Solution Technique (Chapter 11)

- Inversion
- Direct Method

Cramer's Rule

Gauss Elimination

LU factorization, Cholesky's method

- Indirect Method

Inverse Iteration

Jacobi method: total steps

Gauss-Seidel method: single step

Inversion

$$\underline{K}\underline{U} = \underline{P}$$
, $\underline{U} = \underline{K}^{-1}\underline{P}$

Inefficient method since it requires the evaluation of a number of determinants of high order in calculation of \underline{K}^{-1}

Gauss Elimination

Characteristics of matrix calculation does not change even after row- and columncalculations.

A systematic procedure for making a triangular matrix Or for eliminating variables one by one

- 1) forwarding
- 2) backwarding (back-substitution)

$$||E| = ||E|$$

$$|E| = ||E|$$

LU - Factorization

$$\leq V = P$$

V = unknown displacement

L = Lower triangular matrix

U = upper triangular matrix

$$\begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$k_{11} = u_{11}$$
, $k_{12} = u_{12}$, $k_{13} = u_{13}$

kzi = mzi Uii, kzz = Mzi Uiz + Uzz, etc

$$K V = P \Rightarrow LUV = P$$
 set $UV = Y$

cholesky's method

If K is symmetric and positive definite $(X^TKX)0$,

$$U = L^{T} \qquad \qquad K = L^{L}$$

$$\begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{12} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$E = P \Rightarrow E = P$$

$$E = P$$

$$E$$

Iterative Method

By using iterative method, rapid convergence can be achied, when 1) matrix has large main diagonal entired

27 matrix are sparse, that is, have very many zeros

$$\angle U = P \Rightarrow \angle U = P'$$

$$\angle U = P \Rightarrow \angle U = B'$$

$$\angle U = A \text{ I diagonal terms are 1's}.$$

$$\begin{bmatrix} 1 & -0.25 & -0.25 & 0 \\ -0.25 & 1 & 0 & -0.25 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ -0.25 & 0 & 1 & -0.25 \end{bmatrix} = \begin{bmatrix} 50 \\ 50 \\ 25 \\ 0 & -0.25 & -0.25 \end{bmatrix}$$

Gauss - Seidel Iteration Method (Successive correction)

$$U_{1}^{(1)} = +0.25 U_{2}^{(0)} + 0.25 U_{3}^{(0)} + 50 = 100$$

$$U_{2}^{(1)} = 0.25 U_{1}^{(1)} + 50 = 100$$

$$U_{3}^{(1)} = 0.25 U_{1}^{(1)} + 0.25 U_{3}^{(0)} + 25 = 75$$

$$U_{4}^{(1)} = 0.25 U_{2}^{(1)} + 0.25 U_{3}^{(1)} + 35 = 68.75$$

iterative calculation is regularly until $U^{(0)}/|U^{(1)}|$ $U^{(0)}.U^{(0)} = ||U^{(0)}|| ||U^{(1)}|| \cdot coso$ if $U^{(0)}/|U^{(1)}|$, $coso \rightarrow 1.0$

$$\underline{K}\underline{U} = (\underline{I} + \underline{L} + \underline{U})\underline{U} = \underline{P}$$

$$\underline{U}^{(m+l)} = (\underline{I} + \underline{L})^{-l} \underline{P} - (\underline{I} + \underline{L})^{-l} \underline{U}^{(m)}$$

Jacobi Iteration Method - (Simultaneous correction)

$$\underline{K} \underline{U} = \underline{I} \underline{U} + (\underline{K} - \underline{I}) \underline{U} = \underline{P}$$

$$A = LU$$

where L is lower triangular and U is upper triangular. For example,

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 8 & 5 \end{bmatrix} = \mathbf{L}\mathbf{U} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & -7 \end{bmatrix}.$$

It can be proved that for any nonsingular matrix (see Sec. 6.7) the rows can be reordered so that the resulting matrix A has an LU-factorization (2) in which L turns out to be the matrix of the multipliers m_{jk} of the Gauss elimination, with main diagonal $1, \dots, 1$, and U is the matrix of the triangular system at the end of the Gauss elimination. (See Ref. [E3], pp. 155–156, listed in Appendix 1.)

The crucial idea now is that L and U in (2) can be computed directly, without solving simultaneous equations (thus, without using the Gauss elimination). As a count shows, this needs about $n^3/3$ operations, about half as many as the Gauss elimination, which needs about $2n^3/3$ (see Sec. 18.1). And once we have (2), we can use it for solving Ax = b in two steps, involving only about n^2 operations, simply by noting that Ax = LUx = b may be written

(3)
$$(a) Ly = b where (b) Ux = y$$

and solving first (3a) for y and then (3b) for x. This is called **Doolittle's method**. Both systems (3a) and (3b) are triangular, so their solution is the same as back substitution in the Gauss elimination.

