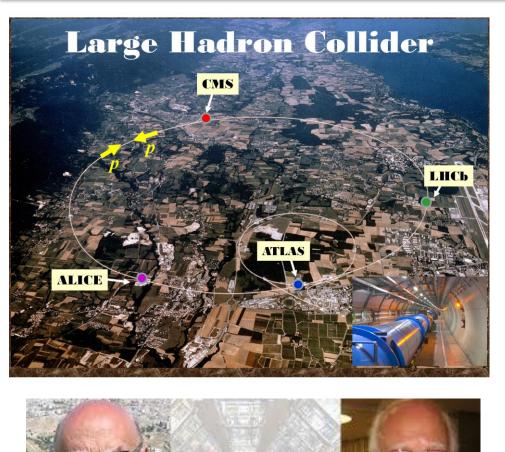
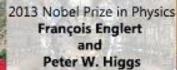

Spring, 2021

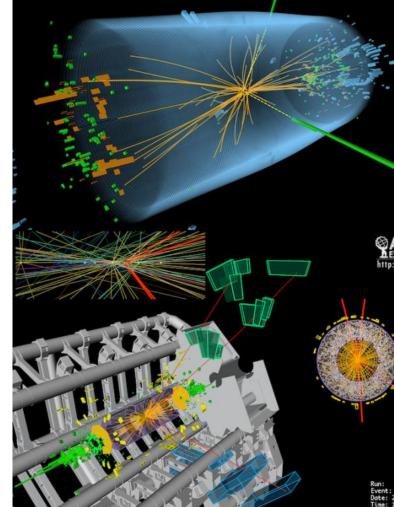
Kyoung-Jae Chung

Department of Nuclear Engineering

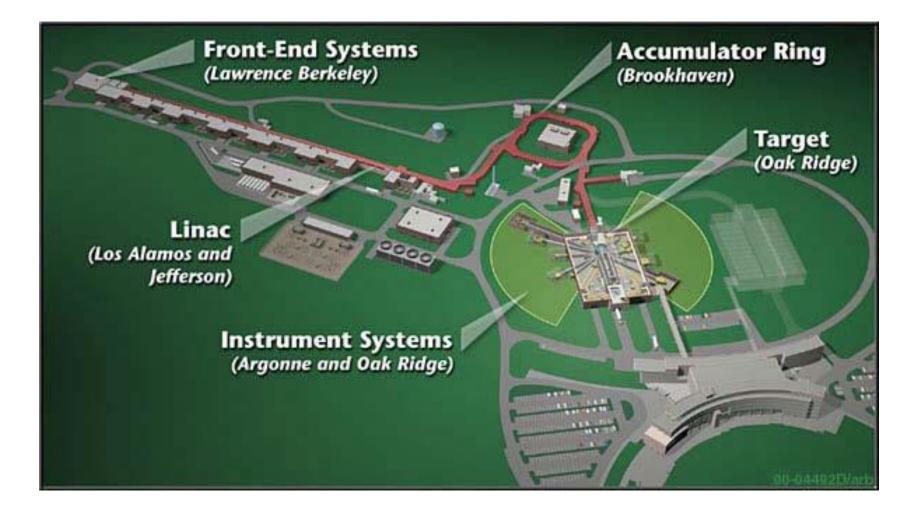
Seoul National University


Various particle accelerators

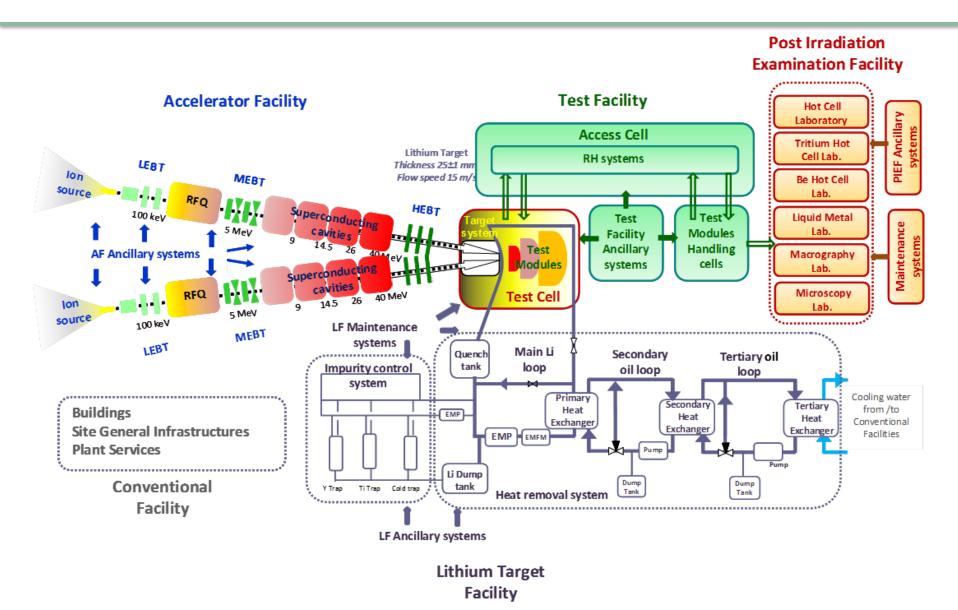



UNIVERSITY

LHC (Large Hadron Collider)

