# Any properties correlating with glass transition temperature

구조재료 심화연구 (Current Status of Structural Materials)

April 10th, 2017

Kyung-jun Kim

**ESPark Research Group** 

E-mail: kjgolbang2@snu.ac.kr , URL: http://espark.snu.ac.kr



# 1. Introduction: Change of $T_g$ depending on composition





Decrease of  $T_g$  depending on Zr content

"Develop novel Zr-rich Zr-TM glassy alloy system for low T<sub>a</sub>"

### **Retention of Liquid Phase**





Phase diagram of Ni-Zr binary system

Phase diagram of Co-Zr binary system

Near eutectic composition, liquid phase keeps stable even at low temperature  $\rightarrow$  "Large GFA"

### Thermodynamic and Structural Point



| Г | 1        |          |         |      |         |         | ΔH <sub>m</sub> | <sub>nix</sub> << | :0   |          |          |          |          |          |         |         | ſ        | 18                  |
|---|----------|----------|---------|------|---------|---------|-----------------|-------------------|------|----------|----------|----------|----------|----------|---------|---------|----------|---------------------|
| 1 | H        | 2        |         |      |         |         |                 |                   |      |          |          |          | 13       | 14       | 15      | 16      | 17       | Не                  |
| 2 | 3<br>Li  | Be⁴      |         |      | (       | Zr      | )               |                   |      | 1        |          |          | 5<br>B   | C 6      | N 7     | 0       | °<br>F   | <sup>10</sup><br>Ne |
| 3 | 11<br>Na | 12<br>Mg |         |      |         |         |                 |                   |      |          |          |          | 13<br>Al | 14<br>Si | 15<br>P | 16<br>S | 17<br>Cl | 18<br>Ar            |
| ŀ | 19       | 20       | 3<br>21 | 4 22 | 5<br>23 | 6<br>24 | 7 25            | 8<br>26           | 9 27 | 10<br>28 | 11<br>29 | 12<br>30 | 31       | 32       | 33      | 34      | 35       | 36                  |
| 4 | K        | Ca       | Sc      | Ti   | V       | Cr      | Mn              | Fe                | Со   | Ni       | Cu       | Zn       | Ga       | Ge       | As      | Se      | Br       | Kr                  |
| ľ | 37       | 38       | 39      | 40   | 41      | 42      | 43              | 44                | 45   | 46       | 47       | 48       | 49       | 50       | 51      | 52      | 53       | 54                  |
| 5 | Rb       | Sr       | Y       | Zr   | Nb      | Мо      | Тс              | Ru                | Rh   | Pd       | Ag       | Cd       | In       | Sn       | Sb      | Te      | Ι        | Xe                  |
| ľ | 55       | 56       | 71      | 72   | 73      | 74      | 75              | 76                | 77   | 78       | 79       | 80       | 81       | 82       | 83      | 84      | 85       | 86                  |
| 6 | Cs       | Ba       | Lu      | Hf   | Та      | W       | Re              | 0s                | Ir   | Pt       | Au       | Hg       | Tl       | Pb       | Bi      | Po      | At       | Rn                  |
| ľ | 87       | 88       | 103     | 104  | 105     | 106     | 107             | 108               | 109  | 110      | 111      | 112      |          |          |         |         |          |                     |
| 7 | Fr       | Ra       | Lr      | Rf   | Db      | Sg      | Bh              | Hs                | Mt   | Ds       | Rg       | Cn       |          |          |         |         |          |                     |
|   | [        | 57       | 58      | 59   | 60      | 61      | 62              | 63                | 64   | 65       | 66       | 67       | 68       | 69       | 70      |         |          |                     |
|   |          | La       | Ce      | Pr   | Nd      | Pm      | Sm              | Eu                | Gd   | Tb       | Dy       | Но       | Er       | Tm       | Yb      |         |          |                     |
|   |          | 89       | 90      | 91   | 92      | 93      | 94              | 95                | 96   | 97       | 98       | 99       | 100      | 101      | 102     |         |          |                     |
|   |          | Ac       | Th      | Pa   | U       | Np      | Pu              | Am                | Cm   | Bk       | Cf       | Es       | Fm       | Md       | No      |         |          |                     |

