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Maxwell’s equations

Reference Differential Form Integral Form
Gauss’s law V-D=p, %D ~ds = Q (6.1)
S
B B
Faraday’s law VxE=—-" 5£E cdl=— | —-ds (6.2)*
ot ot
C S
Gauss’s law for magnetism V:-B=0 % B:-ds=0 (6.3)
S
oD oD
Ampere’s law VxH=]+ o %H ~dl = f (J + (a—) < ds (6.4)
C S
*For a stationary surface S.
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Particle acceleration by static electric field
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Inductive voltage and displacement current
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Figure 3.7 Inductive voltage and displacement currents. (a) Faraday's law. (#) Inductively
coupled plasma source. (¢) Alternating-current circuit with a parallel-plate capacitor.
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Static field equations with no sources

® \When there are no charges or currents present, the Maxwell equations have the
following form

V-E=0 VXE=0
V-B=20 VXB=0
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Electrostatic quadrupole field

® The desired two-dimensional electric field distribution:

0 X
Ex=_£=+kx=an Ey=—_=—ky=—E0_

® \We obtain the following hyperbolic potential function with ¢(0,0) = 0

an=foion e

hd
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Static electric fields with space charge

® Space charge is charge density present in the region in which an electric field is
to be calculated. In accelerator applications, space charge is identified with the
charge of the beam; it must be included in calculations of fields internal to the

beam.

eV-E=p=  p + P2 + P3
applied dielectric space (free)

® For a cylindrical beam with uniform charge density:

E,. = (po/(2€p))r, O<r=<mn)

E, = (po/ 2€)) (15 /7), (p =7)

A Uniform charge density ¢g

Ei(gors/2¢0)

rirp
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Dielectrics

® If a dielectric is inserted into a vacuum field region, the following equations hold:

V-D=20 V-E+0

o
VXH-= (a+jwe)E=jw(e—jZ)E=jweCE
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Plasma as a dielectric

® |t is a common practice to introduce the concept of a plasma dielectric constant
to describe phenomena such as the refraction of optical radiation.
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Figure 5.4 Response of particles in a plasma slab to an oscillating applied clectric tield. ()
Direct-current field (zero frequency). (£) Low-frequency ac field. {¢) High-frequency ac ficld.

9 Particle Accelerator Engineering, Spring 2021




Plasma oscillation

® Electrons overshoot by inertia and oscillate around their equilibrium position with
a characteristic frequency known as plasma frequency.

® Equation of motion (cold plasma)

d*Ax o noeAx
m— o= ek, = —e .

d?Ax nge? . .
—+ Ax =0 €& Harmonic oscillator
dt meg,

® Electron plasma frequency

B noez 1/2
Dre = me,
® If the assumption of infinite mass ions is not made, then the ions also move
slightly and we obtain the natural frequency

w, = (w2 + wgi)l/z where, wp,; = (nge?/Mey)'/? (ion plasma frequency)
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Plasma frequency

® Plasma oscillation frequency for electrons and ions

wpe . -3
fre = = 8980+/n, [Hz] (nyincm™>)
p 21

a) .
foi = Z_ZL = 210/ng/My [Hz] (ngincm™3, M, in amu)

® Typical values for a processing plasma (Ar)

w
foe = 2’7’; = 8980+/1010 [Hz] = 9 x 108 [Hz]

Cl)pi 6
fpi = —— = 210,/1019/40 [Hz] = 3.3 X 10° [Hz]

2T ;
‘th
_ . )‘-Dﬁ —
® Collective behavior Wpe
WpeT > 1 Plasma frequency > collision frequency
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Plasma response in time-varying electric field
® Consider a uniform plasma in the presence of a background gas that is driven by
a small amplitude time-varying electric field:
E.(t) = E, coswt = Re E, e/®t

u,(t) = Re @i, e/t

® The electron force equation ST :
I € mmm—
du, | [
m ar - —eE, — mv,u, lons~ | | L Electrons
| !
. . N
® The complex velocity amplitude —
1 o
5 e 1 i
Uy = ——7——
x mjw+ vy,

® The total current amplitude (displacement current + conduction current)

2
Wpe -

E
w(w —ij) *

ij = ja)EOEx _ enoﬁx - jCUEO [1 —
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Dielectric constant and conductivity

® Plasma dielectric constant
2

€, = €nk, =€y |1 — Upe VxH=jwe,E
P EE TE0T 0(@ — V) 9%
® Plasma conductivity
Jrx = (0p + jweg)E, VxH = (0, + jwey)E
Eowz%e
O'p =
jw + vy,

® Low frequency (w K v,,): dc plasma conductivity
_ €Wpe  MNge’

Odc = =
v,  my,

® High frequency (w > v,,): collisionless plasma dielectric constant

2
a)pe]

€, = €EnK,, = €n |1 —
p 0%p 0[ w2
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Behaviors in typical low-pressure rf discharges

® At very high driving frequencies (w > wy,): €, Is positive but less than ¢
- The plasma acts as a dielectric with a relative dielectric constant less than 1.
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® Most discharges are driven at lower frequencies (v < wp,): €, IS negative
- The plasma behaves like an inductor in this frequency regime.
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Boundary conditions at dielectric surfaces