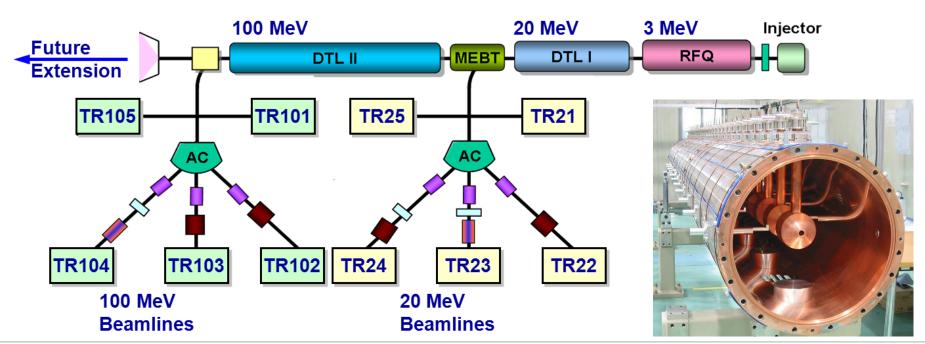

ta recorded: 2012-May-13 20:08:14.621490 GM n/Event: 194108 / 564224000

/atlas.cl


Particle Accelerator Engineering, Spring 2021

SNS (Spallation Neutron Source)

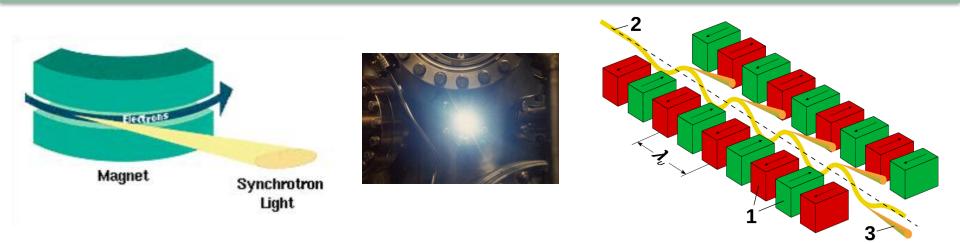
IFMIF (International Fusion Material Irradiation Facility)



KOMAC (proton accelerator)

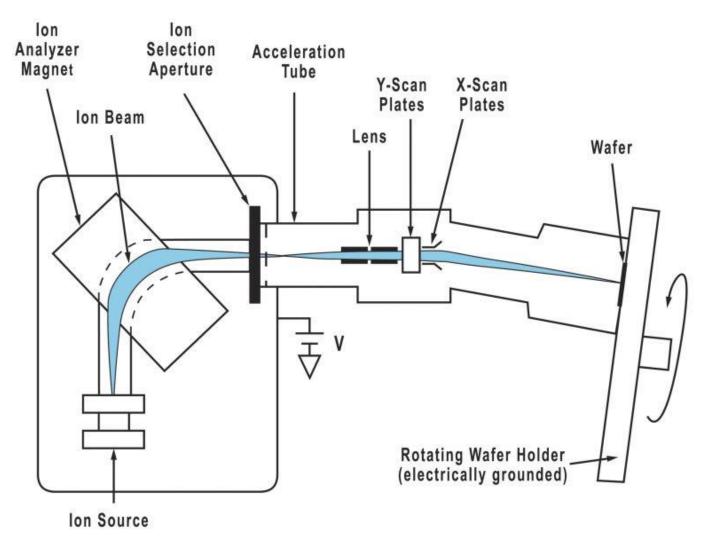
Features of KOMAC 100MeV linac

- 50-keV Injector (Ion source + LEBT)
- 3-MeV RFQ (4-vane type)
- 20 & 100-MeV DTL
- RF Frequency : 350 MHz
- Beam Extractions at 20 or 100 MeV
- 5 Beamlines for 20 MeV & 100 MeV


Output Energy (MeV)	20	100
Max. Peak Beam Current (mA)	1 ~ 20	1 ~ 20
Max. Beam Duty (%)	24	8
Avg. Beam Current (mA)	0.1 ~ 4.8	0.1 ~ 1.6
Pulse Length (ms)	0.1 ~ 2	0.1 ~ 1.33
Max. Repetition Rate (Hz)	120	60
Max. Avg. Beam Power (kW)	96	160

Particle Accelerator Engineering, Spring 2021

PAL (light source)



Particle Accelerator Engineering, Spring 2021

Accelerators for semiconductor industry

• Ion implanter for B⁺, P⁺, As⁺ doping

Industrial applications

Accelerators: Essential Tools in Industry

Ion Implantation

Accelerators can precisely deposit ions modifying materials and electrical properties

Semi Conductors

- CMOS transistor fabrication of essentially all IC's
- CCD & CMOS imagers for digital cameras
- · Cleaving silicon for photovoltaic solar cells
- Typical IC may have 25 implant steps

Metals

- Harden cutting tools
- Reducing friction
- Biomaterials for implants

Ceramics and Glasses

- Harden surfaces
- Modify optics
- · Color in Gem stones! ·

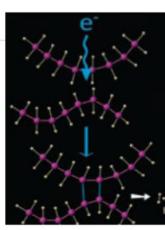
N2 ions reduce wear

and corrosion in this

artificial femur

Applied Materials, Inc.

