458.401 Process & Product Design

Heuristics ("Rules of Thumb")

Jong Min Lee
School of Chemical and Biological Engineering
Seoul National University

Use of Experienced-Based Principles to:

Check new process designs

Provide equipment size and performance estimates

Help with troubleshooting problems with existing systems

Verify computer simulations and results

Provide initial estimates for simulator inputs

Use as a starting place for initial designs

Develop preliminary process layouts

However, keep in mind that a heuristic:

Doesn't guarantee a solution

May contradict other heuristics

Can reduce the time to solve problems

Depends on the context in which it is used

Examples of Heuristics Usage

What is the density of water in SI units? In English units?

What does a gallon of milk weigh? What about 4 gallons of milk?

What does a cubic meter of air weigh?

The ratio of ρ_L/ρ_v is approximately _____?

3

Creation of Heuristics / Shortcuts

- 1. Predict. (assumptions, heuristics, back of the envelope calculations)
- 2. Authenticate/Analyze (equations, simulations, operational data)
- 3. Reevaluate/Rethink (compare, revise)

Example-11.1

Suppose you calculated a turbulent heat transfer coefficient inside a 1.5" pipe as: 5250 W/[m²·°C], for water at 21°C and a velocity of 1.83 m/s.

Estimate a heat transfer coefficient when the water temperature is 93°C and a velocity of 3.05 m/s.

4

Solution-11.1

- Predict: assume the velocity and temp. have no effect. Predicted Heat Transfer Coef. = $5250 \text{ W/[m}^2 \cdot ^{\circ}\text{C]}$
- 2. Authenticate: Find appropriate equation for calculation of Nusselt number.

$$Re = u\rho D_{pipe}/\mu = (1.83)(997.4)(1.5)(0.0254)/(9.8 \times 10^{-4}) = 71 \times 10^3$$

For highly turbulent flow, use the _____ equation

$$hD/k = (0.023)(Du\rho/\mu)^{0.8}(C_p\mu/k)^{1/3}$$

$$h'/h = (D'/D)^{0.2} (u'/u)^{0.8} (\rho'/\rho)^{0.8} (\mu'/\mu)^{0.47} (C'_p/C_p)^{0.33} (k'/k)^{0.67}$$

$$= (1)(1.50)(0.973)(1.73)(1.00)(1.08) = 2.725$$
(11.2)

$$h' = (2.725)(5250) \text{ W/m}^2{}^{\circ}\text{C} = 14,300 \text{W/m}^2{}^{\circ}\text{C}$$

11 Heuristics

Solution-11.1

3. Reevaluate/Rethink (compare, revise)

Property	21°C (70°F)	93°C (200°F)	Ratio of (New/Old)
$\rho (kg/m^3)$	997.4	963.2	0.966
$k (W/m^{\circ}C)$	0.604	0.678	1.12
C_p (kJ/kg°C)	4.19	4.20	1.00
μ (kg/m/s)	9.8×10^{-4}	3.06×10^{-4}	0.312

- The temperature effect on viscosity must be evaluated.
- The effects of temperature on C_p , ρ , and k are negligible.
- Pipe diameter has a small effect on h (all other things being equal)
- · Results are limited to the range where the Sieder-Tate equation is valid

With these assumption, the values for water at 21°C are substituted into Eq. (11.2). This creates a useful heuristic for evaluating the heat transfer coefficients for water

$$h'[W/m^2{}^{\circ}C] = 125u'^{0.8}/\mu'^{0.47}$$
 for $u'(m/s), \mu'(kg/m/s)$

Follow the logic carefully...

From Rules 9 and 12

$$u = 0.0305\sqrt{\frac{850}{8} - 1} = 0.313 \text{ m/s}$$
 $u_{\text{act}} = (-0.313) = 0.23 \text{ m/s}$

Mass flow rate of vapor = 9200 kg/h = 9200/3600 (kg/s) = 2.56 (kg/s)

$$^2/4 = 2.56 \longrightarrow D = 1.33 \text{ m}$$

From Rule 5, the volume of the liquid = $0.5L\pi D^2/4 = 0.726L~\mathrm{m}^3$

5 min of liquid flow

 $= (5 \text{ min})(60 \text{ sec/min})(11,570 \text{ kg/hr})/(850 \text{ kg/m}^3)/3600 \text{ (hr/sec)} = 1.13 \text{ m}^3$

Equating the two results above, L = 1.56 m

7

Fl.H.

11 Heuristics

Rule 6: min $\Delta T = 10^{\circ}$ C; but E-105 has 8°C (ignore for now)

Rule 7: Water enters at 30°C and leaves at 40°C

Rule 8: U = 850 W/m²°C

$$\Delta T_{lm} =$$

$$Q = 1085 \text{MJ/h} = 301 \text{kW from Table 1.7}$$

$$A = \frac{Q}{FU\Delta T_{lm}} = \frac{301,000}{0.9 \times 850 \times 29.1} = 13.52 \text{ m}^2$$

From Rule 9, this heat exchanger should be double-pipe or multiplepipe design

In Table 1.7, E-105 is multiple-pipe design with the area of 12 m²

Table 11.14

Rule 2:
$$F_s = u\rho_v^{0.5} = 1.2 - 1.5 \text{ m/s}(\text{kg/m}^3)^{0.5}$$
 (

Rule 3:
$$\Delta P_{tray} = 0.007 \text{ bar}$$

Rule 4:
$$\varepsilon_{tray} = 60 - 90\%$$

$$x_{ovhd} = 0.9962, \ x_{bot} = 0.0308$$

$$\alpha_{ovhd} = 2.44, \ \alpha_{bot} = 2.13, \ \alpha_{geom\ ave} = \sqrt{2.44 \times 2.13} = 2.28$$

$$N_{\min} = \{\ln[0.9962/(1 - 0.9962)]/[0.0308/(1 - 0.0308)]\}/\ln(2.28) = 10.9$$

$$R_{\min} = (142.2/105.6)/(2.28 - 1) = 1.05$$
 $1.26 \le R \le 1.58$

$$N_{theory} = 2 \times 10.9 = 21.8$$
 $N_{actual} = (21.8 / \epsilon (=0.6)) \times 1.1 = 43 \text{ trays}$

Vapor flowrate (Str. 13) = 22,700 kg/h
$$\rho_v = 6.1 \text{ kg/m}^3$$

$$u = (1.2 - 1.5)/6.1^{0.5} = (0.49 - 0.60) \text{ m/s}$$

9

11 Heuristics

Vapor flowrate (Str. 13) = 22,700 kg/h

$$22,700\frac{\text{kg}}{\text{h}} \times \frac{1 \text{ h}}{3,600 \text{ s}} \times \frac{\text{m}^3}{6.1 \text{ kg}} = 1.03\frac{\text{m}^3}{s} = v$$

$$D_{tower} = [4v/\pi u]^{0.5} = [(4)(1.03)/(3.142)/(0.49 \sim 0.60)]^{0.5} = 1.64 \sim 1.48 \text{ m}$$

$$\Delta P_{tower} = (N_{actual})(\Delta P_{tray}) = (43)(0.007) = 0.30 \text{ bar}$$

	Tables 1.5 and 1.7 and F 1.5	From Heuristics
Tower diameter	1.5 m	1.48 - 1.64 m
Reflux ratio, R	1.75	1.26 - 1.58
Number of trays	42	43
Pressure drop, ΔP _{tower}	0.30 bar	0.30 bar