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LHC (Large Hadron Collider)

CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 OMT
RurvEvent 104108 / 564224000
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SNS (Spallation Neutron Source)
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IFMIF (International Fusion Material Irradiation Facility)
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KOMAC (proton accelerator)

Features of KOMAC 100MeV linac Output Energy (MeV) 20 100
@ 50-keV Injector (lon source + LEBT) Max. Peak Beam Current (mA) 1~20 1~20
@ 3-MeV RFQ (4-vane type) Max. Beam Duty (%) 24 8
@ 20 & 100-MeV DTL Avg. Beam Current (mA) 0.1~-48 | 01~16
@ RF Frequency : 350 MHz Pulse Length (ms) 0.1~2 |0.1~1.33
@ Beam Extractions at 20 or 100 MeV Max. Repetition Rate (Hz) 120 60
@ 5 Beamlines for 20 MeV & 100 MeV Max. Avg. Beam Power (kW) 06 160

100 MeV 20 MeV 3 MeV Injector
‘Future \I - ——
Extension T
TR105

TR104 TR103 TR102|| TR24 TR23 TR22
100 MeV 20 MeV
Beamlines Beamlines
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PAL (light source)
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Accelerators for semiconductor industry

® |on implanter for B*, P*, As* doping
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Industrial applications

Accelerators: Essential Tools in Industry

lon Implantation

Accelerators can precisely deposit ions modifying materials
and electrical properties

Semi Conductors
CMOS transistor fabrication of essentially all IC's
CCD & CMOS imagers for digital cameras
Cleaving silicon for photovoltaic solar cells
Typical IC may have 25 implant steps

Metals
Harden cutting tools
Reducing friction

Applied Materials, Inc.

N2 ions reduce wear
and corrosion in this

- Biomaterials for implants S Al R
Ceramics and Glasses \” Y .,
- Harden surfaces =\
. Modify optics '
Color in Gem stones! \ c
5 APT seminar. RDK. Nov 2014 Q .‘:xﬁ # Fermllab (courtesy R. Kephart)
oK - & <l
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Industrial applications

Accelerators: Essential Tools in Industry

A wide-range of industrial applications makes use of low-energy
beams of electrons to drive chemistry

+ 0.1-10 MeV up to MW beam power
electrostatic, linac, betatron accelerators

Electron Beam Irradiation

Improved heat resistance of coatings, wire and cable,
crosslinking polymers, radial tires, etc)

1500 dedicated facilities worldwide

2= Fermilab

APT seminar. AOK, Nov 2014
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Industrial applications

Accelerators: Food Preservation

Low-energy beams of electrons can help beat food-borne lliness

~6000 people/week are sickened,
and ~100/week die from food-borne
illness in the U.S.

Food poisoning is estimated to cost
the US $152 billion a year.

Electron beams and/or X-rays
can kill bacteria like E. coli,
Salmonella, and Listeria.

Currently in use for: Spices,
fruit, lettuce, ground beef, milk,
juice, military rations...

Many more opportunities exist
Barriers = cost & public acceptance\

=
4a APT saminer, RDK, Nov 2014 .:" -
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PET (positron emission tomography)

® The system detects pairs of gamma rays emitted indirectly by a positron-emitting
radionuclide, most commonly fluorine-18. which is introduced into the body on a
biologically active molecule called a radioactive tracer.
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SPECT (single-photon emission computed tomography)

® SPECT is a nuclear medicine tomographic imaging technique using gamma rays.
It is similar to PET in its use of radioactive tracer material and detection of
gamma rays. In contrast with PET, however, the tracers used in SPECT emit
gamma radiation that is measured directly.
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BNCT (boron neutron capture therapy)

® Two-step procedure:

(D The patient is injected with a tumor-localizing drug containing the non-

radioactive isotope boron-10 (1°B) that has a high cross section to capture
slow neutrons.