Fermilab (courtesy R. Kephart)


Industrial applications

Accelerators: Essential Tools in Industry

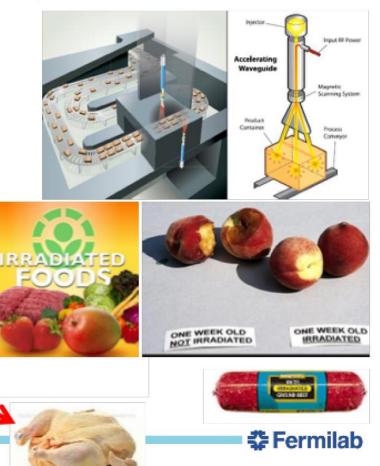
A wide-range of industrial applications makes use of low-energy beams of electrons to drive chemistry

 0.1-10 MeV up to MW beam power electrostatic, linac, betatron accelerators

Electron Beam Irradiation Improved heat resistance of coatings, wire and cable, crosslinking polymers, radial tires, etc)

1500 dedicated facilities worldwide

APT seminar, RDK, Nov 2014

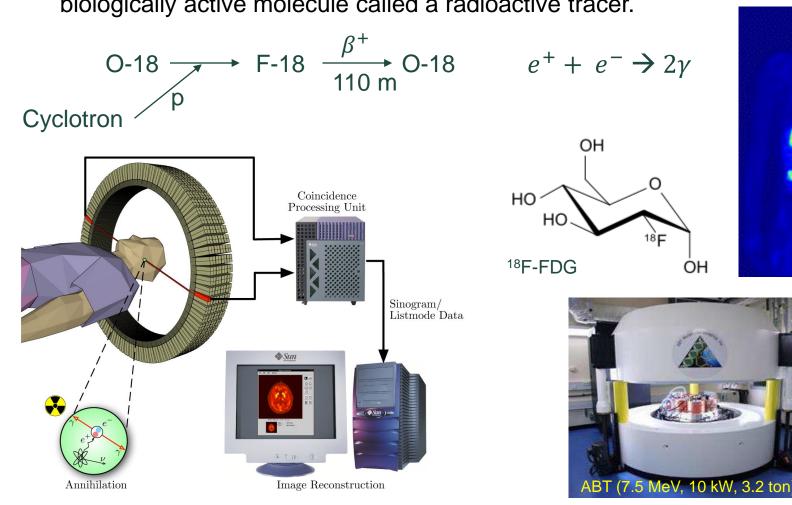

7

Industrial applications

Accelerators: Food Preservation

Low-energy beams of electrons can help beat food-borne Illness

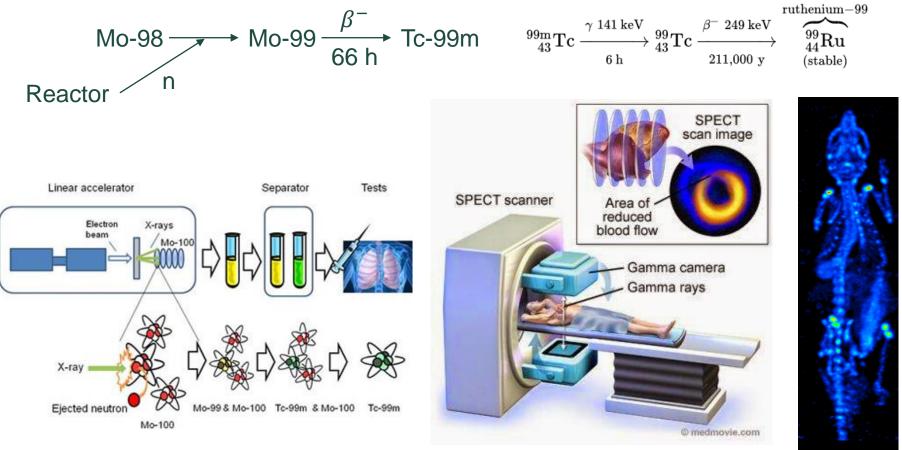
- ~6000 people/week are sickened, and ~100/week die from food-borne illness in the U.S.
- Food poisoning is estimated to cost the US \$152 billion a year.
- Electron beams and/or X-rays can kill bacteria like E. coli, Salmonella, and Listeria.
- Currently in use for: Spices, fruit, lettuce, ground beef, milk, juice, military rations...
- Many more opportunities exist
- Barriers = cost & public acceptance*



9 APT seminar, RDK, Nov 2014

PET (positron emission tomography)

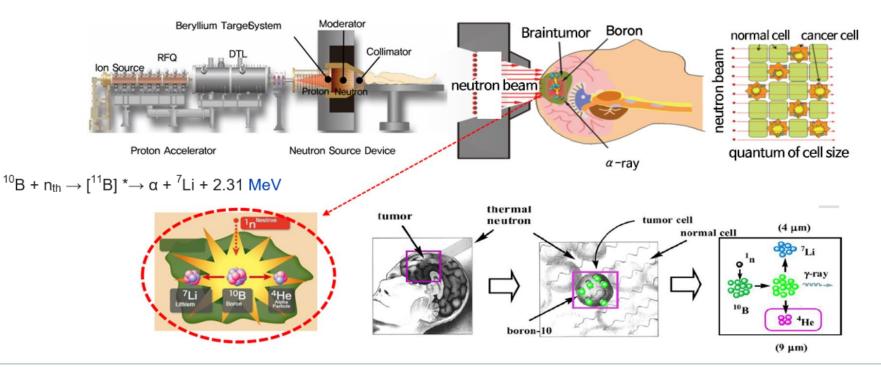
 The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide, most commonly fluorine-18. which is introduced into the body on a biologically active molecule called a radioactive tracer.