A. Takeuchi et al., Materials Transactions, 46, 12, 2005, 2817-2829

|    | Atomic radius [Å] | Atomic radius difference [%] | <b>ΔH<sub>mix</sub></b> [kJ/mol] |
|----|-------------------|------------------------------|----------------------------------|
| Zr | 1.62              | _                            | _                                |
| Cu | 1.28              | 21.0                         | -23                              |
| Ni | 1.25              | 22.8                         | -49                              |
| Со | 1.25              | 22.8                         | -41                              |

Consider atomic radius difference ( $\Delta r/r_0$ ) and heat of mixing ( $\Delta H_{mix}$ ) relation by empirical rules about GFA,

Ni, Co  $\rightarrow$  Large  $\Delta r/r_0$  (~22.8%) and negative  $\Delta H_{mix}$  (over -40kJ/mol)

#### Characteristic Temperature Plot in Phase Diagram





Phase diagram of Cu-Zr binary system

#### Phase diagram of Ni-Zr binary system

Linear correlation of  $T_g$  depending on its composition



Linear correlation of  $T_{q}$  depending on its composition

**ESPark Research Group** 

2. Other property changes depending on its composition









## Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys

Kyoung-Won Park,<sup>a</sup> Jae-il Jang,<sup>b</sup> Masato Wakeda,<sup>c</sup> Yoji Shibutani<sup>c</sup> and Jae-Chul Lee<sup>a,\*</sup>

#### Investigate relationship between structural properties of MG and its properties



1. Using 14 ribbon samples (50µm thickness X 2mm width) with composition range from  $Cu_{46}Zr_{54}$  to  $Cu_{70}Zr_{30}$ , Nanoindentation test  $\rightarrow$  Hardness (converted to the yield strength,  $\sigma_{v}$  (MPa)=274H<sub>N</sub> (GPa)), Young's modulus

2. Using 9 rod samples ( $\varphi$ 1mm X 30mm height) with different composition ranging from Cu<sub>46</sub>Zr<sub>54</sub> to Cu<sub>70</sub>Zr<sub>30</sub>, Room-temp. compression test  $\rightarrow$  Stress-strain curve, Yield strength, Plastic strain,

K.W. Park et al., Scripta Materialia, 57, 2007, 805-808



Any correlation of  $T_a$  or  $T_x$  with other properties?



K.W. Park et al., Scripta Materialia, 57, 2007, 805-808

#### General structural properties: atomic packing density, volume change



- 1. Not precise method, using just simple experimental method
- $\rightarrow$  Atomic packing density measured, mixture of  $\varphi$ 4 and 5mm steel balls (relative size 1.250, similar with 1.254, atomic radius ratio of Cu and Zr)
- 2. Free volume evaluated based on MD simulations (using simple potential database, the Lennard-Jones potential)





K.W. Park et al., Scripta Materialia, 57, 2007, 805-808

#### Detail structural properties: SRO structure (3-D simulation, 2-D simulation)



1. 3-D Voronoi polyhedral fraction  $\rightarrow$  Dominant SRO structure, (0, 0, 12, 0) lcosahedron

2. For simple analysis, using 2-D Voronoi polygon fraction  $\rightarrow$  Dominant SRO structure, Pentagon (fivefold symmetry exhibiting the densest packing with the highest shear resistance)

"조성에 따라 특정 structural feature에 변화가 생기고, mechanical 혹은 thermal property에 영향을 줌." 단, 조성 변화가 structural feature에 끼치는 영향에 대해서는 언급이 없음.

# 3. Correlation between elastic moduli and $T_g$

### Correlation between elastic modulus and T<sub>a</sub>



W.H. Wang, Journal of Non-Crystalline Solids, 351, 2005, 1481-1485 W.H. Wang, Journal of Applied Physics, 99, 2006, 093506 W.H. Wang, Progress in Materials Science, 57, 2012, 487-656











### Atomic packing density and its influence on the properties of Cu–Zr amorphous alloys

Kyoung-Won Park,<sup>a</sup> Jae-il Jang,<sup>b</sup> Masato Wakeda,<sup>c</sup> Yoji Shibutani<sup>c</sup> and Jae-Chul Lee<sup>a,\*</sup>

#### Investigate relationship between structural properties of MG and its properties



### "Properties inheritance in metallic glasses"

JOURNAL OF APPLIED PHYSICS 111, 123519 (2012)

Properties inheritance in metallic glasses

Wei Hua Wang (汪卫华)<sup>a)</sup> Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China