A similar method, Crout's method, is obtained from (2) if U (instead of L) is required to have main diagonal $1, \dots, 1$. In either case the factorization (2) is unique.

Doolittle's method

Solve the system in Example 1 of Sec. 18.1 by Doolittle's method.

Solution. The decomposition (2) is obtained from

$$\mathbf{A} = [a_{jk}] = \begin{bmatrix} 3 & 5 & 2 \\ 0 & 8 & 2 \\ 6 & 2 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

by determining the m_{jk} and u_{jk} , using matrix multiplication. By going through A row by row we get successively

$$a_{11} = 3 = u_{11} \qquad a_{12} = 5 = u_{12} \qquad a_{13} = 2 = u_{13}$$

$$a_{21} = 0 = m_{21}u_{11} \qquad a_{22} = 8 = m_{21}u_{12} + u_{22} \qquad a_{23} = 2 = m_{21}u_{13} + u_{23}$$

$$m_{21} = 0 \qquad u_{22} = 8 \qquad u_{23} = 2$$

$$a_{31} = 6 = m_{31}u_{11} \qquad a_{32} = 2 = m_{31}u_{12} + m_{32}u_{22} \qquad a_{33} = 8 = m_{31}u_{13} + m_{32}u_{23} + u_{33}$$

$$= m_{31} \cdot 3 \qquad = 2 \cdot 5 + m_{32} \cdot 8 \qquad = 2 \cdot 2 - 1 \cdot 2 + u_{33}$$

$$m_{31} = 2 \qquad m_{32} = -1 \qquad u_{33} = 6$$

$$u_{1k} = a_{1k} k = 1, \dots, n$$

$$m_{j1} = \frac{a_{j1}}{u_{11}} j = 2, \dots, n$$

$$(4) u_{jk} = a_{jk} - \sum_{s=1}^{j-1} m_{js} u_{sk} k = j, \dots, n; \quad j \ge 2$$

$$m_{jk} = \frac{1}{u_{kk}} \left(a_{jk} - \sum_{s=1}^{k-1} m_{js} u_{sk} \right) j = k+1, \dots, n; \quad k \ge 2.$$

Cholesky's Method

For a symmetric, positive definite matrix A (thus $A = A^T$, $x^TAx > 0$ for all $x \neq 0$) we can in (2) even choose $U = L^T$, thus $u_{jk} = m_{kj}$ (but impose no conditions on the main

The popular method of solving Ax = b based on this factorization $A = LL^T$ is called Cholesky's method. In terms of the entries of $L = [l_{jk}]$ the formulas for the factorization are

$$l_{11} = \sqrt{a_{11}}$$

$$l_{j1} = \frac{a_{j1}}{l_{11}} \qquad j = 2, \dots, n$$

$$l_{jj} = \sqrt{a_{jj} - \sum_{s=1}^{j-1} l_{js}^2} \qquad j = 2, \dots, n$$

$$l_{pj} = \frac{1}{l_{jj}} \left(a_{pj} - \sum_{s=1}^{j-1} l_{js} l_{ps} \right) \qquad p = j+1, \dots, n; \quad j \ge 2.$$

If A is symmetric but not positive definite, this method could still be applied, but then leads to a *complex* matrix L, so that it becomes impractical.

Cholesky's method

Solve by Cholesky's method:

$$4x_1 + 2x_2 + 14x_3 = 14$$

 $2x_1 + 17x_2 - 5x_3 = -101$
 $14x_1 - 5x_2 + 83x_3 = 155$

Solution. From (6) or from the form of the factorization

$$\begin{bmatrix} 4 & 2 & 14 \\ 2 & 17 & -5 \\ 14 & -5 & 83 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

we compute, in the given order,

$$l_{11} = \sqrt{a_{11}} = 2 \qquad l_{21} = \frac{a_{21}}{l_{11}} = \frac{2}{2} = 1 \qquad l_{31} = \frac{a_{31}}{l_{11}} = \frac{14}{2} = 7$$

$$l_{22} = \sqrt{a_{22} - l_{21}^2} = \sqrt{17 - 1} = 4$$

$$l_{32} = \frac{1}{l_{22}} (a_{32} - l_{31}l_{21}) = \frac{1}{4} (-5 - 7 \cdot 1) = -3$$

$$l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} = \sqrt{83 - 7^2 - (-3)^2} = 5.$$

Gauss-Seidel Iteration Method

This is an iterative method of great practical importance, which we can simply explain in terms of an example.