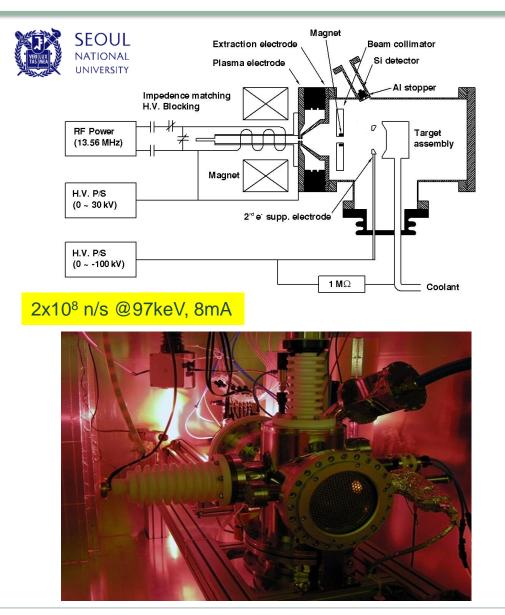


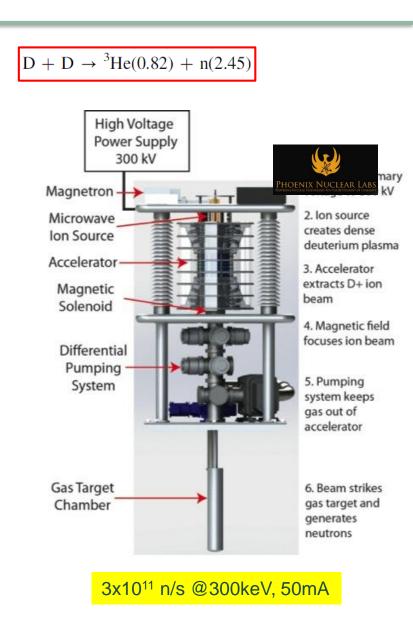
Particle Accelerator Engineering, Spring 2021

SPECT (single-photon emission computed tomography)

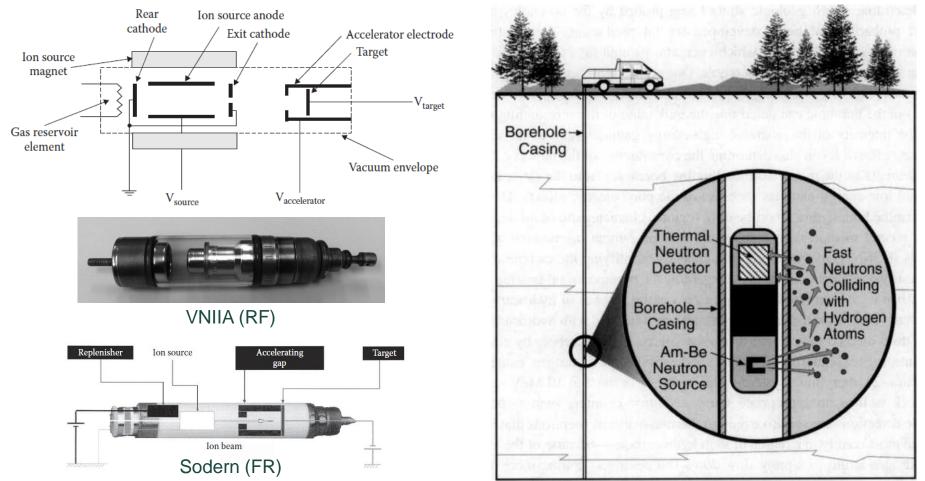
 SPECT is a nuclear medicine tomographic imaging technique using gamma rays. It is similar to PET in its use of radioactive tracer material and detection of gamma rays. In contrast with PET, however, the tracers used in SPECT emit gamma radiation that is measured directly.




BNCT (boron neutron capture therapy)

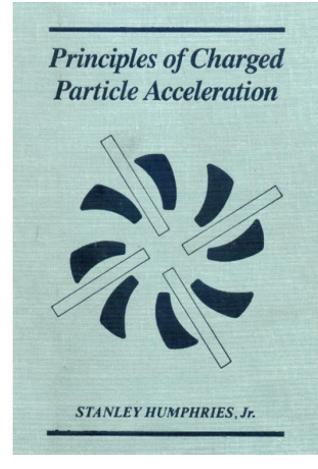

- Two-step procedure:
 - The patient is injected with a tumor-localizing drug containing the nonradioactive isotope boron-10 (¹⁰B) that has a high cross section to capture slow neutrons.
 - 2 The patient is radiated with epithermal neutrons, the source of which is either a nuclear reactor or, more recently, an accelerator.