W.H. Wang, Progress in Materials Science, 57, 2012, 487-656

### "Properties inheritance in metallic glasses"





Simple model of MG with a stiff spring (solute-solvent bonding) and less stiff spring (solvent-solvent bonding)

# "Elastic moduli inheritance and the weakest link in bulk metallic glasses"



PHYSICAL REVIEW LETTERS

week ending 24 FEBRUARY 2012

Elastic Moduli Inheritance and the Weakest Link in Bulk Metallic Glasses

D. Ma,<sup>1</sup> A. D. Stoica,<sup>1</sup> X.-L. Wang,<sup>1,\*</sup> Z. P. Lu,<sup>2</sup> B. Clausen,<sup>3</sup> and D. W. Brown<sup>3</sup>

| TABLE I.     | Experimental  | Young's modulus   | (E) and shear | r modulus (G) | for BMGs and    | l their solvent | elements (S | Sol). Also | listed are the |
|--------------|---------------|-------------------|---------------|---------------|-----------------|-----------------|-------------|------------|----------------|
| ratios of BM | AG to solvent | in terms of E and | G, respectiv  | ely. Data for | solvents were t | taken from [6   | ].          |            |                |

| BMGs                                                                                         | Sol | E (GPa) |       |       |      | G (GPa) Ref. |       |      |                                                  |  |  |  |
|----------------------------------------------------------------------------------------------|-----|---------|-------|-------|------|--------------|-------|------|--------------------------------------------------|--|--|--|
|                                                                                              |     | BMG     | Sol   | Ratio | BMG  | Sol          | Ratio |      | "Conventionally, the elasticity of a glass is    |  |  |  |
| Zr55Cu7Co19Al19                                                                              | Zr  | 101.7   | 98.0  | 1.04  | 37.6 | 35.0         | 1.07  | [1]  | viewed as what takes place in an isotropic       |  |  |  |
| Zr <sub>41.2</sub> Ti <sub>13.8</sub> Ni <sub>10</sub> Cu <sub>12.5</sub> Be <sub>22.5</sub> | Zr  | 97.2    | 98.0  | 0.99  | 35.9 | 35.0         | 1.03  | [1]  | solid, i.e., elastic bond stretching and uniform |  |  |  |
| Zr <sub>48</sub> Nb <sub>8</sub> Cu <sub>12</sub> Fe <sub>8</sub> Be <sub>24</sub>           | Zr  | 95.7    | 98.0  | 0.98  | 35.2 | 35.0         | 1.01  | [7]  | straining at all scales "                        |  |  |  |
| Zr <sub>48</sub> Nb <sub>8</sub> Cu <sub>14</sub> Ni <sub>12</sub> Be <sub>18</sub>          | Zr  | 93.9    | 98.0  | 0.96  | 34.3 | 35.0         | 0.98  | [7]  | straining at an scales.                          |  |  |  |
| $Zr_{46}Cu_{46}Al_8$                                                                         | Zr  | 93.7    | 98.0  | 0.96  | 34.3 | 35.0         | 0.98  | [8]  |                                                  |  |  |  |
| Zr50.6Ti5.1Cu18.9Ni11.1Al14.3                                                                | Zr  | 92.7    | 98.0  | 0.95  | 34.0 | 35.0         | 0.97  | [7]  |                                                  |  |  |  |
| Zr <sub>50</sub> Cu <sub>50</sub>                                                            | Zr  | 85.0    | 98.0  | 0.87  | 31.3 | 35.0         | 0.89  | [8]  |                                                  |  |  |  |
| Zr55Ti5Cu20Ni10Al10                                                                          | Zr  | 85.0    | 98.0  | 0.87  | 31.0 | 35.0         | 0.89  | [8]  |                                                  |  |  |  |
| Zr <sub>57.5</sub> Nb <sub>5</sub> Cu <sub>15.5</sub> Ni <sub>12</sub> Al <sub>10</sub>      | Zr  | 84.7    | 98.0  | 0.86  | 30.8 | 35.0         | 0.88  | [7]  | "In this letter, we set out to investigate the   |  |  |  |
| Er <sub>50</sub> Y <sub>6</sub> Al <sub>24</sub> Co <sub>20</sub>                            | Er  | 71.1    | 70.0  | 1.02  | 27.0 | 28.0         | 0.96  | [8]  | alacticity adopt the moduli of their column      |  |  |  |
| H039Al24C020Y12Zr5                                                                           | Ho  | 69.3    | 65.0  | 1.07  | 26.2 | 26.0         | 1.01  | [9]  | elasticity adopt the moduli of their solvent     |  |  |  |
