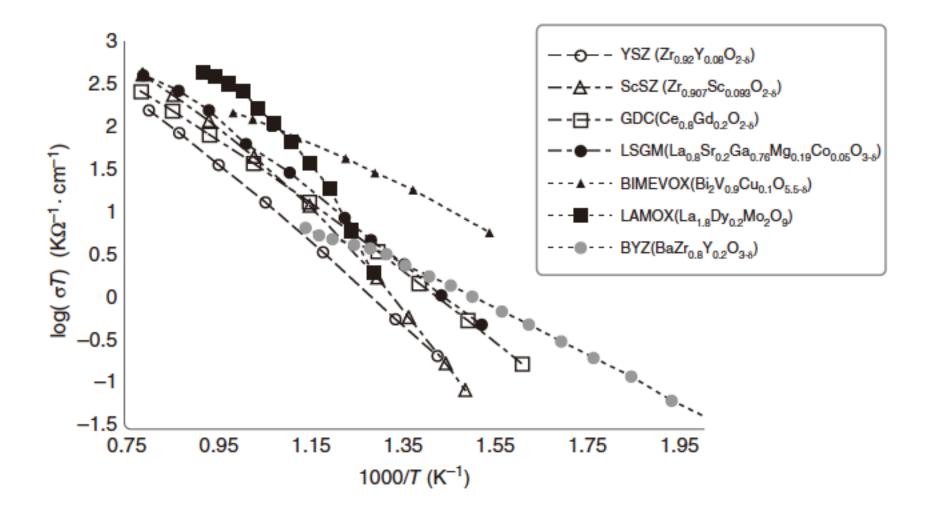
- Non-platinum ORR Catalysts
 - Volumetric catalytic activity: > 1/10 of Pt
 - 10 times more loading (limitation on catalyst layer volume)
 - No non-noble metal satisfies the requirments
- Metal Macrocycles
 - Transition metal ion(Fe or Co) stabilized by several nitrogen ato ms (aromatic or graphite like carbon structure)
 - Similar to active center of hemoglobin
 - Polymerized iron phthalocyanine, cobalt methoxytetraphenylpor phyrin
- Doped Carbon
 - High-surface-area carbon materials, doped with Fe, N, B
 - Best ORR activities of any of the non-Pt catalyst

Gas Diffusion Layer

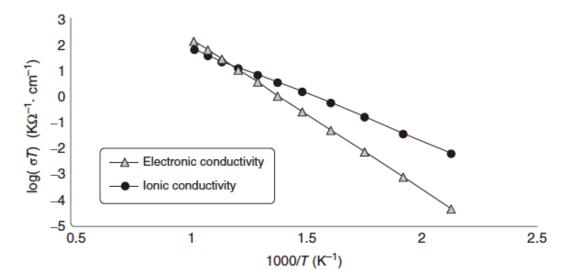
- Carbon Cloth: weaved carbon fiber filaments
 - Mechanical resilient
 - Low density (~0.3 g/cm3)
 - High permeability (~50 Darcys)
 - 350–500 µm thick
 - Compress significantly (30–50%) when clamped
- Carbon Paper: carbon fibers in paperlike sheet
 - Binder (carbonized resin) for mechanical integrity
 - Denser (~0.45 g/cm3) and less permeable (~10 Darcys)
 - Stiff and somewhat brittle
 - 150-250 mm thick
 - Less compression (10–20%)

Gas Diffusion Layer

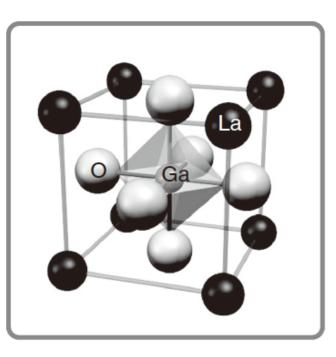

- Hydrophobic Treatment: prevent flooding
 - PTFE treatment (5 ~ 30% wt loading)
 - Dipping into an aqueous PTFE suspension / baking at 350–400
 °C
- Microporous Layers
 - Transition from GDL(10–30µm pores) to catalyst(10–100nm por es)
 - Improve the wicking of liquid water from the catalyst layer
 - Decrease the electrical contact resistance between the GDL an d the catalyst layer.
 - Submicrometer-sized particles of graphite with PTFE
 - Thin, uniform, microporous graphitic layer \sim 20–50 µm thick
 - Seven-layer MEA or "Electrode Los-Alamos Type" (ELAT) (anod e GDL, anode microporous layer, anode catalyst layer, electrolyt e, cathode catalyst layer, cathode microporous layer, cathode G DL.)