D-D of D-T neutron generators



Particle Accelerator Engineering, Spring 2021

Neutron tube


• Sealed-tube neutron generators: Some accelerator-based neutron generators induce fusion between beams of deuterium and/or tritium ions and metal hydride targets which also contain these isotopes.

SEOUL

NATIONAL

Textbook

Principles of Charged Particle Acceleration

Stanley Humphries, Jr.

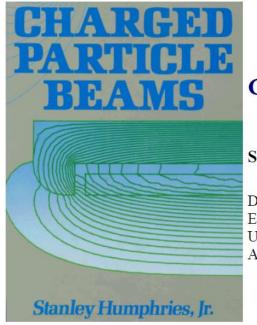
Department of Electrical and Computer Engineering University of New Mexico Albuquerque, New Mexico

(Originally published by John Wiley and Sons. Copyright ©1999 by Stanley Humphries, Jr. All rights reserved. Reproduction of translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to Stanley Humphries, Field Precision, PO Box 13595, Albuquerque, NM 87192 (humphriess@fieldp.com).

QC787.P3H86 1986 ISBN 0-471-87878-2

	<u>C</u>	<u>'ontents</u>	
1.	Introduction		1
2.	Particle Dynamics		8
	 2.1. Charged Particle Properties 2.2. Newton's Laws of Motion 2.3. Kinetic Energy 2.4. Galilean Transformations 2.5. Postulates of Relativity 2.6. Time Dilation 2.7. Lorentz Contraction 2.8. Lorentz Transformations 2.9. Relativistic Formulas 2.10. Non-relativistic Approximation 		9 10 12 13 15 16 18 20 22 23
3.	Electric and Magnetic Forces		26
	 3.1. Forces between Charges and 3.2. The Field Description and th 3.3. The Maxwell Equations 3.4. Electrostatic and Vector Po 3.5. Inductive Voltage and Disp 3.6. Relativistic Particle Motion 3.7. Motion of Charged Particle 	ne Lorentz Force tentials lacement Current	27 29 33 34 37 40 43
4. Ste	eady-State Electric and Magnetic F	ields	45
	 4.1. Static Field Equations with N 4.2. Numerical Solutions to the L 4.3. Analog Met hods to Solve th 4.4. Electrostatic Quadrupole Fie 4.5. Static Electric Fields with Sp 4.6. Magnetic Fields in Simple G 4.7. Magnetic Potentials 	aplace Equation e Laplace Equation ld pace Charge	46 53 58 61 64 67 70

5. Modification of Electric and Magnetic Fields by Materials		76	
	5.1.	Dielectrics	77
	5.2.	Boundary Conditions at Dielectric Surfaces	83
	5.3.	Ferromagnetic Materials	87
	5.4.	Static Hysteresis Curve for Ferromagnetic Materials	91
	5.5.	Magnetic Poles	95
	5.6.	Energy Density of Electric and Magnetic Fields	97
	5.7.	Magnetic Circuits	99
	5.8.	Permanent Magnet Circuits	103
6. Elec	tric ar	nd Magnetic Field Lenses	108
	6.1.	Transverse Beam Control	109
	6.2.	Paraxial Approximation for Electric and Magnetic Fields	110
	6.3.	Focusing Properties of Linear Fields	113
	6.4.	Lens Properties	115
	6.5.	Electrostatic Aperture Lens	119
	6.6.	Electrostatic Immersion Lens	121
	6.7.	Solenoidal Magnetic Lens	125
	6.8.	Magnetic Sector Lens	127
	6.9.	Edge Focusing	132
	6.10.	Magnetic Quadrupole Lens	134
7. Calculation of Particle Orbits in Focusing Fields			137
	7.1.	Transverse Orbits in a Continuous Linear Focusing Force	138
	7.2.	Acceptance and P of a Focusing Channel	140
	7.3.	Betatron Oscillations	145
	7.4.	Azimuthal Motion of Particles in Cylindrical Beams	151
	7.5.	The Paraxial Ray Equation	154
	7.6.	Numerical Solutions of Particle Orbits	157
8. Tra	nsfer N	Matrices and Periodic Focusing Systems	165
	8.1.	Transfer Matrix of the Quadrupole Lens	166
		Transfer Matrices for Common Optical Elements	168
	8.3.	Combining Optical Elements	173
		Quadrupole Doublet and Triplet Lenses	176
		Focusing in a Thin-Lens Array	179
		Raising a Matrix to a Power	193
	8.7.	Quadrupole Focusing Channels	187



