2017년도1학기심화수업

Electroplasticity in metal alloys - AZ91 magnesium alloy, AHSS-

2017.03.20

Jeong Hye-Jin

CONTENTS

Introduction

Electrically-assisted Manufacturing (EAM)

Issue in electrically-assisted manufacturing
 Application of EAM

Effect of electric current during tensile test

AZ91 Magnesium alloy

PART 2

PART 1

Effect of electric current during tensile test

980MPa grade Steel

Final Remark

Conclusion

Total summary

I. Introduction High strength & Lightweight automobiles

Body parts components

Body parts mostly consists of high strength steel & lightweight metals (Magnesium/Aluminum alloy)

http://www.topspeed.com/cars/volvo/2009-volvo-xc60-ar52734/picture304392.html

Limit properties of high strength & lightweight metals

https://www.esi-group.com/sites/default/files/software-services/1557/springback http://openi.nlm.nih.gov/legacy/detailedresult.php?img=3132537

I. Introduction Electrically-assisted Manufacturing (EAM)

Electrically-Assisted Manufacturing (EAM)

: Metal forming by applying electric current during deformation

I. Introduction Application of EAM

Eng. strain (%)

AA5052 Al alloy

➔ Electrically assisted Aging

Int. J. Plast., (in Press), 2016

(no electric current)(no electric current)

+ Furnace

+ Induction

I. Introduction Application of EAM

AHSS (980 DP Steel)

The U-bending fixture

Int. J. Precis. Eng. Manuf. 15 (2014)

Springback decreased by applying electric current

International Journal of Refractory Metals and Hard Materials (2016)

II. Materials and Experimental method Experimental Procedure

Instrumental set-up

Specimens

	Composition	Characteristic	
AZ91 Mg alloy	9Al-1Zn	YS 290MPa, El 7%	
Complex Phase steel (DP 980 소둔)	0.07C-2.5Mn-0.96Cr-0.05Nb	YS 849MPa, TS 1030MPa, El 9.3%	

[Tensile specimen (ASTM E8)]

	Sub size Standard siz	
G	25	50
W	6.25	12.5
L	100	200

II. Materials and Experimental method Experimental Procedure

- brittle β phase
 - Melting point : 330 350 °C

🗲 Low formability

Additional Heat treatment or grain refinement process is required

phase (Mg₁₇Al₁₂)

ß

More than 5 images in each specimen

Phase	Fraction (%)
$Mg_{17}AI_{12}$	21.1 ± 3.4

Pulsed tensile test

- Current density (ρ_i): 80A/mm², duration=0.5s. period=20s
- Cross head speed : 1.0 mm/min

Property	Non-pulsed at 25°C	Non-pulsed at 70°C	Pulsed 🗲	Why? <
Yield stress	290 MPa	250 MPa	-	
Fracture elongation	7%	13.9%	28.9%	_

EBSD Analysis : Inverse Pole Figure Map

- Current density (ρ_i): 80A/mm², duration=0.5s. period=20s
- Cross head speed : 1.0 mm/min

• A Non-pulsed tension at 70°C + Induction H-T

As-received

Eng. Strain : 13% Non-pulsed tension at 70°C + Induction H-T

 $\operatorname{Min}_{0} \operatorname{Max}_{8} \overset{\mathsf{ED}}{\otimes} \operatorname{ND}_{0001} \overset{10\overline{10}}{2\overline{110}}$

Mg₁₇Al₁₂ Phase Fraction

40

Mg₁₇Al₁₂ Phase Fraction (%)

Vickers Hardness Measurement

Mg₁₇Al₁₂ Matrix ED Ø_{ND} 20µm 20µm 20µm 20µm

Eng. Strain : 0% As-received

Eng. Strain : 13% Non-pulsed tension at 70°C

Eng. Strain : 13% Non-pulsed tension at 70°C + Induction heat treatment

Eng. Strain: 13% **Pulsed** tension

 \rightarrow Electric current induced Dissolution of Mg₁₇Al₁₂

Non-pulsed tension at 7 + Induction H-T

- Composition (wt.%)
 C
 Mn
 Cr
 Nb

 0.07
 2.5
 0.96
 0.05
- CP강 : 소둔재

• Optical image

Pulsed tensile test

- Current density (ρ_o): 95A/mm², duration=0.1s. period=10s
- Cross head speed : 1.0 mm/min
- ρ_o=current density based on initial cross-sectional area

Property	Non-pulsed	Pulsed	100°C	200°C	300°C
UTS	1030 MPa	1107 <i>MPa</i>	1012MPa	1023MPa	1060MPa
Fracture elongation	9.3%	12.1%	10%	9.6%	9.1%

Pulsed tensile test

- Current density (ρ_o): 95A/mm², duration=0.1s. period=10s
- Cross head speed : 1.0 mm/min
- ρ_o=current density based on initial cross-sectional area

Temperature history

Vickers Hardness Measurement

From the Vickers hardness measurement, it can be observed that applying electric current can accelerate "aging effect" with a distinct effect from Joule heating

XRD Analysis : FWHM Value *

- Annihilation of dislocations and fine precipitation occur simultaneously on aging
- The hardness and micro strain are increased by **formation of precipitates** which are coherent with matrix
- The coarsening of the precipitation leading to loss of coherency with the matrix
 → decrease of micro strain with increasing temperature

• **TEM Analysis** at engineering strain of 5.7%

(Using Cu grid and replica film, specimens were prepared)

Non-pulsed Tension

Pulsed Tension

 Nb kal
 Spectrum 2

 Nb c
 Cu kal

 Cu kal
 Cu kal

 Cu kal
 Cu kal

 Cu kal
 Nb kal

→ Electric current can assisted "aging effect" during plastic deformation due to formation of Nano-sized precipitation such as NbC

IV. Conclusion Summary

AZ91 Mg alloy

CP (DP980) steel

→ Electric current assisted "dissolution effect" during plastic deformation ➔ Electric current assisted "aging effect" during plastic deformation

Applicability of EAM technique to Forming process

Thank you for listening

Microstructure analysis : OM

Practical solution treatment condition
 : 380 ~ 420°C _ 30min~ 1hrs

→ Fraction of Mg₁₇Al₁₂ phase : Conventional heat-treatment > Electro-Treatment

Microstructure analysis : Vickers Hardness Measurement

The solution heat-treatment dissolves $Mg_{17}Al_{12}$ *phase to matrix*

→ This makes the hardness of specimen decreased!!

Microstructure analysis : EDS phase mapping

 \rightarrow it was observed that dissolution kinetic of $Mg_{17}AI_{12}$ phase is accelerated by EAM