Gas Diffusion Layer Requirements

- High electrical conductivity
- High gas permeability
- High stability/corrosion resistance
- Facilitation of water removal
- Good mechanical properties
- Low cost


Yttria-Stabilized Zirconia

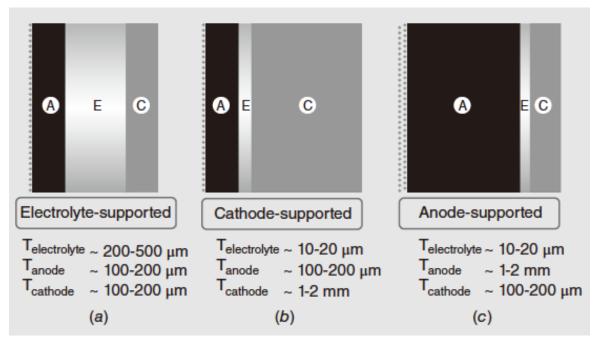
- 6–8% molar Y_2O_3 in ZrO_2



- Doped Ceria
 - GDC10(CGO10): $Ce_{0.9}Gd_{0.1}O_{1.95}$
 - High conductivity : 0.01 S·cm⁻¹ at 500 \circ C
 - Fluorite structure like YSZ
 - Reduction of Ce⁴⁺ to Ce³⁺ in hydrogen
 - n-type electronic conductivity
 - Mechanical failure due to expansion

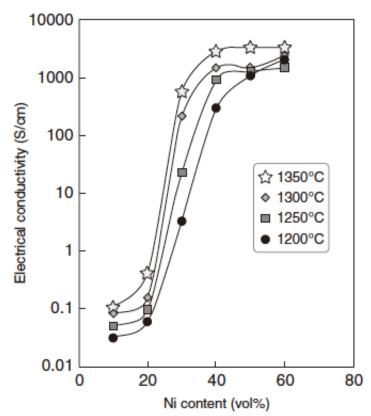
- Bismuth Oxides
 - α -Bi₂O₃(monoclinic at RT), δ -Bi₂O₃,(cubic-fluorite at 727°C)
 - Very high conductivity (~1 $S \cdot cm^{-1}$ at 750 ° C)
 - Intrinsically "defective" fluorite-type crystal structure
 - Very high (25%) oxygen vacancy
 - Stabilized δ -Bi₂O₃ with Y, Dy, Er for low T
 - BIMEVOX
 - γ -Bi₄V₂O₁₁
 - $Bi_2V_{1-x}Cu_xO_{5.5-\delta}$, $Bi_2V_{1-x}Ni_xO_{5.5-\delta}$
 - High chemical reactivity and low mechanical strength
- LAMOX(La₂Mo₂O₉)
 - $La_{1.7}Bi_{0.3}Mo_{2}O_{9-\delta}, La_{2}Mo_{1.7}W_{0.3}O_{9-\delta}, La_{2}Mo_{1.95}V_{0.05}O_{9-\delta}$

- Perovskite Oxides
 - LaGaO₃: La_{0.9} Sr_{0.1} Ga_{0.8} Mg_{0.2} O_{3- δ}
 - Less reducible
 - Volatilization of gallium
 - Undesirable secondary phases
 - Reactivity with cathode electrode materials


- Perovskite Oxides
 - BaZrO₃
 - Very high proton conductivity
 - 0.1 S·cm⁻¹ at 500∘C
 - Yttrium-doped barium zirconate (Y:BaZrO₃ or BZY)

SOFC Electrode

- High catalytic activity
- High electrical conductivity
- Thermal/chemical stability
- High-temperature compatibility with the SOFC el ectrolyte and interconnect material
 - Thermal expansion matching, limited reactivity
- Durability at high temperatures
- Fuel flexibility/impurity tolerance
- Coking resistance desired
- Low cost


SOFC Electrode

- Dual layer
 - Catalytically active functional layer
 - 10–30 µm thick
 - high density of TPB
 - Mechanical support laye
 - 100 µm–2 mm thick,
 - Protection for the catalyst layer

Ni–YSZ Cermet Anode

- •Thermal expansion match with electrolyte
- Degradation
 - Ni coarsening, agglomeration, or oxidation
 - Carbon coking

SOFC Anode

- Ceria-Based Anode
 - Good electrocatalyst for methane oxidation
 - GDC40 for dimensional stability
 - Ni, Co, Pt, Rh, Pd, Ru for activity enhancement
- Perovskite Anode Materials
 - $\ La_{0.8}Sr_{0.2}Cr_{0.97}V_{0.03}O_{3}$
 - LSCV–YSZ

SOFC Cathode

- Strontium-doped LaMnO₃
 - Good physical and chemical stability
 - High electrical conductivity and catalytic activity
 - Low oxygen conductivity
 - LSM–YSZ composite
- LSCF(La_{1-x}Sr_xCo_{1-y}Fe_yO₃)
 - High oxygen conductivity
 - Fe prevents LaCoO₃ reaction with YSZ
- $Sm_{0.5}Sr_{0.5}CoO_3$

SOFC Interconnect Materials

- High electronic conductivity
- Thermal expansion match
- Good thermal conductivity
- Non-reactivity
- Low permeability
- Dimensional, chemical stability
- Good strength and creep resistance
- Resistance to sulfur and carbon poisoning and r esistance to oxidation
- Ease of fabrication; low cost

SOFC Interconnect Materials

- Ceramic Interconnects
 - Ca-doped LaCrO₃
 - High electrical conductivity
 - Ionic conductivity
 - Mg- and Sr-doped LaCrO₃
 - Less oxygen permeation
 - Poor air sinterability
- Metal Interconnects
 - $-94Cr-5Fe-1Y_2O_3$
 - CrO_3 or $CrO_2(OH)_2$ poisoning