9. El	ectrosta	tic Accelerators and Pulsed High Voltage	196
	9.1.	Resistors, Capacitors, and Inductors	197
	9.2.	High-Voltage Supplies	204
	9.3.	Insulation	211
	9.4.	Van de Graaff Accelerator	221
	9.5.	Vacuum Breakdown	227
	9.6.	LRC Circuits	231
	9.7.	Impulse Generators	236
		Transmission Line Equations in the Time Domain	240
	9.9.	Transmission Lines as Pulsed Power Modulators	246
	9.10.	Series Transmission Line Circuits	250
	9.11.	Pulse-Forming Networks	254
	9.12.	Pulsed Power Compression	258
	9.13.	Pulsed Power Switching by Saturable Core Inductors	263
	9.14.	Diagnostics for Pulsed Voltages and Current	267
10.	Line	ar Induction Accelerators	283
	10.1.	Simple Induction Cavity	284
	10.2.	Time-Dependent Response of Ferromagnetic Materials	291
	10.3.	Voltage Multiplication Geometries	300
	10.4.	Core Saturation and Flux Forcing	304
	10.5.	Core Reset and Compensation Circuits	307
	10.6	Induction Cavity Design: Field Stress and Average Gradient	313
	10.7.	Coreless Induction Accelerators	317
11.	Beta	trons	326
	11.1.	Principles of the Betatron	327
	11.2.	Equilibrium of the Main Betatron Orbit	332
	11.3.	Motion of the Instantaneous Circle	334
	11.4.	Reversible Compression of Transverse Particle Orbits	336
	11.5.	Betatron Oscillations	342
	11.6.	Electron Injection and Extraction	343
	11.7.	Betatron Magnets and Acceleration Cycles	348
12.	Reso	nant Cavities and Waveguides	356
	12.1.	Complex Exponential Notation and Impedance	357
	12.2.	Lumped Circuit Element Analogy for a Resonant Cavity	362
	12.3.	Resonant Modes of a Cylindrical Cavity	367
	12.4.		371
	12.5.		376
	12.6.	Transmission Lines in the Frequency Domain	380
	12.7.	Transmission Line Treatment of the Resonant Cavity	384

	12.8.	Waveguides	386
	12.9.	Slow-Wave Structures	393
	12.10.	Dispersion Relationship for the Iris-Loaded Waveguide	399
13.	Phase	Dynamics	408
	13.1.	Synchronous Particles and Phase Stability	410
	13.2.	The Phase Equations	414
	13.3.	Approximate Solution to the Phase Equations	418
		Compression of Phase Oscillations	424
		Longitudinal Dynamics of Ions in a Linear Induction Accelerator	426
	13.6.	Phase Dynamics of Relativistic Particles	430
14.	Radio	-Frequency Linear Accelerators	437
	14.1.	Electron Linear Accelerators	440
	14.2.	Linear Ion Accelerator Configurations	452
	14.3.	Coupled Cavity Linear Accelerators	459
	14.4.	Transit-Time Factor, Gap Coefficient and Radial Defocusing	473
	14.5.	Vacuum Breakdown in rf Accelerators	478
		Radio-Frequency Quadrupole	482
	14.7.	Racetrack Microtron	493
15.	Cyclotro	ons and Synchrotrons	500
	15.1.	Principles of the Uniform-Field Cyclotron	504
	15.2.	Longitudinal Dynamics of the Uniform-Field Cyclotron	509
	15.3.	Focusing by Azimuthally Varying Fields (AVF)	513
	15.4.	The Synchrocyclotron and the AVF Cyclotron	523
	15.5.	Principles of the Synchrotron	531
	15.6.	Longitudinal Dynamics of Synchrotrons	544
	15.7.	Strong Focusing	550
	Biblio Index	graphy	556

Textbook

Charged Particle Beams

Stanley Humphries, Jr.

Department of Electrical and Computer Engineering University of New Mexico Albuquerque, New Mexico

Originally published in1990 by John Wiley and Sons (QC786.H86 1990, ISBN 0-471-60014-8). Copyright ©2002 by Stanley Humphries, Jr. All rights reserved. Reproduction of translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to Field Precision, Attn: Stanley Humphries, PO Box 13595, Albuquerque, NM 87192.

Contents

1. Introduction		1	
1	1.1.	Charged particle beams	1
1	1.2.	Methods and organization	6
1	1.3.	Single-particle dynamics	9
2. Phase	e spa	ce description of charged particle beams	20
2	2.1.	Particle trajectories in phase space	22
2	2.2.	Distribution functions	28
2	2.3.	Numerical calculation of particle orbits with beam-generated forces	32
2	2.4.	Conservation of phase space volume	36
2	2.5.	Density and average velocity	46
2	2.6.	Maxwell distribution	49
2	2.7.	Collisionless Boltzmann equation	52
2	2.8.	Charge and current density	56
2	2.9.	Computer simulations	60
2	2.10.	Moment equations	65
2	2.11.	Pressure force in collisionless distributions	71
2	2.12.	Relativistic particle distributions	76

3. Introduction to beam emittance 7			79
	3.1.	Laminar and non-laminar beams	80
	3.2.	Emittance	87
	3.3.	Measurement of emittance	93
	3.4.	Coupled beam distributions, longitudinal emittance, normalized	
		emittance, and brightness	101
	3.5	Emittance force	107
	3.6.	Non-laminar beams in drift regions	109
	3.7.	Non-laminar beams in linear focusing systems	113
	3.8.	Compression and expansion of non-laminar beams	128
4. Bea	m em	ittance - advanced topics	133
	4.1.	Linear transformations of elliptical distributions	134
	4.2.	Transport parameters from particle orbit theory	145
	4.3.	Beam matching	150
	4.4.	Non-linear focusing systems	157
	4.5.	Emittance in storage rings	167
	4.6.	Beam cooling	174
5. Inti	roduct	ion to beam-generated forces	187
	5.1.	Electric and magnetic fields of beams	188
	5.2.	One-dimensional Child law for non-relativistic particles	195
	5.3.	Longitudinal transport limits for a magnetically-confined electron beams	204
	5.4.	Space-charge expansion of a drifting beam	211
	5.5.	Transverse forces in relativistic beams	216

