Solution Technique (Chapter 11)

- Inversion
- Direct Method

Cramer’s Rule

Gauss Elimination

LU factorization, Cholesky’s method
- Indirect Method

Inverse Iteration

Jacobi method : total steps

Gauss-Seidel method : single step

Inversion

KU=P, U=KP

Inefficient method since it requires the evaluation of a number of determinants

of high order in calculation of K™
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(\ Gauss Elimination

Characteristics of matrix calculation does not change even after row- and column-

calculations.

A systematic procedure for making a triangular matrix

Or for eliminating variables one by one

1) forwarding

2) backwarding (back-substitution)
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Trerative Metho d
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An LU-factorization of a given square matrix A is of the form

) | lAa=LU

where L is lower triangular and U is upper triangular. For example,

2 3 L2 3
A= =LU =
8 s 4 dlo -7

It can be proved that for any nonsingular matrix (see Sec. 6.7) the rows can be reordered
so that the resulting matrix A has an LU-factorization 2) in which L tums out to be the
matrix of the multipliers M of the Gauss elimination, with main diagonal 1, - - -, |, and
U is the matrix of the triangular system at the end of the Gauss elimination. (See Ref,
(E3], pp. 155—156, listed in Appendix 1.) ‘

The crucial idea now is that L and U in (2) can be computed directly, without |
solving simultarieous equations (thus, without using the Gauss elimination). As a count
shows, this needs about n%/3 operations, about half as many as the Gauss elimination,
which needs about 2233 (see Sec. 18.1). And’once we have (2), we can use it for
solving Ax = b in two steps, involving only about 12 operations, simply by noting that
Ax = LUx = b may be written '

3) @ Ly=b whee (n) Ux=y |

and solving first (3a) for y and then (3b) for x. This is called Doolittle’s method. Both
systems (3a) and (3b) are triangular, so their solution is the same as back substitution in

the Gauss elimination.
A similar method, Crout’s method, is obtained from (2) if U (instead of L) is required
to have main diagonal [, - - - , 1. In either case the factorization (2) is unique.

Doolittle’s method
Solve the system in Example | of Sec. 18.1 by Dooliule’s method.

Solution. The decompasition (2) is obtained from

305 2 1 0 o] Uy Wy ougg
A= [ajk] =10 8. 2 mzl | 0]{ 0 Uggy Uog
6 2 8 na) mao !_J 0 ] Ugg

by determining the My and u;y, using matrix multiplication. By going through A row by row we get successively

ay = 3=y, Az =35 =upy ap=2=ug
az1 = 0 = mayuy, G2z = 8 = mayuyy + ugg @3 = 2= mayuyy + upy
mey =0 gy = 8 gy = 2
azy = 6 = mgyuy; G32 = 2= mgugy + mgaugy . @gy =8 = mauy + Mg3auaz + ugg
=ﬂ’I31'3 =2‘5+m32'8 =’«.’-2—l'2+u33
mgy = mag = ~1 ugg = 6
u1k=a1k k=l,"',fl
a.
. i
mj = — ;=2 n
Uy
@ =t
Ui = aj, — z Myislgy k=j -« n j=2
s=1
' / k-1
! AN ,
Mk = == e = 2, mjsug |- J=k+ 1, n k=2
ukk s=1
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Cholesky’s Method

For a symmetric, positive definite matrix A (thus A = AT, x"Ax > 0 for all x # 0) we
can in (2) even choose U = L, thus Ui = my; (but impose no conditions on the main

The popular method of solving Ax = b based on this factorization A = LLT is called
Cholesky’s method. [n terms of the entries of L = [1;, ] the formulas for the factorization _

are
Ly = Vay,
‘a
liy = i Jj=2,.n
ly
J=1
(6) . by =y 9 _Eljsg ' j=2-".n )
s=1
{ .j.—l
IPj=F(an—zljslps) p=j+ L ny j22
J s=1

If A is symmetric but not positive definite, this method could still be applied, but then
leads to a cornplex matrix L, so that it becomes impractical.