. Dln
Medium 1
E, £y a )
E --— b ‘*T_
n : } Ah
:Elt | _ 2
0 } Ah
Ezt = 2
E C d
2n . A/
E,
Medium 2
g 5
: DZn n
. . e AT Medium 1 Medium 2
Field Component Any Two Media Dielectric ¢ Conductor
Tangential E E|. = Ey Eii=Ey=0
Tangential D Dy /e; =Dy /e D, =Dy=0
Normal E €1E1n —e2Ex = ps E1n = ps/el Ezy =0
Normal D Dy, — Dy, = ps D1, = ps D>, =0
Notes: (1) ps is the surface charge density at the boundary; (2) normal components of
E(, Dy, E>. and D> are along ny, the outward normal unit vector of medium 2.
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Behavior of magnetic materials
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Figure 59 Bchavior of magnetic materials. (&) Interactions between atoms with magnetic
moments; force exerted on one current loop (B) by another (A). (#) Response of atoms in a
paramagnetic material to an applied magnetic field. (¢) Macroscopic magnetic fields produced by
alignment of atomic currents in a material. (¢) Macroscopic surface current in a material resulting
from alignment of atoms with magnetic moments.
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Static hysteresis curve for ferromagnetic materials

Ferromagnetic torus
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Magnetic poles

® Boundary conditions at a boundary between vacuum and a ferromagnetic
material

Hie _ Ho
I By = IB"B

e
(17
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Magnetic quadrupole lens




Energy required to magnetize a ferromagnetic material

Energy returned
to driving circuit

Net energy
supplied by
driving circuit

Energy
supplied by
driving circuit

(a) (6) {c)

Figure 5.17 Energy required to magnetize and demagnetize a ferromagnetic material. (o)
Saturation hysteresis curve. (#) Quantities to calculate energy changes moving along saturation
hysteresis curve. (¢) Energy supplied by circuit (cross-hatched area) and energy returned to circuit
(shaded portion).
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Advantage of including ferromagnetic material

® The ampere turn product is related to the magnetic
field in the circuit through:

f<§>-dl=1v1

® The constant circuit flux is given by
Y = B,A,; = B.A,
® [or the air core circuit;
o) o) ( 7n)
B,|=)+B|—|=W + = NI
g <Mo> ‘ (Ho Aglty ~ Achg

® For the ferromagnetic core circuit;

B <g>+B(l>—‘P< J_4 l)—NI
7\ to “\u Agtig ~ Acu

/ N

A
7S

Reluctance of the air gap Reluctance of the iron core (b1
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Magnetic circuits: operating point

® For the ferromagnetic core circuit for A; = A.:

g [
B,|—|+B.|—|=NI B, =B B. = uH
g<'u0> C(ﬂ) g c c — U,
g
BC<—>+HCI=NI = BC=—<
Ho
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Magnetic circuits: analogy with electric circuits

® The magnetic circuit has many analogies with electric circuits in which electrons

circulate.

® The excitation windings provide the motive force (voltage), the vacuum gap is
the load (resistance), and the ferromagnetic material completes the circuit
(conducting wire).

Analogy between 'magnetic circuits' and electrical circuits

Magnetic

Name

Magnetomotive force (MMF)

Symbol Units

F = fH-dl ampere-turn

Electric

Name

Symbol

Units

Electromotive force (EMF) | € = [E -d1] volt

Magnetic field H ampere/meter | | Electric field E volt/meter = newton/coulomb
Magnetic flux ¢ weber Electric current ampere
Hopkinson's law or Rowland's law | F = ®R,, ampere-turn Ohm's law E=1IR
Reluctance fii 1/henry Electrical resistance ohm
1
Permeance P = 'R_ henry Electric conductance G=1/R 1/ohm = mho = siemens
3
Relation between Band H B=uH Microscopic Ohm's law | J = oE
Magnetic flux density B B tesla Current density J ampere/square meter
Permeability U henry/meter Electrical conductivity o siemens/meter
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Magnetic circuits

® Magnetic circuits obey other laws that are similar to electrical circuit laws. For

example, the total reluctance in series is: ﬁl
RT=R1+R2+”‘ A s
M B2

—-

—

e
=

Fringing field
/ reluctance

Leakage field Core reluctance
Core reluctance ~
Gap flux
Coil Gap
) () e
Fringing flux
. /
Leakage flux Gap reluctance
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Permanent magnet circuits

® Permanent magnet circuits have the advantage that a dc magnetic field can be
maintained with no power input.

® There are two drawbacks of permanent magnet circuits: (1) it is difficult to vary
the field magnitude in the gap and (2) bulky magnets are needed to supply high
fields over large areas.

B(G) = u,H(Oe 1000
(G) = prH(Oe) L0 =200
4
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Operating point of a permanent magnet circuit

Permanent

® Neglecting the reluctance of the Demagnetization | magnet P
iron core, the operating point of B '\opergling \
the permanent magnet is Po
determined by the gap properties / Hr Lin
through
HpLm = HyLg = ByLg/ug (@
B
® = ByA; = BpAn
/ A
® Magnetic field energy in the gap
IS proportional to the energy
product (H,,B,,) and the magnet . "
volume: /
B2 H,B
W, =—2A,L, =—"A_L Hr
g 2o 9-g 2 m=m /
Figure 5.21 - Operating point of a permanent magnet. (a) Permanent magnet with a continuous (c)

iron flux conductor, zero magnetizing force. {(b) Addition of an air gap with a coil to supply field
energy. (¢) Deactivation of the gap coil.
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