6. Beam-ge	6. Beam-generated forces - advanced topics 224			
6.1.	Space-charge-limited flow with an initial injection energy	225		
6.2.	Space-charge-limited flow from a thermionic cathode	227		
6.3.	Space-charge-limited flow in spherical geometry	232		
6.4.	Bipolar flow	239		
6.5.	Space-charge-limited flow of relativistic electrons	242		
6.6.	One-dimensional self-consistent equilibrium	246		
6.7.	KV distribution	256		
7. Electron	and ion guns	262		
7.1.	Pierce method for gun design	263		
7.2.	Medium perveance guns	271		
7.3.	High perveance guns and ray tracing codes	277		
7.4.	High current electron sources	283		
7.5.	Extraction of ions at a free plasma boundary	289		
7.6.	Plasma ion sources	300		
7.7.	Charged-particle extraction from grid-controlled plasmas	315		
7.8.	Ion extractors	322		
8. High pov	ver pulsed electron and ion diodes	328		
8.1.	Motion of electrons in crossed electric and magnetic fields	329		
8.2.	Pinched electron beam diodes	337		
8.3.	Electron diodes with strong applied magnetic fields	346		
8.4.	Magnetic insulation of high power transmission lines	351		
8.5.	Plasma erosion	356		
8.6.	Reflex triode	364		
8.7.	Low-impedance reflex triode	370		
8.8.	Magnetically-insulated ion diode	377		

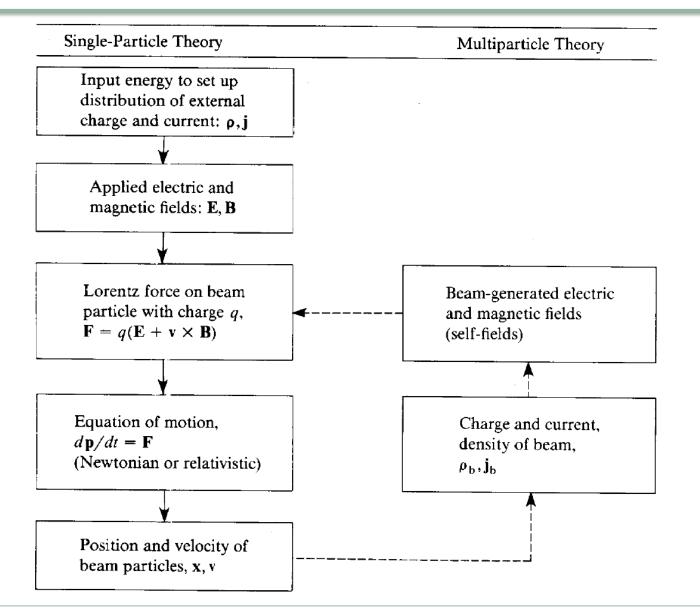
	8.9.	Ion flow enhancement in magnetically-insulated diodes	388
0 D			205
9. Par		beam transport with space-charge	395
	9.1.	Envelope equation for sheet beams	396
	9.2.	Paraxial ray equation	400
	9.3.	Envelope equation in a quadrupole lens array	407
	9.4	Limiting current for paraxial beams	412
	9.5.	Multi-beam ion transport	419
	9.6.	Longitudinal space-charge limits in RF accelerators and induction linacs	42 3
10. Hi	gh cui	rrent electron beam transport under vacuum	432
	10.1.	Motion of electrons through a magnetic cusp	433
	10.2.	Propagation of beams from an immersed cathode	439
	10.3.	Brillouin equilibrium of a cylindrical electron beam	445
	10.4.	Interaction of electrons with matter	451
	10.5.	Foil focusing of relativistic electron beams	457
	10.6.	Walle-charge and return-current for a beam in a pipe	470
	10.7.	Drifts of electron beams in a solenoidal field	477
	10.8.	Guiding electron beams with solenoidal fields	482
	10.9.	Electron beam transport in magnetic cusps	490
11. Ioi	n bean	n neutralization	501
	11.1.	Neutralization by comoving electrons	502
		Transverse neutralization	511
	11.3.	Current neutralization in vacuum	517
	11.4.	Focal limits for neutralized ion beams	522
	11.5.	Acceleration and transport of neutralized ion beams	528
		•	