| H039Al25C020Y16                                                                              | Ho  | 69.1    | 65.0  | 1.06  | 26.2 | 26.0         | 1.01  | [9]  | components                                       |  |  |  |
| Dy46Y10Al24Co18Fe2                                                                           | Dy  | 64.2    | 61.0  | 1.05  | 24.4 | 25.0         | 0.98  | [10] |                                                  |  |  |  |
| Mg65Cu25Gd10                                                                                 | Mg  | 49.1    | 44.7  | 1.10  | 18.6 | 17.3         | 1.08  | [1]  |                                                  |  |  |  |
| La55Cu10Ni5Co5Al25                                                                           | La  | 41.9    | 37.9  | 1.11  | 15.6 | 14.9         | 1.05  | [8]  |                                                  |  |  |  |
| La66Cu10Ni10Al14                                                                             | La  | 35.7    | 37.9  | 0.94  | 13.4 | 14.9         | 0.90  | [8]  |                                                  |  |  |  |
| La62Cu11.7Ag23Ni5Co5Al14                                                                     | La  | 35.0    | 37.9  | 0.92  | 13.0 | 14.9         | 0.87  | [11] | "Cince the electic modulus reflects the          |  |  |  |
| Pr <sub>60</sub> Ni <sub>10</sub> Al <sub>10</sub> Cu <sub>20</sub>                          | Pr  | 37.2    | 37.0  | 1.01  | 13.6 | 15.0         | 0.91  | [10] | Since the elastic modulus reliects the           |  |  |  |
| Ce68Cu20Nb2Al10                                                                              | Ce  | 31.0    | 33.5  | 0.93  | 12.0 | 13.5         | 0.89  | [12] | inherent stiffness of atomic bonds, Table 1      |  |  |  |
| Ce68Cu20Fe2Al10                                                                              | Ce  | 30.8    | 33.5  | 0.92  | 11.8 | 13.5         | 0.87  | [8]  | suggests that solvent-solvent bonds are          |  |  |  |
| Ce70Cu10Ni10Al10                                                                             | Ce  | 30.3    | 33.5  | 0.90  | 11.5 | 13.5         | 0.85  | [10] | essentially responsible for the elasticity of    |  |  |  |
| Fe61Mn10Cr4M06Er1C15B6                                                                       | Fe  | 193     | 211.4 | 0.91  | 75   | 81.6         | 0.92  | [13] | BMGs"                                            |  |  |  |
| Fe53Cr15M014Er1C15B6                                                                         | Fe  | 195     | 211.4 | 0.92  | 75   | 81.6         | 0.92  | [13] |                                                  |  |  |  |
| Au49.5Ag5.5Pd2.3Cu26.9Si16.3                                                                 | Au  | 74.4    | 78.5  | 0.95  | 26.5 | 26           | 1.02  | [14] |                                                  |  |  |  |
| Au55 Cu25 Si20                                                                               | Au  | 69.8    | 78.5  | 0.89  | 24.6 | 26           | 0.95  | [14] |                                                  |  |  |  |
| Mean                                                                                         |     |         |       | 0.97  |      |              | 0.96  |      |                                                  |  |  |  |
| Standard Deviation                                                                           |     |         |       | 0.07  |      |              | 0.07  |      |                                                  |  |  |  |

"Elastic moduli inheritance and the weakest link in bulk metallic glasses" 🕍

D. Ma, et al., Physical Review Letters, 108, 2012, 085501

To explore evidence of the structural origin from solvent component, in-situ neutron diffraction study of  $\phi$ 6mm Zr-based BMG (Zr<sub>52.5</sub>Cu<sub>17.9</sub>Ni<sub>14.6</sub>Al<sub>10</sub>Ti<sub>5</sub>) under compressive stress (10MPa, 500MPa, 1000MPa, 1500MPa)



Strain-sensitive region  $\rightarrow$  Junction among the solute-centered clusters and/or the superclusters by excess solvent atoms

### Conclusion

N. Mattern et al., Journal of non-crystalline solids, 354, 2008, 1054-1060



**ESPark Research Group** 

# Thank you for Your Kind Attention