2 The patient is radiated with epithermal neutrons, the source of which is
either a nuclear reactor or, more recently, an accelerator.
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D-D of D-T neutron generators
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Neutron tube

® Sealed-tube neutron generators: Some accelerator-based neutron generators
induce fusion between beams of deuterium and/or tritium ions and metal hydride
targets which also contain these isotopes.
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Textbook

Principles of Charged
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Basic definitions

® A charged particle is an elementary particle or a macroparticle which contains an

excess of positive or negative charge. Its motion is determined mainly by
interaction with electromagnetic forces.

Charged particle acceleration is the transfer of kinetic energy to a particle by the
application of an electric field.

A charged particle beam is a collection of particles distinguished by three
characteristics: (1) beam particles have high kinetic energy compared to thermal
energies, (2) the particles have a small spread in kinetic energy, and (3) beam
particles move approximately in one direction. In most circumstances, a beam
has a limited extent in the direction transverse to the average motion. The
antithesis of a beam is an assortment of particles in thermodynamic equilibrium.

Most applications of charged particle accelerators depend on the fact that beam
particles have high energy and good directionality. Directionality is usually
referred to as coherence. Beam coherence determines, among other things, (1)
the applied force needed to maintain a certain beam radius, (2) the maximum
beam propagation distance, (3) the minimum focal spot size, and (4) the
properties of an electromagnetic wave required to trap particles and accelerate
them to high energy.
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Beam acceleration process

- Single-Particle Theory

Multiparticle Theory

Input energy to set up
distribution of external
charge and current: p,j

v

Applied electric and
magnetic fields: E,B

Y

Lorentz force on beam
particle with charge g,
F=g(E+vXB)

Y

Equation of motion,
dp/dt = F

Beam-generated electric
and magnetic fields
(self-fields)

A

1

Charge and current,
density of beam,

(Newtonian or relativistic) Pusdb
Y !
|
Position and velocity of |
beam particles,x,v | T TTTTTTTTTT
. . . %]
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Beam acceleration process

In accelerator theory, particles are separated into two groups: (1) particles in the
beam and (2) charged particles that are distributed on or in surrounding
materials. The latter group is called the external charge.

Energy is required to set up distributions of external charge; this energy is
transferred to the beam particles via electromagnetic forces.

For example, a power supply can generate a voltage difference between metal
plates by subtracting negative charge from one plate and moving it to the other.
A beam particle that moves between the plates is accelerated by attraction to the
charge on one plate and repulsion from the charge on the other.

Applied forces are usually resolved into those aligned along the average
direction of the beam and those that act transversely.

The axial forces are acceleration forces; they increase or decrease the beam
energy.

The transverse forces are confinement forces. They keep the beam contained to
a specific cross-sectional area or bend the beam in a desired direction.

Magnetic forces are always perpendicular to the velocity of a particle; therefore,
magnetic fields cannot affect the particle's kinetic energy. Magnetic forces are
confinement forces. Electric forces can serve both functions.
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Applications and organization of topics

Production of short-lived
radioisotopies for medical
diagnosis

Intense ion beams to drive
inertial fusion reactors

Electron beam welding

Pulsed neutron sources for
uranium borchole logging

Cathode ray tubes and fast
digitizers

Electronuclear breeding of
fissile fuels

Measurement of cross
sections for atomic physics

Processing of semi-
conductor circuits

Secondary ion mass
spectroscopy

Generation of synchrotron
radiation for solid-state
physics research

Diagnostics of rock
formations in oil and
natural gas wells

Elementary particle
physics

Electron microscopy

Materials testing for
controlled thermonuclear
fusion reactors

Drivers for gas lasers and
free electron lasers

Cross-linking of
thermoplastics

Image intensifiers and
fast streak tubes

Pulsed X-ray radiography

Surface modification of
materials by ion
implantation

Nuclear structure studies

Plasma heating for fusion
reactors

Assay of nuclear materials
for safeguard applications

Sterilization of food
products
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elements

Intense pulsed neutron
sources for radiography and
materials studies

Generation of X rays and
pions for radiation therapy

Electron and ion surface
microprobes

Analysis of trace elements
for biology and archeology

"Calibration of radiation

detectors

Studies of radiation
damage in fission reactors
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