12. Electron beams in plasmas	
12.1. Space-charge neutralization in equilibrium plasmas	536
12.2. Oscillations of an un-magnetized plasma	540
12.3. Oscillations of a neutralized electron beam	546
12.4 Injection of a pulsed electron beam into a plasma	552
12.5. Magnetic skin depth	563
12.6. Return current in a resistive plasma	569
12.7. Limiting current for neutralized electron beams	577
12.8. Bennett equilibrium	583
12.9. Propagation in low-density plasmas and weakly-ionized gases	587
13. Transverse instabilities	592
13.1. Instabilities of space-charge-dominated beams in periodic	
focusing systems	594
13.2. Betatron waves on a filamentary beam	610
13.3. Frictional forces and phase mixing	615
13.4. Transverse resonant modes	622
13.5. Beam breakup instability	631
13.6. Transverse resistive wall instability	640
13.7. Hose instability of an electron beam in an ion channel	645
13.8. Resistive hose instability	655
13.9. Filamentation instability of neutralized electron beams	664
14. Longitudinal instabilities	674
14.1. Two-stream instability	675
14.2. Beam-generated axial electric fields	687
14.3. Negative mass instability	697
14.4. Longitudinal resistive wall instability	704

15. Generation of radiation with electron beams		720
15.1.	Inverse diode	722
15.2.	Driving resonant cavities with electron beams	736
15.3.	Longitudinal beam bunching	749
15.4.	Klystron	762
15.5.	Traveling wave tube	772
15.6.	Magnetron	781
15.7.	Mechanism of the free-electron laser	796
15.8.	Phase dynamics in the free-electron laser	803

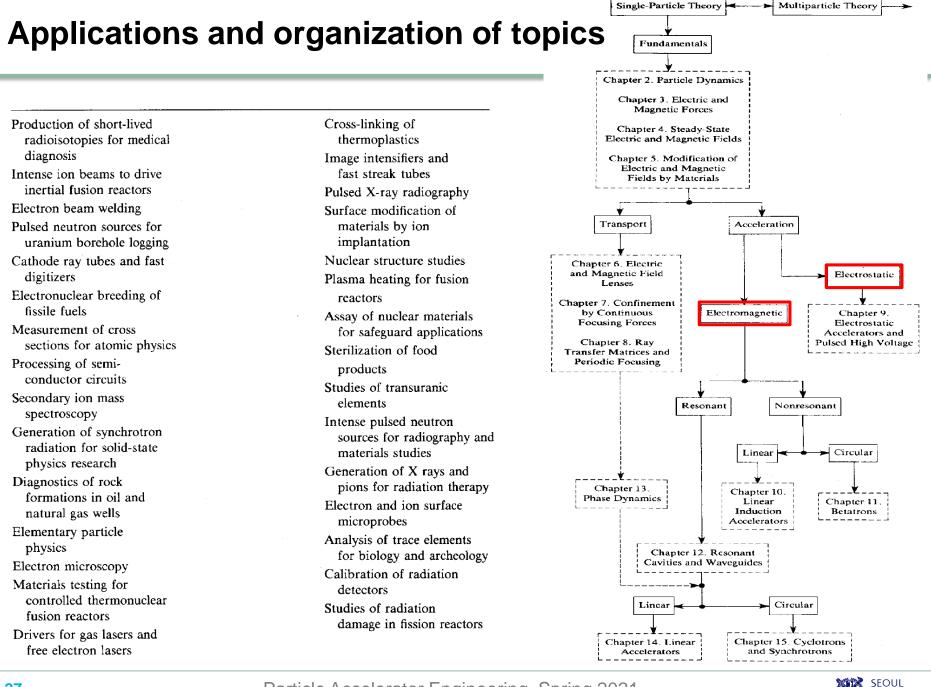
Bibliography

Index


Basic definitions

- A charged particle is an elementary particle or a macroparticle which contains an excess of positive or negative charge. Its motion is determined mainly by interaction with electromagnetic forces.
- Charged particle acceleration is the transfer of kinetic energy to a particle by the application of an electric field.
- A charged particle beam is a collection of particles distinguished by three characteristics: (1) beam particles have high kinetic energy compared to thermal energies, (2) the particles have a small spread in kinetic energy, and (3) beam particles move approximately in one direction. In most circumstances, a beam has a limited extent in the direction transverse to the average motion. The antithesis of a beam is an assortment of particles in thermodynamic equilibrium.
- Most applications of charged particle accelerators depend on the fact that beam particles have high energy and good directionality. Directionality is usually referred to as coherence. Beam coherence determines, among other things, (1) the applied force needed to maintain a certain beam radius, (2) the maximum beam propagation distance, (3) the minimum focal spot size, and (4) the properties of an electromagnetic wave required to trap particles and accelerate them to high energy.

Beam acceleration process



Beam acceleration process

- In accelerator theory, particles are separated into two groups: (1) particles in the beam and (2) charged particles that are distributed on or in surrounding materials. The latter group is called the external charge.
- Energy is required to set up distributions of external charge; this energy is transferred to the beam particles via electromagnetic forces.
- For example, a power supply can generate a voltage difference between metal plates by subtracting negative charge from one plate and moving it to the other. A beam particle that moves between the plates is accelerated by attraction to the charge on one plate and repulsion from the charge on the other.
- Applied forces are usually resolved into those aligned along the average direction of the beam and those that act transversely.
- The axial forces are acceleration forces; they increase or decrease the beam energy.
- The transverse forces are confinement forces. They keep the beam contained to a specific cross-sectional area or bend the beam in a desired direction.
- Magnetic forces are always perpendicular to the velocity of a particle; therefore, magnetic fields cannot affect the particle's kinetic energy. Magnetic forces are confinement forces. Electric forces can serve both functions.

Particle Accelerator Engineering, Spring 2021