Gauss-Seidel iteration

We consider the linear system

$$x_1 - 0.25x_2 - 0.25x_3 = 50$$

$$-0.25x_1 + x_2 - 0.25x_4 = 50$$

$$-0.25x_1 + x_3 - 0.25x_4 = 25$$

$$-0.25x_2 - 0.25x_3 + x_4 = 25.$$

(Equations of this form arise in the numerical solution of partial differential equations and in spline interpolation.) We write the system in the form

$$x_{1} = 0.25x_{2} + 0.25x_{3} + 50$$

$$x_{2} = 0.25x_{1} + 0.25x_{4} + 50$$

$$x_{3} = 0.25x_{1} + 0.25x_{4} + 25$$

$$x_{4} = 0.25x_{2} + 0.25x_{3} + 25$$

We use these equations for iteration, that is, we start from a (possibly poor) approximation to the solution, say, $x_1^{(0)} = 100$, $x_2^{(0)} = 100$, $x_3^{(0)} = 100$, $x_4^{(0)} = 100$, and compute from (2) a presumably better approximation

("New" values here not yet available)

We see that these equations are obtained from (2) by substituting on the right the **most recent** approximations. In fact, corresponding elements replace previous ones as soon as they have been computed, so that in the second and third equations we use $x_1^{(1)}$ (not $x_1^{(0)}$), and in the last equation of (3) we use $x_2^{(1)}$ and $x_3^{(1)}$ (not $x_2^{(0)}$ and $x_3^{(0)}$). The next step yields

$$x_1^{(2)} = 0.25x_2^{(1)} + 0.25x_3^{(1)} + 50.00 = 93.75$$

 $x_2^{(2)} = 0.25x_1^{(2)} + 0.25x_4^{(1)} + 50.00 = 90.62$
 $x_3^{(2)} = 0.25x_1^{(2)} + 0.25x_3^{(1)} + 25.00 = 65.62$
 $x_4^{(2)} = 0.25x_2^{(2)} + 0.25x_3^{(2)} + 25.00 = 64.06.$

In practice, one would do further steps and obtain a more accurate approximate solution. The reader may show that the exact solution is $x_1 = x_2 = 87.5$, $x_3 = x_4 = 62.5$.

To obtain an algorithm for the Gauss-Seidel iteration, let us derive the general formulas for this iteration.

We assume that $a_{jj} = 1$ for $j = 1, \dots, n$. (Note that this can be achieved if we can rearrange the equations so that no diagonal coefficient is zero; then we may divide each equation by the corresponding diagonal coefficient.) We now write

$$A = I + L + U \qquad (a_{ij} = 1)$$

where I is the $n \times n$ unit matrix and L and U are respectively lower and upper triangular matrices with zero main diagonals. If we substitute (4) into Ax = b, we have

$$Ax = (I + L + U)x = b.$$

Taking Lx and Ux to the right, we obtain, since Ix = x,

$$x = b - Lx - Ux.$$

Remembering from our computation in Example 1 that below the main diagonal we took "new" approximations and above the main diagonal "old" approximations, we obtain from (5) the desired iteration formulas

(6)
$$\mathbf{x}^{(m+1)} = \mathbf{b} - \mathbf{L}\mathbf{x}^{(m+1)} - \mathbf{U}\mathbf{x}^{(m)} \qquad (a_{jj} = 1)$$

where $\mathbf{x}^{(m)} = \begin{bmatrix} x_j^{(m)} \end{bmatrix}$ is the *m*th approximation and $\mathbf{x}^{(m+1)} = \begin{bmatrix} x_j^{(m+1)} \end{bmatrix}$ is the (m+1)st approximation. In components this gives the formula in line 1 in Table 18.2. The matrix

Jacobi Iteration

The Gauss-Seidel iteration is a method of successive corrections because we replace approximations by corresponding new ones as soon as the latter have been computed. A method is called a method of simultaneous corrections if no component of an approximation $\mathbf{x}^{(m)}$ is used until all the components of $\mathbf{x}^{(m)}$ have been computed. A method of this type is the Jacobi iteration, which is similar to the Gauss-Seidel iteration but involves not using improved values until a step has been completed and then replacing $\mathbf{x}^{(m)}$ by $\mathbf{x}^{(m+1)}$ at once, directly before the beginning of the next cycle. Hence, if we write $\mathbf{A}\mathbf{x} = \mathbf{b}$ (with $a_{jj} = 1$ as before!) in the form $\mathbf{x} = \mathbf{b} + (\mathbf{I} - \mathbf{A})\mathbf{x}$, the Jacobi iteration in matrix notation is

(13)
$$\mathbf{x}^{(m+1)} = \mathbf{b} + (\mathbf{I} - \mathbf{A})\mathbf{x}^{(m)} \qquad (a_{jj} = 1).$$

This method converges for every choice of $\mathbf{x}^{(0)}$ if and only if the spectral radius of I - A is less than 1. It has recently gained greater practical interest since on parallel processors all n equations can be solved simultaneously at each iteration step.