Cholesky’s method
Solve by Cholesky's method:

dyvy + 2xy + ldyg = 14
“ 2 + 1Tep — Sxg = —101
Mxy = 5k + 83y = 155,
Solution. From (6) or from the form of the factocization
4 2 4 Iy 0 0 I 3, 151
2 17 -5 = 121 [22, 0 0 122 [,32
14 -5 83 I3y 39 33 0 0 I35
we compute, in the given order,
: a 2 a; 14
Ly =Vay =12 Uy === lgy = —4=—=7
2 Ly 2

log = Vagg ~ 132 = VIT =1 =4

1 1
lag = 7=(ag —lgila)) = 7(=5-7: 1) = -3
Loz

lsg = Vagg = L3 - 1g? = V83 - 7% = (-3 = 5.
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< Gauss-Seidel Iteration Method

This is an iterative method of great practical importance, which we can simply explain in
terms of an example. '

Gauss—Seidel iteration

We consider the linear system S

X - 0.25.‘2 - 0.25X3 =350

% =0.25x, + Xy - 0.25x4 = 50‘
H .

i -0.25x, +  x3— 025¢, =25

- 0.25x; = 0.25x3 +  x, = 25.

«

(Equations of this form arise in the numerical solution of partial differential equations and in spline interpolation.)
We write the system in the form

n= . 0.25xp + 0.25x5 ) + 50
([ : , Xg = 0255, +0.25¢4 + 50
V @ t3 = 025z, +0.25x4 + 25
X4 = 0.25x5 + 0.25x3 + 25.
We use these equations for iteration. that is, we start from a (possibly poor) approximation to the solution, say,
",(10) = 100, .t(ZO) = 100, .r§°’ = 100, .r,(,m = 100, and compute from (2) a presumably better approximation

Use “old™ values

{**New" values here not yet available)

P
{ ;
“

XV = +50.00 = 100.00
- x5 = +50.00 = 100.00 .
x5P = ' . +25.00 = 75.00
1P = I +25.00 = 68.75.
(\. . ' ’ _ Use "new" values

We see that these equations are obtained from (2) by substituting on the right the most recent ap‘proximations.
In fact, corresponding elements replace previous ones as soon as they have been computed, so that in the second

and third equations we use x{!” (not ™, and in the last equation of (3) we use x5 aad £§” (not P and’x$™).
The next step yields
P = 0.25x§ + 025,50 +50.00 = 93.75
o = 0252 +025c8” +50.00 = 90.62
’ x§ = 0.25:(° +0.256§” +25.00 = 65.62
P = 0.25x82 + 0.25:8 + 25.00 = 64.06.

In practice, one would do fiirther steps and obtain a more accurate approximate solution.
The reader may show that the exact solution is £y = x4 = 87.5, x5 = x4 = 62.5. . -~
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"To obtain an algorithm for the Gauss-Seidel iteration, let us derive the general formulas
for this iteration. :

We assume that a;; = 1 for j = 1, - - -, n. (Note that this can be achieved if we can
rearrange the equations so that no diagonal coefficient is zero; then we may divide each
equation by the corresponding diagonal coefficient.) We now write

@ A=I+L+U (ajj;I)

where [ is the n X n unit matrix and L and U are respectively lower and upper triangalar
matrices with zero main diagonals. If we substitute (4) into Ax = b, we have

Ax=(I+L+Ux=b.
Taking Lx and Ux to the right, we obtain, since Ix = x, -
(5) x=b - Lx — Ux.

Remembering from our computation in Example | that below the main diagonal we took
“new’ approximations and above the main diagonal “old” approximations, we obtain from
(5) the desired iteration formulas

(6) ‘ x(m.~0-1) = b — Lx™+D Uxt™ (ajj = 1)

where ™ = [¢{™] is the mth approximation and x™*+D = [x§m* V] is the (m + 1)st

approximation. In components this gives_the formula in line 1 in Table 18.2. The matrix

Jacobi lteration

The Gauss-Seidel iteration is a method of successive corrections because we replace

approximations by corresponding new ones as soon as the latter have been computed. -

A method is called a method of simultaneous corrections if no component of an
approximation X is used until a/l the components of x™ have been computed.
A method of this type is the Jacobi iteration, which is similar to the Gauss—Seidel iteration
but involves nor using improved values until a step has been completed and then replacing
X by x™*1 at once, directly before the beginning of the next cycle. Hence, if we write
AX = b (with a;; = L as before!) inthe formx =b + (I — A)x, the Jacobi iteration in
matrix notation is ' ‘

(13) LMD gy (A (a = 1).

ATyt M e el
1 718 e b PR A . e b

This method converges for every choice of x@. if and only if the spectral radius of
I — A s less than 1. It has recently gained greater practical interest since on parallel
processors all n equations can be solved simultaneously at each iteration step.
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