Modification of equations considering the support conditions

$$\begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1n} \\ k_{21} & k_{22} & \cdots & k_{2n} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ k_{n1} & k_{n2} & \cdots & k_{nn} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}$$

$$\begin{bmatrix} k_{ff} & k_{fs} \\ -k_{sf} & k_{ss} \end{bmatrix} \begin{bmatrix} u_f \\ u_s \end{bmatrix} = \begin{bmatrix} p_f \\ -k_{sf} \\ p_s \end{bmatrix} \quad \text{s: support}$$

Uf = unknown displacements

Pof = known (applied) forces

Us = known (or given) displacements (boundary displacements;

Ps = unknown forces (beactions)

$$U = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} = \begin{bmatrix} u_3 \\ u_4 \\ u_6 \\ u_6 \end{bmatrix}$$

Reft
$$U_f$$
 + Refs U_s = P_f

Reft U_f = P_f - Refs U_s => solve U_f

Rest U_f + Ress U_s = P_s => solve P_s

Kei Rin	- k 13	614	le:5	te16	(wi)	PI
Éc		lezy	k25	k26	Wi	As an extraordistance and a service and a se
annilladas (S.S.L.1975) di ribardici di Latti d	233	k34	le35	k36	M3	ZP
sym.	Company of the Park of the Par	Layer	k45	k46	U4	-P
Section Section (Co. 1)	ny tanàna dia mandra d	aller over the second of the s	1255	R56	JUE O	P5
				Pe 66	Ub	6

$$\begin{bmatrix} k_{33} & k_{34} & k_{36} \\ k_{43} & k_{44} & k_{46} \\ k_{63} & k_{64} & k_{66} \end{bmatrix} \begin{bmatrix} u_3 \\ u_4 \\ u_6 \end{bmatrix} = \begin{bmatrix} 2P \\ -P \\ 0 \end{bmatrix}$$

Reft Uf = Pf - lefs Us

$$\begin{bmatrix} k_{13} & k_{14} & k_{16} \\ k_{23} & k_{24} & k_{26} \\ k_{53} & k_{54} & k_{56} \end{bmatrix} \begin{bmatrix} u_3 \\ u_4 \\ u_6 \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_5 \end{bmatrix}$$

Solve Ps

Technique not disturbing the size and order of the original stiffness matrix

$$\begin{bmatrix} k_{H} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{f} \\ y_{s} \end{bmatrix} = \begin{bmatrix} p_{f} - k_{f}, y_{s} \\ y_{s} \end{bmatrix}$$

r-		-the-residence of the Personal State of the	**************************************	/	No amount on a proper proper property and		»-y	-		mafrim management	, .	mykamienum
	/	0	0	0	0	o		4		At,		8,0
	0	1	0	Ø	0	o	bente	uz	jes.	W2	,	74 6
	0	0	k33	k34	0	k36	r#OptiosT	U3	ws. —	2.P	⁷ نست	k3, U, + k32 U2 + h35 U5
1	0	ø	k43	le44	O	k46		U4		-p	يحو.	k4, U, + k42 Uz+k45 U
	0	O	Ó	D	/	O	en ·	U5		455		Garantina and a conference of the conference of
	D	D	k63	k14	0	k 66		Ub		0		R6141 + R62 42+ R6545

solve Uf

Modification of Stiffness matrix with big spring

Inclined supports

$$U = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix}$$

$$U = \begin{cases} U_1' \\ U_2' \\ U_3 \\ \exists \text{ local} \\ \text{wordnete} \\ \text{system} \end{cases}$$

$$e_{z}' = \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix}$$
 directional vector of y', axis

$$u_1' = e_1' \cdot u = e_1' \cdot u$$

$$u_2' = e_2' \cdot u = e_2' \cdot u$$

$$\overline{H}_{2x} = \overline{F}_2'' \cos \phi_2 = \frac{EA}{L} \cos \phi_2 u_2$$

$$F_{12} = F_{1}^{\prime} \cos \phi_{1} = -\frac{EA}{L} \cos \phi_{2} \cos \phi_{2} U_{2}$$

$$R = \frac{EA}{L}$$

$$-\cos\phi, \cos\phi_2$$

$$-\omega \sin\phi_2 \sin\phi,$$

$$\cos^2\phi_2$$

$$\cos\phi_2 \sin\phi_2$$

Element stiffners matrix should be constructed considering the local coordinate system.

The bottom horizontal element's stiffnes can also be calculated considering the local axis.